More on the correspondence between polytopes and LPs.

$$
F=\{x: A x=b, \quad x \geq 0\}
$$

be the feasible region of some LP, $x \in R^{n}$. Then the corresponding polytope P in R^{n-m} is the solution space to

$$
\begin{aligned}
b_{i}-\sum_{j=1}^{n-m} a_{i, j} x_{j} & \geq 0, \quad i=n-m+1, \ldots, n \\
x_{j} & \geq 0, \quad j=1, \ldots, n-m
\end{aligned}
$$

The mapping from F to P is simply

$$
\phi\left(\left(x_{1} \ldots, x_{n}\right)\right)=\left(x_{1}, \ldots, x_{n-m}\right)
$$

Now let P be a polytope in R^{n-m} defined by
$h_{i, 1} \widehat{x}_{1}+\cdots+h_{i, n-m} \widehat{x}_{n-m}+g_{i} \leq 0, \quad i=1, \ldots, n$. where the first $n-m$ equations are:

$$
\widehat{x}_{i} \geq 0, \quad i=1, \ldots, n-m
$$

Then the mapping from P to F is
$\rho\left(\left(\widehat{x}_{1} \ldots, \widehat{x}_{n-m}\right)\right)=\left(\widehat{x}_{1} \ldots, \widehat{x}_{n-m}, x_{n-m+1}, \ldots, x_{n}\right)$ where

$$
x_{i}=-g_{i}-\sum_{j=1}^{n-m} h_{i, j} x_{j}, \quad i=n-m+1, \ldots, n .
$$

Lemma: Using the notation of the previous page.

$$
\rho(\phi(F)=F \quad \text { and } \quad \phi(\rho(P))=P .
$$

This just says that ϕ and ρ are 1-1 functions.

Proof: Next homework.

Lemma: Let

$$
F=\{x: A x=b, \quad x \geq 0\}
$$

be the feasible region of a linear program and P the corresponding polytope in R^{n-m}. Now let $c \in R^{n}$ be a cost vector. Then there exists a cost vector $d \in R^{n-m}$ and $K \in R$ such that for every $\hat{x} \in P$

$$
K+d^{\prime} \hat{x}=c^{\prime} \rho(x)
$$

Proof: Next homework.

Note. This implies that solving the linear program is equivalent to minimizing $d^{\prime} \widehat{x}$ on P. This, in turn, is equivalent to sweeping in from infinity the hyperplanes corresponding to $d^{\prime} \hat{x}=$ const until they hit P.

