More oi LPs.	n the	corre	espon	denc	e betv	ween	polyt	opes	s and
									1

Let

$$F = \{x : Ax = b, x \ge 0\}$$

be the feasible region of some LP, $x \in \mathbb{R}^n$. Then the corresponding polytope P in \mathbb{R}^{n-m} is the solution space to

$$b_i - \sum_{j=1}^{n-m} a_{i,j} x_j \ge 0, \quad i = n-m+1, \dots, n$$

 $x_j \ge 0, \quad j = 1, \dots, n-m$

The mapping from F to P is simply

$$\phi((x_1\ldots,x_n))=(x_1,\ldots,x_{n-m})$$

Now let P be a polytope in \mathbb{R}^{n-m} defined by

$$h_{i,1}\hat{x}_1 + \dots + h_{i,n-m}\hat{x}_{n-m} + g_i \le 0, \quad i = 1,\dots,n.$$

where the first n-m equations are:

$$\hat{x}_i \geq 0, \quad i = 1, \dots, n - m$$

Then the mapping from P to F is

$$\rho((\widehat{x}_1 \dots, \widehat{x}_{n-m})) = (\widehat{x}_1 \dots, \widehat{x}_{n-m}, x_{n-m+1}, \dots, x_n)$$
 where

$$x_i = -g_i - \sum_{j=1}^{n-m} h_{i,j} x_j, \quad i = n - m + 1, \dots, n.$$

Lemma: Using the notation of the previous page.

$$\rho(\phi(F) = F \text{ and } \phi(\rho(P)) = P.$$

This just says that ϕ and ρ are 1-1 functions.

Proof: Next homework.

Lemma: Let

$$F = \{x : Ax = b, \quad x \ge 0\}$$

be the feasible region of a linear program and P the corresponding polytope in R^{n-m} . Now let $c \in R^n$ be a cost vector. Then there exists a cost vector $d \in R^{n-m}$ and $K \in R$ such that for every $\hat{x} \in P$

$$K + d'\hat{x} = c'\rho(x)$$

Proof: Next homework.

Note. This implies that solving the linear program is equivalent to minimizing $d'\hat{x}$ on P. This, in turn, is equivalent to sweeping in from infinity the hyperplanes corresponding to $d'\hat{x} = \text{const}$ until they hit P.