
Maximum Flow Revised 09/09/2004

Main Reference: Sections 26.1-26.3 in CLRS.

• Introduction

– Definitions

– Multi-Source Multi-Sink

• The Ford-Fulkerson Method

– Residual Networks

– Augmenting Paths

– The Max-Flow Min-Cut Theorem

– The Edmonds-Karp algorithm

• Max Bipartite Matching

• Odds and Ends

1

Maximum Flow

Main Reference: Sections 26.1-26.3 in CLRS.

• Given a directed graph,
G = (V, E) : flow network

• Source (producer) s and destination t.

• Internal Nodes are warehouses

• Edge costs are capacities
Maximum amount that can be shipped over edge

• All goods shipped into a warehouse must leave
the warehouse

• Goal:
Ship Maximum amount (flow) from s to t.

2

s

v

v

v

t4

12

2016

13

10

v1 3

2 414
4

79

A Flow Network with capacities

s

v

v

v

t

v1 3

2 4

10

5/1
6

6/13

1/
4

6/12

4/9 6/
7

3/4
9/14

8/20

A flow with value 11

s

v

v

v

t

v1 3

2 4

10

11
/16

8/13

1/
4

12/12
15/20

4/9 7/
7

4/4
11/14

A max-flow: value is 19

3

A flow network is a graph G = (V, E) .
Source s ∈ V, , sink t ∈ V, .

Every edge (u, v) ∈ E has capacity , c(u, v) ≥ 0 .
Assume that for every v ∈ V

there is a path from s to v and from v to t.

A FLOW is a function f : V × V → R satisfying:

• Capacity Constraint:
∀u, v,∈ V, f(u, v) ≤ c(u, v).

• Skew Symmetry:
∀u, v,∈ V, f(u, v) = −f(v, u).

• Flow Conservation:
∀u ∈ V − {s, t},

∑

v∈V f(u, v) = 0.

The VALUE of flow v is |f | =
∑

v∈V f(s, v). .

MAXIMUM-FLOW PROBLEM:
Given G, c, s, t, find f that maximizes |f |.

4

Multi-Source Multi-Sink Problem

The basic Max-Flow problem assumes that there is
only one source s, and one sink t.

Suppose that there are multiple sources s1, s2, . . . , sk

and multiple sinks t1, t2, . . . , tℓ.

The definition of a flow remains the same except that
the Flow Conservation property now becomes
∀u ∈ V −{s1, s2, . . . , sk, t1, t2, . . . , tℓ},

∑

v∈V f(u, v) = 0

and our goal is to maximize

|f | =
k

∑

i=1

∑

v∈V

f(si, v).

This problem can be reduced to the original one by
introducing a supersource s0, a supersink t0 and
edges ∪i(s0, si) and ∪j(tj, t0), all of which have ca-
pacity ∞.

5

A multi-source multi-sink problem and its equivalent
single-source single-sink version.

t1

2t

t3

3

15

6

20

13

18

s 1

s 2

10

12

5

8
3s

14

7
s 4

11
2

s 5

t1

2t

t3

3

15

6

20

13

18

1

s 2

10

12

5

8
3s

14

7
s 4

11
2

s 5

s t

s

6

Manipulating Flows

Let X, Y ⊆ V. We define

f(X, Y) =
∑

x∈X

∑

y∈Y

f(x, y).

The flow-conservation constraint then just says

∀u ∈ V − {s, t}, f(u, V) = 0.

Lemma: (Proof in Homework)
∀X ⊆ V, f(X, X) = 0.

∀X, Y ⊆ V, f(X, Y) = −f(Y, X).

∀X, Y, Z ⊆ V with X ∩ Y = ∅

f(X ∪ Y, Z) = f(X, Z) + f(Y, Z) and
f(Z, X ∪ Y) = f(Z, X) + f(Z, Y)

7

Flow f was defined as
amount that leaves source s.

We now see that this is the same as
amount that enters sink t..

|f | = f(s, V) definition
= f(V, V) − f(V − s, V) previous page
= −f(V − s, V) previous page
= f(V, V − s) previous page
= f(V, t) + f(V, V − s − t) previous page
= f(V, t) flow conservation

8

In every optimization problem we have to deal with
the question: How can we prove that our solution
is optimal (maximal/minimal)?

A common technique (for max problems) is to find a
good upper-bound on the cost of an optimal solution
and then show that our solution satisfies that bound.

A CUT S, T of G is a partition of the vertices
V = S ∪ T, S ∩ T = ∅, s ∈ S, and t ∈ T.

The flow across the cut is f(S, T).

The capacity of a cut is C(S, T) =
∑

x∈S,y∈T c(x, y).

Note that for any cut, f(S, T) ≤ c(S, T).

9

s

v

v

v

t

1 3

2 4

10
11

/16

8/13

12/12
15/20

4/9 7/
7

4/4
11/14
S T

v

1/
4

Cut (S, T): S = {s, v1, v2}, T = {v3, v4, t}.

The flow value is |f | = 19 and C(S, T) = 26.

Note that |F | ≤ C(S, T).

10

Lemma: If S, T is any cut, f any flow then
|f | ≤ C(S, T).

Proof:

|f | = f(s, V)

= f(s, V) + f(S − s, V)

= f(S, V)

= f(S, V) − f(S, S)

= f(S, V − S)

= f(S, T)

≤ c(S, T)

We will now develop the Ford-Fulkerson method for
finding max-flows. When FF terminates it provides a
flow f and a cut S, T such that
|f | = C(S, T), so f is maximal.

11

The Ford-Fulkerson Method

• Is iterative.

• Starts with flow f = 0, (∀u, v, f(u, v) = 0)

• At each step

– Constructs a residual network Gf of f indicat-
ing how much capacity “remains” to be used .

– Finds an augmenting path s-t path p in Gf

along which flow can be pushed.

– pushes f ′ units of flow along p.
Creates new flow f = f + f ′.

• Stops when there is no s-t path in current Gf .

• Let S be the set of nodes reachable from s in Gf

and T = V − S.

At conclusion of FF algorithm, |f | = c(S, T)

so f is optimal.

12

Residual networks

Given flow f , the residual network Gf consists of the
edges along which we can (still) push more flow. The
amount that can (still) be pushed across (u, v) is called
the residual capacity cf(u, v).

cf(u, v) = c(u, v) − f(u, v).

If there is flow from u to v then f(u, v) > 0 and
cf(u, v) is the remaining capacity on (u, v).

If there is flow from v to u then f(u, v) < 0 and
cf(u, v) = c(u, v) + f(v, u) is the capacity of (u, v)

plus amount of existing flow that can be pushed back-
wards from u to v.

The Residual network Gf is Gf = (V, Ef) where

Ef =
{

(u, v) ∈ V × V : cf(u, v) > 0
}

13

s

v

v

v

t

v1 3

2 4

10

11
/16

12/12

7/
7

4/4
11/14

19/20

12/13

91/
4

A flow

s

v

v

v

t

v1 3

2 4

3

11
5

11 7

4

11

12

1
19

112

9

3

Its residual network

14

Lemma: Let f be a flow in G = (V, E) and Gf its
residual network. Let f ′ be a flow in Gf .

Define f +f ′ as (f +f ′)(u, v) = f(u, v)+f ′(u, v).

Then f + f ′ is a flow in G with value
|f + f ′| = |f | + |f ′|.

Augmenting path p is a simple s-t path in Gf .

The residual capacity of a.p. p is
cf(p) = min{cf(u, v) : (u, v) on p}.

Let p be an augmenting path in Gf and define

fp(u, v) =











cf(p) if (u, v) is on p

−cf(p) if (v, u) is on p

0 otherwise

Lemma: If f is a flow and p an a.p.in Gf then:
fp is a flow in Gg with |fp| = cf(p) > 0.

f ′ = f + fp is a flow in G with |f ′| = |f |+ |fp| > |f |.

15

s

v

v

v

t

v1 3

2 4

10

11
/16

8/13

12/12
15/20

4/9 7/
7

4/4
11/14

1/
4 s

v

v

v

t

v1 3

2 4

3 411
5

11 5 7

3 4

5

11

5
8

12

15

s

v

v

v

t

v1 3

2 4

10

11
/16

12/12

7/
7

4/4
11/14

19/20

12/13

91/
4 s

v

v

v

t

v1 3

2 4
3

11
5

11 7

4

11

12

1
19

112

9

3

An initial flow f .
Its residual network Gf

and an augmenting path f ′ in Gf .

The flow f + f ′ and its residual network.

16

Optimality

Theorem: (Max-Flow Min-Cut Theorem)
Let f be a flow. Then the following three conditions
are equivalent:

1. f is a maximum flow in G.

2. Gf contains no augmenting paths

3. |f | = C(S, T) for some (S, T) cut.

Proof:

• (1) ⇒ (2): If Gf contained an augmenting path p

then |f + fp| > |f | so f could not be maximal.

• (2) ⇒ (3): Let S = {u ∈ V : ∃ path from s to v in Gf}.
T = V − S. Then
f(S, T) = f(S,V)−f(S,S) = f(S, V) = f(s, V)+f(S−s, V) = |f |.

Now note that ∀u ∈ S, v ∈ T , f(u, v) = c(u, v)

since otherwise cf(u, v) > 0 and v ∈ S.

Thus C(S, T) = f(S, T) = |f |.

• (3) ⇒ (1): We previously saw that every flow f ′

must satisfy |f ′| ≤ C(S, T) so if |f | = C(S, T),
f must be optimal.

17

The Ford-Fulkerson Method

• Starts with flow f ≡ 0, (∀u, v, f(u, v) = 0)

• Construct residual network Gf .

If Gf contains no augmenting path, stop
(f is optimal by MFMC theorem).
Otherwise.

1. Find an augmenting path (s− t path) p in Gf

2. Let fp be the flow in Gf that pushes cf(p)

units of flow along p.

3. Let f = f + fp be new flow in G.

18

s

v

v

v
4

12

79

4

20

13
10 t

v1 3

42

16

14

s

v

v

v

4 7

20

13

t

v1 3

42

4/1
6

10 4/9

4/12

4/4

4/14

s

v

v

v

13

t

v1 3

42

12
4

10
4

4

10 4 5
4

20

8

4
7 s

v

v

v

4 t

v1 3

42

4/9

4/4

11
/16

7/
7

11/14

13

7/20

7/
10

4/12

s

v

v

v

t

v1 3

42

4
5

4

13
7

13

3

5
11

4
8

11

3
11

7 s

v

v

v

1/
4

t

v1 3

42

4/9

4/4

11
/16

12/12
15/20

7/
7

10

8/13
11/14

s

v

v

v

7 t

v1 3

42

5
4

5
11

5
15

8
5 11

12

11
3

43 s

v

v

v

t

v1 3

42

4/4

11
/16

7/
7

11/14

10

12/13

1/
4 9

12/12
19/20

s

v

v

v

7 t

v1 3

42

4

5

11

12

11
3

3

1
12

9

1
1911

19

Running Time & Finiteness

The FF method is not a completely defined algorithm
since it doesn’t specify how to choose the augmenting
paths.

In fact, if the capacities are irrational, it is possible that
a “bad” way of choosing the a.p. will lead to a non-
terminating algorithm that will never stop (it will keep
on adding cheaper and cheaper augmenting paths).
See section 6.3 of the PS book for example.

If the capacities are all integers then each cp will be an
integer ≥ 1 so the algorithm must terminate after |f∗|

steps, where f∗ is a max-flow. Maintaining the graphs
G and Gf and the flow f using adjacency lists while
using DFS or BFS to find a s-t path, the algorithm can
then be implemented to run in O(|f∗||E|) time.

Note: This can be normalized to work if the capacities
are rational.

20

• Starts with flow f ≡ 0, O(|E|)

• Construct residual network Gf . O(|E|)

If Gf contains no augmenting path, stop
(f is optimal by MFMC theorem).
Otherwise. Can be repeated O(|f∗|) times.

1. Find an augmenting s − t path p in Gf

O(|E|)

2. Let fp be the flow in Gf that pushes cf(p)

units of flow along p.

3. Let f = f + fp be new flow in G. O(|E|)

21

A pathological example in which each augmenting path
only increases flow value by 1 unit.

s 1

1,0
00

,00
0

1,000,000

u

v 1,0
00

,00
0

1,000,000

t s 1

1,000,000

u

v

1,000,000

t

99
9,9

99

99
9,9

99

1

1

s

u

v

t

99
9,9

99

99
9,9

99

1

1

1

1

999,999

999,9991

s

u

v

t
1

1
1

1

999,999

1

99
9,9

98

99
9,9

98
999,999

s

u

v

t
1

1

1

1

1

999,998

999,998

99
9,9

98

99
9,9

98

22

The Edmonds-Karp Algorithm

Always choose an augmenting path of minimum-length
in Gf (where each edge has unit length). This can be
done in O(E) time using BFS.

Theorem: The EK alg performs at most O(V E)
path-augmentations, so the E.K. alg runs in O(V E2)
time.

Let δf(u, v) denote shortest-path distance from u to
v in Gf .

The proof of the Theorem is a consequence of the
following two lemmas:

Lemma: ∀v ∈ V −{s, t}, δf(s, v) does not decrease
after a flow augmentation.

Lemma:
Edge (u, v) is critical on a.p. p if cf(u, v) = cf(p).
Suppose when running the E.K. algorithm that (u, v)
is critical for a.p. p in Gf , and is later critical again for
another a.p. p′ in Gf ′. Then

δf ′(s, u) ≥ δf(s, u) + 2.

23

Application: Max Bipartite Matching

A graph G = (V, E) is bipartite if there exists parti-
tion V = L ∪ R with L ∩ R = ∅ and E ⊆ L × R.

A Matching is a subset M ⊆ E such that ∀v ∈ V at
most one edge in M is incident upon v.

The size of a matching is |M | , the number of edges
in M.

A Maximum Matching is matching M such that every
other matching M ′ satisfies |M ′| ≤ M.

Problem: Given bipartite graph G, find a maximum
matching.

24

A bipartite graph with 2 matchings

L R L R

25

Our approach will be to write the Max Bipartite Match-
ing problem as a Max-Flow problem.

Our flow network will be G′ = (V ′, E′) where
V ′ = V ∪ {s, t} and
E′ = {(s, u) : u ∈ L}∪{(u, v) : u ∈ L, v ∈ R and (u, v) ∈ E}∪{(v, t) : t ∈ R}

We also assign
∀(u, v) ∈ E′, c(u, v) = 1.

Lemma: If f is an integer valued flow in G′ then there
is a matching M of G with |f | = |M |.

Similarly, if M is a matching of G then there is an
integer valued flow f with |f | = |M |.

This almost tells us that Max-Flow solves our problem.
The difficulty is that it’s possible that the max-flow might
not have integer value (it is possible that |f | might be
an integer but some f(u, v) might not be integers).

26

A bipartite graph and its associated flow network.

A matching and associated flow are illustrated

L R L R

s t

27

Theorem: Let G′ = (V ′, E′) be a flow network in
which c is integral.
Then the max-flow f found by the F.F. method has the
property that
∀u, v, f(u, v) is integer valued.

The proof is by induction on the steps in the FF method.
At each step the current flow f is integer so the resid-
ual capacities are all integer. This implies that the a.p.
found has cf(p) integral so the new flow f + f ′ cre-
ated is also integral.

The theorem guarantees that if G′ is the flow network
corresponding to a bipartite matching problem then
max flow value |f | is the value of a maximum match-
ing.

The flow found by the FF algorithm can be modified to
yield the max matching.

The FF algorithm run on this special graph will take
O(V E) time (why?).

28

Odds and Ends

• A faster implementation of the FF method uses
the idea of blocking flows developed by Dinic.
This approach finds many augmenting paths at
once.

• A totally different approach to the Max-Flow algo-
rithm is the push-relabel method (see CLRS for
details). This can run in O(|V |3) time as comapred
to the O(|V ||E|2) of FF.

• We will see later that the max-flow problem can
be written as a linear program. The FF method is
essential a special case of the primal-dual algo-
rithm for solving combinatorial LPs.

29

