Linear Programming \& the Simplex Algorithm Part II
 P\&S Chapter 2
 Last Revised - October 13, 2004

Outline

- Moving from BFS to BFS.
- Organizing information in a tableau.
- How to move from a BFS to a better BFS and proving that an optimal BFS exists.
- The Simplex Algorithm.

Moving From BFS to BFS

For LP in standard form with matrix A, let x_{0} be a BFS corresponding to the basis columns

$$
\mathcal{B}=\left\{A_{B(i)}: i=1, \ldots, m\right\}
$$

Let the basic components of x_{0} be $x_{i, 0}, i=1, \ldots, m$, ie.,

$$
\sum_{i=1}^{m} x_{i, 0} A_{B(i)}=b, \quad \text { where } x_{i, 0} \geq 0
$$

Any nonbasic column, $A_{j} \in R^{m}, A_{j} \notin \mathcal{B}$ can be written as

$$
\sum_{i=1}^{m} x_{i, j} A_{B(i)}=A_{j}
$$

Multiplying the 2 nd by $\theta>0$ and subtracting from the first gives

$$
\sum_{\mathrm{i}=1}^{\mathrm{m}}\left(\mathbf{x}_{\mathrm{i}, 0}-\theta \mathrm{x}_{\mathrm{i}, \mathrm{j}}\right) \mathbf{A}_{\mathbf{B}(\mathrm{i})}+\theta \mathbf{A}_{\mathrm{j}}=\mathbf{b}
$$

Given basis

$$
\mathcal{B}=\left\{A_{B(i)}: i=1, \ldots, m\right\}
$$

we have seen that for every non-basis column $A_{j} \notin \mathcal{B}$

$$
\sum_{\mathrm{i}=1}^{\mathrm{m}}\left(\mathrm{x}_{\mathrm{i}, 0}-\theta \mathrm{x}_{\mathrm{i}, \mathrm{j}}\right) \mathbf{A}_{\mathrm{B}(\mathrm{i})}+\theta \mathbf{A}_{\mathbf{j}}=\mathbf{b}
$$

Assuming for the moment that x_{0} is nondegenerate, so all $x_{i, 0}>0$,

Fixing j, start at $\theta=0$ and then increase θ. As soon as $\theta>0$ we have moved from a BFS to a feasible solution with $m+1$ positive components.

How long does this solution remain feasible? As long as $x_{i, 0}-\theta x_{i, j} \geq 0$, i.e.,

$$
\theta_{0}=\min _{\substack{i \text { s.t.t. } \\ x_{i, j}>0}} \frac{x_{i, 0}}{x_{i, j}}
$$

$$
\sum_{\mathrm{i}=1}^{\mathrm{m}}\left(\mathbf{x}_{\mathrm{i}, 0}-\theta \mathrm{x}_{\mathrm{i}, \mathrm{j}}\right) \mathbf{A}_{\mathrm{B}(\mathrm{i})}+\theta \mathbf{A}_{\mathrm{j}}=\mathrm{b}
$$

$$
\theta_{0}=\min _{\substack{i \text { i.t.t. } \\ x_{i, j}>0}} \frac{x_{i, 0}}{x_{i, j}}
$$

There are two special cases:
a) x_{0} is degenerate because some $x_{i, 0}=0$ and corresponding $x_{i, j}>0$. Then $\theta_{0}=0$ and we do not move at all in R^{n}.

We actually stay at the same vertex but can think of what happened as moving to a new BFS in the LP, representing the same vetex, with column j replacing column $B(i)$,

In this case we sometimes say that x_{j} entered the basis at level 0 .
b) If all the $x_{i, j}, i=1, \ldots, m$ are nonpositive we would be able to move arbitrarily far without becoming infeasible. This would mean that F is unbounded, violating Assumption 3.

Theorem: Let x_{0} be a BFS with basic components $x_{i, 0}, i=1, \ldots, m$ and basis
$\mathcal{B}=\left\{A_{B(i)}: i=1, \ldots, m\right\}$.
Let j be s.t. $A_{j} \notin \mathcal{B}$.
Then the new feasible solution determined by

$$
\begin{gathered}
\theta_{0}=\min _{\substack{i \text { s.t. } \\
x_{i, j}>0}} \frac{x_{i, 0}}{x_{i, j}}=\frac{x_{l, 0}}{x_{l, j}} \\
x_{i, 0}^{\prime}= \begin{cases}x_{i, 0}-\theta_{0} x_{i, j} & i \neq l \\
\theta_{0} & i=l\end{cases}
\end{gathered}
$$

is a BFS with basis \mathcal{B}^{\prime} defined by

$$
B^{\prime}(i)= \begin{cases}B(i) & i \neq l \\ j & i=l\end{cases}
$$

When there is a tie in the min operation then the new BFS is degenerate

Proof: We already saw that this solution is feasible.
We now must show that it is basic, i.e, that the set of basis columns \mathcal{B}^{\prime} is linearly independent

Suppse not, then for some constants d_{i}, we have

$$
0=\sum_{i=1}^{m} d_{i} A_{B^{\prime}(i)}=d_{l} A_{j}+\sum_{\substack{i=1 \\ i \neq l}}^{m} d_{i} A_{B^{\prime}(i)}
$$

Plugging in (why does this exist)

$$
A_{j}=\sum_{i=1}^{m} x_{i, j} A_{B(i)}
$$

gives

$$
\sum_{\substack{i=1 \\ i \neq l}}^{m}\left(d_{l} x_{i, j}+d_{i}\right) A_{B^{\prime}(i)}+d_{l} x_{l, j} A_{B(l)}=0
$$

Since \mathcal{B} is a basis all of these coefficients must be zero so, in particular, $d_{l} x_{l, j}=0$ so $d_{l}=0$. But then, from the first equality (why) all of the $d_{i}=0$ so the new basis is linearly independent.

If there is a tie then more than one of the components of x_{0} become 0 and the basis is degenerate.

We just saw how to move from one BFS to another by removing one column $B(l)$ out of the basis and replacing it by another column. This method is called pivoting. Column $B(l)$ leaves the basis and new column j enters the basis.

Geometrically (to be proven later), a pivot either
a) moves from one vertex to another along an edge or
b) does nothing, i.e., stays at the same vertex. In this case, the corresponding BFSs must be degenerate.

We now see how to organize the equation information to make it easy to recognize and calculate pivots. In particular, we will see how to maintain the $x_{i, j}$ information in a tableau.

Organization of a Tableau

$$
\begin{aligned}
& 3 x_{1}+2 x_{2}+x_{3}=1 \\
& 5 x_{1}+x_{2}+x_{3}+x_{4}=3 \\
& 2 x_{1}+5 x_{2}+x_{3}+x_{5}=4
\end{aligned}
$$

We will keep a set of m equations in n unknowns in an $m \times n$ tableau:

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
1	3	2	1	0	0
3	5	1	1	1	0
4	2	5	1	0	1

Note that the RHS of the equations has now become column 0 in tableau.

The Elementary row operations

- Multiplying a row by a non-zero element
- Adding a multiple of one row to another row
do not change the solutions to the set of equations. We can therefore use elementary row operations to manipulate the rows until a set of (basis) columns becomes an identity matrix.

As an example we can manipulate

$$
\begin{aligned}
& 3 x_{1}+2 x_{2}+x_{3}=1 \\
& 5 x_{1}+x_{2}+x_{3}+x_{4}=3 \\
& 2 x_{1}+5 x_{2}+x_{3}+x_{5}=4
\end{aligned}
$$

so that it becomes

$$
\begin{aligned}
& 3 x_{1}+2 x_{2}+x_{3} \\
& 2 x_{1}-x_{2}=1 \\
&-x_{1}+3 x_{2}
\end{aligned}
$$

The manipulation on the previous page can also be performed in tableau form with

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
1	3	2	1	0	0
3	5	1	1	1	0
4	2	5	1	0	1

becoming

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
1	3	2	1	0	0
2	2	-1	0	1	0
3	-1	3	0	0	1

In this example the basis $\mathcal{B}=\left\{A_{3}, A_{4}, A_{5}\right\}$.
The important things to notice are that

- Column 0 gives the values of the basic variables $x_{B(i)}=x_{i, 0}, i=1, \ldots, m$ and
- The non basic columns contain exactly the values $x_{i, j}$ s.t. $A_{j}=\sum_{i} x_{i, j} A_{B(i)}$.

Example: $A_{1}=3 A_{3}+2 A_{4}-A_{5}=\sum_{i=1}^{m} x_{i 1} A_{B(i)}$

Current basis is $\mathcal{B}=\left\{A_{3}, A_{4}, A_{5}\right\}$. Suppose we want to move column $j=1$ into basis.

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
1	3	2	1	0	0
2	2	-1	0	1	0
3	-1	3	0	0	1

Then

$$
\theta_{0}=\min _{\substack{i \\ \text { s.t. } x_{i j}>0}}\left(\frac{x_{i 0}}{x_{i j}}\right)=\frac{1}{3} \text { for } i=l=1
$$

This means that we will introduce column A_{1} into basis with the " 1 " in row $l=1$. Doing this by elementary row operations gives a new basis $\mathcal{B}^{\prime}=\left\{A_{1}, A_{4}, A_{5}\right\}$ and tableau

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
$1 / 3$	1	$2 / 3$	$1 / 3$	0	0
$4 / 3$	0	$-7 / 3$	$-2 / 3$	1	0
$10 / 3$	0	$11 / 3$	$1 / 3$	0	1

Old

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
1	3	2	1	0	0
2	2	-1	0	1	0
3	-1	3	0	0	1

Setting (col) $j=1$ gives $\theta_{1}=1 / 3, i=l=1$, and

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
$1 / 3$	1	$2 / 3$	$1 / 3$	0	0
$4 / 3$	0	$-7 / 3$	$-2 / 3$	1	0
$10 / 3$	0	$11 / 3$	$1 / 3$	0	1

In general, if $x_{i, j}$ and $x_{i, j}^{\prime}$ are the old and new variables, $\mathcal{B}, \mathcal{B}^{\prime}$ the old and new bases and pivot is $x_{i, j}$ then the elementary row operations inserting column j into basis can be written as

$$
\begin{array}{rll}
x_{l q}^{\prime} & =\frac{x_{l q}}{x_{l j}} & q=0, \ldots, n \\
x_{i q}^{\prime} & =x_{i q}-x_{l q}^{\prime} x_{i j} & i=1, \ldots, m ; i \neq l \\
B^{\prime}(i) & = \begin{cases}B(i) & i \neq l \\
j & i=l\end{cases}
\end{array}
$$

Important: Basis remains feasible by definition of θ_{1}.

So far we have seen

- How to move from one BFS \mathcal{B} to another BFS \mathcal{B}^{\prime} by moving a new column A_{j} into the basis set
- How to efficiently implement the above using a tableau representation
- Given new column A_{j}, tableau permits calculating which old column $A_{B(i)}$ should be thrown out (this will be the i found when calculating θ_{0}).
- Given i, j, tableau permits modifying old $x_{l, q}$ into new $x_{l, q}^{\prime}$

It remains to show how to maintain cost in the tableau. This will be done introducing a new row into the tableau.

Before doing this we first show that there is a simple criteria to decide whether a BFS is optimal.

This criteria will have the added advantage of implying that there is always an optimal BFS.

Cost of BFS x_{0} with basis \mathcal{B} is $z_{0}=\sum_{i=1}^{m} x_{i, 0} c_{B(i)}$.
Before A_{j} is brought into basis we have

$$
A_{j}=\sum_{i=1}^{m} x_{i, j} A_{B(i)} .
$$

This means that for every unit of x_{j} that enters BFS, $x_{i, j}$ units of $x_{B(i)}$ must leave. A unit increase of x_{j} implies a net change in cost or relative cost of

$$
\overline{\mathrm{c}}_{\mathrm{j}}=\mathrm{c}_{\mathrm{j}}-\sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{x}_{\mathrm{i}, \mathrm{j}} \mathrm{c}_{\mathrm{B}(\mathrm{i})}=\mathrm{c}_{\mathrm{j}}-\mathrm{z}_{\mathrm{j}}
$$

where $z_{j}=\sum_{i=1}^{m} x_{i, j} c_{B(i)}$.
It is therefore profitable to bring column j into basis iff $\bar{c}_{j}<0$.
We will soon see that BFS is optimal iff $\forall j, \bar{c}_{j} \geq 0$.
Notation: For tableau X let B be the $m \times n$ matrix containing basis columns in X. Let c_{B} be the m-vector of costs corresponding to this basis. Let $z=\operatorname{col}\left(z_{1}, \ldots, z_{n}\right)$ Then, since X comes from diagonalizing basis columns of A,

$$
X=B^{-1} A \quad \text { and } \quad z^{\prime}=c_{B}^{\prime} X=c_{B}^{\prime} B^{-1} A
$$

Optimality Theorem:

At BFS x_{0} a pivot step in which x_{j} enters the basis changes the cost by

$$
\theta_{0} \bar{c}_{j}=\theta_{0}\left(c_{j}-z_{j}\right)
$$

Furthermore, if

$$
\bar{c}=c-z \geq 0
$$

then x_{0} is optimal.
Proof: Recall that original cost was $z_{0}=\sum_{i=1}^{m} x_{i, 0} c_{B(i)}$. If j moves into basis we have already seen that

$$
x_{i, 0}^{\prime}= \begin{cases}x_{i, 0}-\theta_{0} x_{i, j} & i \neq l \\ \theta_{0} & i=l\end{cases}
$$

so new cost is

$$
\begin{aligned}
z_{0}^{\prime} & =\sum_{i \neq l ; i=1}^{m}\left(x_{i, 0}-\theta_{0} x_{i, j}\right) c_{B(i)}+\theta_{0} c_{j} \\
& =z_{0}+\theta_{0}\left(c_{j}-z_{j}\right)
\end{aligned}
$$

proving first part. To prove second part let y be any feasible vector (not necessarily basic), i.e, $A y=b$ and $y \geq 0$. Then

$$
c^{\prime} y \geq z^{\prime} y=c_{B}^{\prime} B^{-1} A y=c_{B}^{\prime} B^{-1} b=c^{\prime} x_{0}
$$

where last equality comes from fact that $b=B x_{0}$.

Optimality Theorem:

At BFS x_{0} a pivot step in which x_{j} enters the basis changes the cost by

$$
\theta_{0} \bar{c}_{j}=\theta_{0}\left(c_{j}-z_{j}\right)
$$

Furthermore, if

$$
\bar{c}=c-z \geq 0
$$

then x_{0} is optimal.

This is the most important theorem we will see in this section!!

Consider the following algorithm:
Start at some BFS and loop the following line If any $\bar{c}_{j}<0$, pivot on A_{j} and construct new BFS .
(Ignoring degeneracy and assumptions we made) theorem implies that pivot always decreases cost, so cost is decreasing monotonically and we can never loop back to previously seen BFS. Since there are only a finite number of BFSs, the algorithm must terminate. The theorem then implies that the BFS at which we terminated was an optimal solution.

This algorithm is the SIMPLEX ALGORITHM.

