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Outline

• Totally monotone and Monge Matrices

• The SMAWK Theorem for finding row minima/maxima
of totally monotone and Monge matrices quickly.

• A DP application:
Web proxies on a line topology network.

• Proof of the SMAWK Theorem
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Problem Definition

Our problem is to find the row-maxima in an
n × m (n ≤ m) matrix M :

10 12 9 10 10 6

10 13 10 11 11 8

7 10 8 9 9 7

8 11 10 11 11 10

4 8 8 9 10 11

1 5 5 6 7 9

For later use let π(i) be column index of row maxima
(In case of ties we let π(i) be smallest such index).

This looks as if it should take θ(mn) time.

In practice, in many applications the matrix is often
totally-monotone. In this case, the SMAWK algorithm
due to A.Aggarwal, M.M.Klawe, S.Moran, P.Shor and
R.Wilber permits us to solve the problem in O(m+n)
time. This will permit speeding up many dynamic pro-
gramming aplications.
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Monge and Monotone Matrices

10 12 9 10 10 6

10 13 10 11 11 8

7 10 8 9 9 7

8 11 10 11 11 10

4 8 8 9 10 11

1 5 5 6 7 9

A 2× 2 matrix

(

a b
c d

)

is monotone if it is not simul-

taneously true that a < b and c ≥ d, i.e., row maxima
can not be c, b.

An n × m matrix is totally monotone if every 2 × 2
submatrix is monotone.

An n × m matrix is Monge if ∀i < n, ∀j < m,

ai,j + ai+1,j+1 ≥ ai,j+1 + ai+1,j

Lemma: Every Monge matrix is totally monotone.
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The SMAWK Theorem

10 12 9 10 10 6

10 13 10 11 11 8

7 10 8 9 9 7

8 11 10 11 11 10

4 8 8 9 10 11

1 5 5 6 7 9

Theorem: (SMAWK)
If M is a totally monotone n×m (n ≤ m) matrix then
its row-maxima can be found in O(m + n) time.

We will now see an application of this theorem and,
afterwards, a proof.

Note: The original proof of this theorem appears in the SMAWK

paper. Our proof is a modified version of that scribed by by Bruce

Maggs and Avrim Blum for the course notes of Computational

Geometry (18.409) given in Spring 1988 by Alok Aggawaal and

Joel Klein at MIT.
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Note. The SMAWK Theorem implies that if M is a
n × m (n ≤ m) Monge matrix, i.e., ∀i < n, ∀j < m,
it satisfies

ai,j + ai+1,j+1 ≥ ai,j+1 + ai+1,j,

then the row-maxima of M can be found in O(m+n)

time.

By taking negatives of all elements this implies that if
∀i < n, ∀j < m,

ai,j + ai+1,j+1 ≤ ai,j+1 + ai+1,j

then the row-minima of M can be found in O(m+n)

time.

When dealing with row-minima problems, we will call
matrices that satisfy the second inequality Monge as
well.
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The Web Proxy on a Line Problem

Consider a network as a weighted graph G = (V, E),
with the distance between two vertices being the short-
est path between them. Let us specify one server
s ∈ V on the network as being the source of all infor-
mation. Nodes will also have weights ; the weight of
node v ∈ V will be wv, the total amount of service (or
frequency of requests) that v is requesting from s.

The total traffic associated with the request will then
be d(v, s)wv (sometimes known as latency). Total la-
tency of the system will be

∑

v∈V d(v, s)wv.

In order to reduce the latency of the system we can
make copies of the server’s information and cache
them at web-proxy nodes in the network. If S is the
set of web proxies (we always assume s ∈ S) let
d(v, S) = min{d(v, u) : u ∈ S}. The total latency
of the system is then reduced to

∑

v∈V d(v, S).
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The problem that we want to solve is, given the con-
straint that |S| = m+1, find the set of m+1 of web-
proxies S that minimizes

∑

v∈V d(v, S) (recall that s ∈

V ).

In graph theory this is known as the m-median prob-
lem and, for general graphs, is NP-hard to solve or
even approximate.

For some special graph topologies, though, this prob-
lem can be solved in polynomial time. In particular,
consider the directed line topology. G is a directed
line with edges (vi, vi−1) for i = 1, . . . , n and origi-
nal server s = v0. The problem then has a simple Dy-
namic Programming formulation with a Θ(mn2) so-
lution. We will now see how to use monotone-matrix
properties (the SMAWK algorithm) to reduce this down
to Θ(mn).

The algorithm in this paper appears in: G. Woegin-
ger, “Monge strikes again: optimal placement of web
proxies in the internet,” Operations Research Letters,
27(3), pp. 93-96 (2000).
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The DP setup

Set dq = d(vq, vq−1). Note that if i < j,

then d(vi, vj) =
∑j

q=i+1 dq. Set

ã(i, j) =
j−1
∑

ℓ=i+1

wℓd(vℓ, vi) =
j−1
∑

ℓ=i+1

ℓ
∑

q=i+1

wℓdq

Let F [j, k] denote the minimum latency on the ver-
tices v0, v1, . . . , vj when using k proxies where the
rightmost proxy is on node vj. Then

∀j, F [j,1] = ã(0, j)
∀k > 0 F [1, k] = 0

and for 2 ≤ j ≤ n and 2 ≤ k ≤ m,

F [j, k] = min{F [i, k − 1] + ã(i, j) : 1 ≤ i ≤ j}

OPT = min{F [i, m] + ã(i, n) : 1 ≤ i ≤ n}

where OPT is the final solution we are looking for.
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Recall ã(i, j) =
j−1
∑

ℓ=i+1

ℓ
∑

q=i+1

wℓdq.

Lemma: Set

D[j] =
j
∑

q=0

dq, W [j] =
n
∑

ℓ=j

wℓ,

X[j] =
j
∑

q=0

n
∑

ℓ=q

wℓdq, Y [j] =
n
∑

ℓ=j

ℓ
∑

q=0

wℓdq

Then

ã(i, j) = Y [0] − Y [j] − X[i] + D[i] · W [j].

Corollary: Using only Θ(n) preprocessing time and
Θ(n) space, ã(i, j) can be calculated in O(1) time.
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Lemma: If i + 1 ≤ j then

ã(i, j)+ ã(i+1, j +1) ≤ ã(i, j +1)+ ã(i+1, j).

Furthermore, let M be the n × n matrix with entries

ai,j =

{

ã(i, j) if i ≤ j
∞ otherwise

Then M is Monge.

Proof: Recall that

ã(i, j) = Y [0] − Y [j] − X[i] + D[i] · W [j].

Then, if i + 1 ≤ j

ã(i, j) + ã(i + 1, j + 1) − ã(i, j + 1) − ã(i + 1, j)

= D[i] · W [j] + D[i + 1] · W [j + 1]

−D[i] · W [j + 1] − D[i + 1] · W [j]

= (D[i] − D[i + 1]) · (W [j] − W [j + 1])

= −di+1 · wj+1 < 0

To see that M is Monge simply note that if i + 1 > j
then the right hand side of the corresponding inequal-
ity in ai,j is ∞ and is therefore obviously correct.
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Lemma: Let M = (ai,j) be an n × m Monge matrix,
i.e.,

ai,j + ai+1,j+1 ≤ ai,j+1 + ai+1,j.

Let Fi, i = 1, . . . , n, be any constants. Set

bi,j = Fi + a(i, j)

Then bi,j, viewed as a matrix, is also Monge.

Proof:

bi,j + bi+1,j+1 = Fi + ai,j + Fi+1 + ai+1,j+1

≤ Fi + ai,j+1 + Fi+1ai+1,j

= bi,j+1 + bi+1,j.
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Our DP is

∀j, F [j,1] = ã(0, j)
∀k > 0 F [1, k] = 0

and for 2 ≤ j ≤ n and 2 ≤ k ≤ m,

F [j, k] = min{F [i, k − 1] + ã(i, j) : 1 ≤ i ≤ j}

OPT = min{F [i, m] + ã(i, n) : 1 ≤ i ≤ n}

Rewrite this as

∀j, F [j,1] = ã(0, j)
∀k > 0 F [1, k] = 0

and for 2 ≤ j ≤ n and 2 ≤ k ≤ m + 1,

bk
i,j = F [i, k − 1] + ã(i, j)

F [j, k] = min{bk
i,j : 1 ≤ i ≤ j}

OPT = F [n, m + 1]
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Our DP is now

∀j, F [j,1] = ã(0, j)
∀k > 0 F [1, k] = 0

and for 2 ≤ j ≤ n and 2 ≤ k ≤ m + 1,

bk
i,j = F [i, k − 1] + ã(i, j)

F [j, k] = min{bk
i,j : 1 ≤ i ≤ j}

OPT = F [n, m + 1]

Note that this can be read as saying that we have
m−1 matrices M(2), M(3), . . . , M(m+1), where the
entries of M(k) are bk

i,j.

F [j, k] are the row-minima of M(k) and OPT is the
n’th row-minima of M(m+1).

If the M(k) were all Monge we could use the SMAWK
algorithm to find each of their row-minima in O(n)

time, and all of them in O(mn) time. We will now
show that they are all Monge, immediately giving an
O(mn) time algorithm for calculating OPT .

14



Our DP is now

∀j, F [j,1] = ã(0, j)
∀k > 0 F [1, k] = 0

and for 2 ≤ j ≤ n and 2 ≤ k ≤ m + 1,

bk
i,j = F [i, k − 1] + ã(i, j)

F [j, k] = min{bk
i,j : 1 ≤ i ≤ j}

OPT = F [n, m + 1]

We have m − 1 matrices M(2), M(3), . . . , M(m+1),
where the entries of M(k) are bk

i,j.

We have already seen that
(I) ã(i, j) is Monge.
(II) If a(i, j) is Monge then, for any Fi,

bi,j = Fi + a(i, j) is Monge.

So, by induction, all of the M(k) are Monge,
and we are done.
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The SMAWK algorithm

To find the row maxima of an n × m (n ≤ m) totally
monotone matrix M :

Step 1: The algorithm reduces M to an n × n totally-
monotone matrix M ′ using subroutine REDUCE(n, m).
The row maxima of M ′ will be the same as the row
maxima of corresponding rows in M .
REDUCE(n, m) will use 2m − n comparisons.

Step 2: All the odd rows of M ′ are then extracted to
form an n/2× n matrix M ′′.

Step 3: REDUCE(n/2, n) will then be applied to
M ′′ to reduce it to an n/2 × n/2 totally-monotone
matrix M ′′′, again without without changing the row
maxima. This is done using 2n − n/2 = 3n/2 com-
parisons.
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The SMAWK algorithm: cont

Step 4: The algorithm is then recursively applied to
M ′′′ to determine the positions of the row maxima of
M ′′′ and thus of M ′′.

Step 5: All the rows and columns discarded in steps 2
and 3 are returned, to yield M ′.

Step 6: Given all the positions of maximum of the odd
rows, i.e., those of M ′′, the maxima of the even rows
can be found in 3n/2 comparisons.
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M’’’ M’’

M M’
1

2
34

5

6
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Example

10 12 9 10 10 6

10 13 10 11 11 8

7 10 8 9 9 7

8 11 10 11 11 10

4 8 8 9 10 11

1 5 5 6 7 9

10 12 9 10 10 6

7 10 8 9 9 7

4 8 8 9 10 11

12 10 6

10 9 7

8 10 11

12 10 6

10 9 7

8 10 11

19



10 12 9 10 10 6

10 13 10 11 11 8

7 10 8 9 9 7

8 11 10 11 11 10

4 8 8 9 10 11

1 5 5 6 7 9

10 12 9 10 10 6

10 13 10 11 11 8

7 10 8 9 9 7

8 11 10 11 11 10

4 8 8 9 10 11

1 5 5 6 7 9



Staircase Lemma: π(i) ≤ π(i + 1).

Proof: This follows directly from the definition of
totally monotonicity .

This implies that, given the row maxima in the odd
rows, the row maxima in the even rows can be found
using 3n/2 comparisons (proving the correctness of
Step 6).

20



Running time of SMAWK

Assume for now that REDUCE(m, n) uses
≤ 2m−n comparisons. Let T(m, n) denote the num-
ber of comparison required to find all the row maxima
of an m × n totally-monotone matrix. Then,

T(n, n) ≤ 3n/2 + T(n/2, n/2) + 3n/2

≤ 6n

T(m, n) ≤ T(n, n) + 2m − n

= 5n + 2m
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REDUCE(n, m)

Lemma:
Let a and b be two entries in the same row of a
totally-monotone matrix.

(i) If a < b, there will be no row-maximum below
the entry of a.

(ii) If a ≥ b, there will be no row-maximum above
the entry of b.

Proof: If this is not true, then the totally-monotonicty
property will be violated.

���
���
���
���
���

���
���
���
���
���

a < b
��
��
��
��
��

��
��
��
��
��

a b>=
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REDUCE(n, m)

Start with the first two elements a, b in the top row.
Algorithm is:

If a < b, eliminate the entire column of a. Set the old
b to be the new a and the element to its right to be the
new b; repeat.

If a ≥ b, eliminate b and all the entries above it. Set
the element below the old b to be the new a and the
element to its right to be the new b; go to next page.

Note that, by previous slide, eliminated-items can not
be row-maxima.

������������

������������

������������

������������

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��a

a b
b
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REDUCE(n, m)

In step k, assume we have an i × i staircase of elimi-
nated entries (i ≤ n). Compare a and b where

a = (i + 1, i + 1) and b = (i + 1, i + 2).
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i

There are two cases: (I) a < b and (II) a ≥ b.
We will see, that after both cases, we will have a
staircase of i′ eliminated entries such that
(I) a’s complete column is eliminated and i′ = i−1 or
(IIa) b’s complete column is eliminated and i′ = i or
(IIb) i′ = i+1 ≤ n and b and items above eliminated.

Since only m−n columns are eliminated, (I) and (IIa)
together occur exactly m− n times. (IIb) can occur at
most n times more than the number of columns that
are eliminated. So, the total number of comparisons
performed is ≤ (m−n)+(n+(m−n)) = 2m−n.
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(I) a < b

In step k, assume we have an i × i staircase of elimi-
nated entries (i ≤ k). Compare a and b where

a = (i + 1, i + 1) and b = (i + 1, i + 2).

There are two cases: (I) a < b and (II) a ≥ b.

(I) If a < b, eliminate a and all items below it. Since
items above a previously eliminated, eliminate entire
column i+1. This gives a (i−1)× (i−1) staircase
of eliminated entries. New a is highest non-eliminated
entry in column i.
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(II) a ≥ b

In step k, assume we have an i × i staircase of elimi-
nated entries (i ≤ k). Compare a and b where

a = (i + 1, i + 1) and b = (i + 1, i + 2).

There are two cases: (I) a < b and (II) a ≥ b.

(II) If a ≥ b, eliminate b and all the entries above it.

Either (a) i = n, in which case b is bottom item in
column so we eliminate entire column i + 2, set new
a to be old a and the staircase remains i × i,

or (b) i < n and we will have increased the size of the
staircase to (i+1)× (i+1) and set new a to be old
b.
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