‘DIHI[)IBXZ UlUuUS & I:HUS|

Slightly more general objective functions

Linear programming is a good modelling tool

Simplex is (probably) not polynomial but LP can
be solved in polynomial time using Ellipsoid or In-
terior Point Algorithms

For a user LP is a modelling tool. You don’t need
to worry about how to solve LPs. Just plug them
Into Matlab, Maple, LP-Solve, etc.

Integer Linear Programming, which restricts the
x to be integers, is NP-Hard.

In practice, one can bound the optimal solution of
NP-hard problems by modelling them as Integer
Linear Programs (ILPs) and then relax the ILPS
to be Linear Programs.

We usually write simplex in the form

minz = ¢
reF

for A an m x n matrix and x € R"™. We already saw
that

xr where F={x: Az =0b, x>0}

maxc z is equivalentto min—c x

rxeF reF
so LP can also model maximization problems.

In many cases, e.dg., modelling quality of service prob-
lems in network routing, we might be asked to opti-
mize the more complicated

max | min x;
xeF \ie[l,n]
or even
max | min d;x
rel’ \je[1,1]
where d; € R™, 7 = 1,...,t. Atfist glance this looks

like something totally unrelated, but this can actually
easily be modelled using LPs. How?

Modelling with LPs

Linear programming is widely appliable.

One common use is in optimizing graph related prob-
lems (and since graphs are often used to model many
problems this leds to many applications).

Routing problems can often be modelled using LPs as
can many graph covering problems (leading to many
database applications).

One important observation is that you, as a user, only
have to worry about modelling your problem as a LP.
You don’t have to worry about actually solving the LP
since there is so much good code around.

All of the standard math programs, e.g., Matlab, Maple,
Macsyma, have LP solvers built in. For larger prob-
lems there is a good freeware package, LP-Solve. For
iIndustrial strength problems there are highly optimized
expensive pieces of software, such as CPLEX.

The simplex algorithm, as taught, is not polynomial.

The essential problem is that if matrix A isan m x n
matrix then there can, in the worst case, be (:;L) ~ n'm
BFSs, an exponential number.

In order for simplex not to be exponential, we would
have to find a pivot-rule that managed to always per-
mit us to skip most BFSs and, with a short (polyno-
mial) sequence of pivots, always find the optimum.

Unfortunately, for every pivot-rule known, there is a
counterexample with exponential number of BFSs that
forces simplex with that pivot rule to visit (almost) ev-
ery BFS.

Big Open Question: Does there exist a pivot-rule
that always gives polynomial time behavior.

What is known is that, for some pivot rules, simplex
runs in polynomial time “on average”.

The best simplex code is highly optimized and “usu-
ally” runs very quickly.

There are also two known polynomial time algorithms
for solving LP, the Ellipsoid algorithm and Karmakar’s
method.

The Ellipsoid method is primarily of theoretical interest
but Karmakar’s method (an “interior point” method) is,
on some types of LPs, actually faster than simplex.

An Integer Linear Program (ILP) is formulated exactly
the same as a Linear Program (LP) with the additional
constraint that all of the x; must be be integers .
minz = cz
rxel
where

F={x : Az = b, x > 0, and z; integers}

ILP is NP-Hard!

We now see an example of how ILP can model, min-
Imum, set cover, an NP-Hard problem. So, ILP being
solvable in polynomial time would imply that set cover
IS solvable in polynomial time.

‘ e JuLtl YUuvielllly hi1rvuieltl |

Let X be a set and F a family of subsets of X such
that X = UFG]:F-

For example X = {1,2,3,4,5,6} and F contains
the subsets

R
|

{1,3,5}
= {2,3,6}
F3 = {2,5,6}
Fy = {2,3,4,6}
11,4}

A subset ' € F covers its elements.

=
|

The problem is to find a minimume-size subset C C F
that covers X, I.e., X = UpcF.

For example { Fy, F», F4} covers X but is not a mini-
mal size solution.

C = {F7q, F4} is a minimal size solution.

Finding a minimal-size set cover is NP-Hard.

Let X = {u;};. Construct an integer linear program
with one variable xz; for each set Fj.

z=min)_ ;x;
subject to conditions
V7, Zu]-EFZ- x; > 1
Vi, Ly S 1

\V/i, Ly 2 O

Vi, x; IS an integer

Note that conditions imply that if x Iis feasible then
Vi, x; € {O, 1}.
Now, given a feasible solution x to the ILP define

The condition V3, Zujepi x; > 1 means that C is a
cover, so every feasible x corresponds to a cover.

Working backwards, given cover C, we can define
x;(C) = 1 if F; € C and 0 otherwise. x(C) is a feasi-
ble solution. This gives us a one-one correspondence
between feasible solutions and set covers.

Since |C| = >; z;, minimizing the objective function
IS equivalent to solving minimal set cover.

Given ILP that models our problem, e.g.,

z=min) ;x;
subject to conditions
V7, ZquFZ' xr; > 1
Vi, z; <1

\V/i, Ly 2 O

Vi, x; IS an integer

we can relax the ILP to get an LP

z=min)_ ;x;
subject to conditions
V7, Zu]-EFZ- x; > 1
Vi, Ly S 1

\V/i, Ly 2 O

Note that, by definition,
z <z
This might look trivial but it is extremely powerful.
9

In general, suppose you have a situation in which you
have an NP-Hard problem to solve, e.g., QOS net-
working applications. You've designed a heuristic that
you think works well but how can you convince people
of this?

In most cases you try to run your heuristic on (real or
benchmark) problems and then would like compare
your solutions to the “real” optimal solutions to show
that your solutions are very close. But, the problem is
NP-hard, so how can you find the real optimal solution
to which to compare it?

Often, this difficulty is finessed by comparing your re-
sults to the benchmark results derived by others but
that is often not intellectually satisfying (and might not
really mean much anyway; what justifies the bench-
mark?).

10

Another approach is to

e Write your minimization problem as an ILP.
Denote unknown optimal solution to ILP as z.

e Relax the ILP to an LP.

e Solve the associated LP (in polynomial time) to
get “optimal relaxed solution” z.

e Run your heuristic on original problem to get heuris-
tic solution s.

e We would like to know s — z or S;Z but can’t cal-
culate them.

s—2z
z

We can, though, calculate s — z and

Since s—z < s—zand *_* < ng, this permits us
to upperbound (relative) error to optimum without

knowing the optimum.

11

