Chapter 4: Network Layer: Part II

(last revision 19/04/05. v3)

- 4.1 Introduction
- 4.2 Virtual circuit and datagram networks
- 4.3 What's inside a router
- ☐ 4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - o IPv6

- □ 4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- 4.6 Routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Broadcast and multicast routing (maybe)

Interplay between routing and forwarding

Graph abstraction

Graph: G = (N,E)

 $N = set of routers = \{ u, v, w, x, y, z \}$

 $E = set of links = \{ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) \}$

Remark: Graph abstraction is useful in other network contexts

Example: P2P, where N is set of peers and E is set of TCP connections

Graph abstraction: costs

•
$$c(x,x') = cost of link(x,x')$$

$$- e.g., c(w,z) = 5$$

 cost could always be 1, or inversely related to bandwidth, or inversely related to congestion

Cost of path
$$(x_1, x_2, x_3, ..., x_p) = c(x_1, x_2) + c(x_2, x_3) + ... + c(x_{p-1}, x_p)$$

Question: What's the least-cost path between u and z?

Routing algorithm: algorithm that finds "least-cost" path

Routing Algorithm classification

Global or decentralized information?

Global:

- all routers have complete topology, link cost info
- "link state" algorithms

Decentralized:

- router knows physicallyconnected neighbors, link costs to neighbors
- iterative process of computation, exchange of info with neighbors
- "distance vector" algorithms

Static or dynamic?

Static:

routes change slowly over time

Dynamic:

- routes change more quickly
 - o periodic update
 - in response to link cost changes

Chapter 4: Network Layer

- 4.1 Introduction
- 4.2 Virtual circuit and datagram networks
- 4.3 What's inside a router
- ☐ 4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - o IPv6

- 4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- 4.6 Routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Broadcast and multicast routing (maybe)

A Link-State Routing Algorithm

Dijkstra's algorithm

- net topology, link costs known to all nodes
 - accomplished via "link state broadcast"
 - o all nodes have same info
- computes least cost paths from one node ('source") to all other nodes
 - gives forwarding table for that node
- iterative: after k iterations, know least cost path to k dest.'s

Notation:

- \Box C(x,y): link cost from node x to y; = ∞ if not direct neighbors
- □ D(v): current value of cost of path from source to dest. v
- p(v): predecessor node along path from source to v
- \square N(v): set of neighbors of v
- N': set of nodes whose least cost path definitively known

Dijsktra's Algorithm

```
Initialization:
   N' = \{u\}
   for all nodes v
     if v \in N(u)
5
       then D(v) = c(u,v)
    else D(v) = \infty
6
   Loop
    find w not in N' such that D(w) is a minimum
   add w to N'
11 update D(v) for all v∈N(w) and not in N':
12 D(v) = min(D(v), D(w) + c(w,v))
13 /* new cost to v is either old cost to v or known
    shortest path cost to w plus cost from w to v */
15 until all nodes in N'
```

Dijkstra's algorithm: example

Step	start N	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
→ 0	Α	2,A	5,A	1,A	∞	∞
1	AD	2,A	4,D		2,D	∞
	ADE	2,A	3,E			4,E
→ 3	ADEB		3,E			4,E
	ADEBC					4,E
5	ADEBCF					

Dijkstra's algorithm, discussion

Algorithm complexity: n nodes, E links

- each iteration: need to check all nodes, w, not in N
- \square n(n+1)/2 comparisons: $O(n^2)$
- □ more efficient implementations possible: O(nlogn+E)

Oscillations possible:

□ e.g., link cost = amount of carried traffic

Comp 361 Spring 2005

4: Network Laver 10

Chapter 4: Network Layer

- 4.1 Introduction
- 4.2 Virtual circuit and datagram networks
- □ 4.3 What's inside a router
- ☐ 4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - o IPv6

- 4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- 4.6 Routing in the Internet
 - O RIP
 - OSPF
 - BGP
- 4.7 Broadcast and multicast routing

Distance Vector Algorithm (1)

Bellman-Ford Equation (dynamic programming)

Define

 $d_{x}(y) := cost of least-cost path from x to y$

Then

$$d_{x}(y) = \min_{v \in N(x)} \{c(x,v) + d_{v}(y)\}$$

where min is taken over all neighbors of x

Comp 361 Spring 2005

Distance Vector Algorithm (2)

Clearly,
$$d_v(z) = 5$$
, $d_x(z) = 3$, $d_w(z) = 3$

B-F equation says:

$$d_{u}(z) = min \{ c(u,v) + d_{v}(z), c(u,x) + d_{x}(z), c(u,w) + d_{w}(z) \}$$

= min
$$\{ 2 + 5, 1 + 3, 5 + 3 \} = 4$$

Node that achieves minimum is next hop in shortest path

→ forwarding table

Distance Vector Algorithm (3)

- $\square D_{x}(y)$ = estimate of least cost from x to y
- \square Distance vector: $D_x = [D_x(y): y \in N]$
- □ Node x knows cost to each neighbor v: c(x,v)
- \square Node x maintains $D_x = [D_x(y): y \in N]$
- Node x also maintains its neighbors' distance vectors
 - For each neighbor v, x maintains $D_v = [D_v(y): y \in N]$

Bellman-Ford example (1)

Distance vectors stored at node x

	X	у	Cost to Z	u	V	W
X	0	1 0 2 3	3	1	2	2
g y	1	0	2	2	3	1
u	1	2	4	0	2	5
V	2	3	5	3	0	3
W	2	1	3	5	3	0

Comp 361 Spring 2005

Bellman-Ford example (2)

Comp 361. Spring 2005

4: Network Laver 16

Distance vector algorithm (4)

Basic idea:

- □ Each node periodically sends its own distance vector estimate to neighbors
- □ When node x receives new DV estimate from neighbor, it updates its own DV using B-F equation:

$$D_x(y) \leftarrow \min_{v} \{c(x,v) + D_v(y)\} \quad \text{for each node } y \in N$$

 \square Under "natural" conditions, the estimate $D_{y}(y)$ converges to the actual least cost $d_x(y)$

Distance Vector Algorithm (5)

Iterative, asynchronous: each local iteration caused by:

- local link cost change
- DV update message from neighbor

Distributed:

- each node notifies neighbors only when its DV changes
 - o neighbors then notify their neighbors if necessary

Each node:

Wait for (change in local link cost *or* msg from neighbor) recompute estimates if DV to any dest has changed, *notify* neighbors

Comp 361. Spring 2005

4: Network Laver 19

Distance Vector: link cost changes

Link cost changes:

- node detects local link cost change
- updates routing info, recalculates distance vector
- if DV changes, notify neighbors

"good news travels fast" At time t_0 , y detects the link-cost change, updates its DV, and informs its neighbors.

At time t_1 , z receives the update from y and updates its table. It computes a new least cost to x and sends its neighbors its DV.

At time t_2 , y receives z's update and updates its distance table. y's least costs do not change and hence y does not send any message to z.

node w table "good cost to news

node x table

node y table

node z table

2 6

from

Z W from

travels

fast"

Initial routing table (before change)

Cost of link zy changes

Comp 361 Spring 2005

"bad news travels slow"

"count to infinity" problem

node x table

		cost to									
		X	y	Z							
rom	X	0	4	5							
fro	У	4	0	1							
•	Z	5	1	0							

node y table

			COS	st to	
		X	Y	Z	
E	x y	0	4	5	
fro	У	7	0	1	
•	Z	5	1	0	

node z table

		cost to								
		X	У	Z						
E	x y	0	4	5						
fro	У	4	0	1						
•	Z	5	1	0						

Initial routing table

"bad news	node x	ta ×	cos	<u>n</u> t to z	ode x	I	cos	t to	ode x	: ta		<u>n</u> t to z	ode x	ta ×		st to
travels slow"	rom x	0 4 5	51 0 1	50 1 0	r For x	0 6 5	51 0 1	50 1 0	r From X	0 6 7	51 0 1	50 1 0	from x	0 8 7	51 0 1	50 1 0
	node y	<u> ta</u>	<u>ble</u>	<u>n</u>	ode y	ta	ble	<u>n</u>	ode y	ta	ble	<u>n</u>	ode y	ta	ble	ı
Algorithm converges		×		t to z		×		st to z		x	cos	t to z		×	cos y	st to Z
in 44 steps	fror		4 0		from	0 6		50 1	from	0 8 7	0	50 1	from	0 8 7	51 0	50 1
60 4 Y ₁	z node z	5 ta	1 <u>ble</u>	0 <u>n</u>	z <u>ode z</u>	5 ta	1 ble	0 <u>n</u>	ode z	ta	1 ble	0 <u>n</u>	ode z	ta	ble 1	· · /.
50 Z		×	cos y	t to z		×	cos y	st to z		×	cos	t to z		×	cos y	st to
Cost of link xy	ron X X	0 4 5	4 0 1	5 1 0	rom x	0 6 7	51 0 1	. 50 1 0	rom x	0 6 7	51 0 1	50 1 0	r from x	0 8 9	51 0 1	1 0

changes
to 60
Comp 361. Spring 2005

4: Network Laver 25

"bad	node ×	table n	ode x	table	node ×	table no	ode x	table
news		cost to		cost to		cost to	cost to	
travels slow"	from x	0 51 50 48 0 1 49 1 0	from x	0 51 50 50 0 1 49 1 0	from x	0 51 50 50 0 1 50 1 0	from x	0 51 50 51 0 1 50 1 0
	node y		ode y	<u>table</u>	node y	table no	ode y	table
Algorithm converges		cost to x y z		cost to	_	cost to x y z		cost to
in 44 steps.	from x	0 51 50 50 0 1 49 1 0	from x	0 51 50 50 0 1 49 1 0	from x	0 51 50 51 0 1 50 1 0	from x	0 51 50 51 0 1 50 1 0
60 1 Y 1	node z				node z		\ .	table
50 Z		cost to x y z		cost to		cost to x y z	•	cost to x y z
Cost of link xy changes	from x	0 51 50 48 0 1 49 1 0	from x	0 51 50 50 0 1 50 1 0	from x	0 51 50 50 0 1 50 1 0	z From x	0 51 50 51 0 1 50 1 0
to 60 Comp 361. Spring	a 2005						4: Ne	twork Laver 26

Distance Vector: link cost changes

Link cost changes:

- good news travels fast
- bad news travels slow -"count to infinity" problem!
- 44 iterations before algorithm stabilizes: see text

- □ By suitably increasing 50 by A and 60 by B, with A<B we can</p> force algorithm to run as long as we want
- \square Real problem is that y thinks its shortest path to x is through z, while z thinks its shortest path to x is through y. They pingpong back and forth with this information.

□Not good!

Distance Vector: poisoned reverse

If Z routes through Y to get to X:

- Z tells Y its (Z's) distance to X is infinite (so Y won't route to X via Z)
- will this completely solve count to infinity problem?

Comp 361 Spring 2005

node x table

		cost to									
		X	Y	Z							
E	х у	0	4	5							
fro	У	4	0	1							
•	Z	5	1	0							

node y table

		1	COS	t to	
		X	У	Z	
Ë	X	0	4	∞	
fro	× y	4	0	1	
٠	Z	∞	1	0	

node z table

poisoned reverse

Initial routing table

	node x	table	no	ode x	tabl	<u>e n</u>	ode x	table	<u>e</u> !	node x	table		
		COS	t to	cost to				cost to			cost to		
		х у	Z		x y	Z		x y	Z		ху	Z	
	from	0 51	50	from	0 5	1 50	from	0 5	1 50	from	0 51	50	
	٦ y	4 0	1	ہم ک	60	0 1	ر م	60 (0 1	بر کر	51 0	1	
Algorithm	Z	5 1	0	Z	5 1	0	Z	50	0	Z	50 1	0	
converges	node y	table	no	ode y	tabl	<u>e n</u>	ode y	table	<u>2</u>	node y	table		
in 3 steps.		cos	t to		CC	st to		co	st to		cos	st to	
		х у	Z		x y	Z		x y	Z		ху	Z	
60	from	0 4	∞	from	0 5	1 50	from x	0 5	1 50	from	0 51	50	
	بح کا	60 0	1	بر کر	60 0	1	ب آ	51 () 1	τλ	51 0	1	
4/1	Z	∞ 1	0 \	Z	∞ 1	0	Z	50 1	0	Z	50 1	0	
x 50 z	node z	table	no	de z	tabl	<u>e n</u>	ode z	table	<u>2</u> !	node z	table		
		COS	t to		cc	st to		СО	st to		cos	st to	
Cost of		х у	Z		х у	Z		x y	Z		ху	Z	
link xy	ξx	0 4	5	Ex	0	∞ 50	E x	0 ∝	· 50	from	0 ∞	50	
changes	from x	4 0	1	from <	60	0 1	from x	60 (0 1	ر کر کا	∞ 0	1	
to 60	Z	5 1	0	Z	50	1 0	Z	50	0	Z	50 1	0	

Comparison of LS and DV algorithms

Message complexity

- LS: with n nodes, E links, O(nE) msgs sent
- DV: exchange between neighbors only
 - convergence time varies

Speed of Convergence

- \square LS: $O(n^2)$ algorithm requires O(nE) msqs
 - may have oscillations
- \square <u>DV</u>: convergence time varies
 - may be routing loops
 - count-to-infinity problem

Robustness: what happens if router malfunctions?

LS:

- node can advertise incorrect link cost
- each node computes only its own table

DV:

- DV node can advertise incorrect *path* cost
- o each node's table used by others
 - error propagates thru network

Chapter 4: Network Layer

- 4.1 Introduction
- 4.2 Virtual circuit and datagram networks
- 4.3 What's inside a router
- ☐ 4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - o IPv6

- ☐ 4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- 4.6 Routing in the Internet
 - O RIP
 - OSPF
 - BGP
- □ 4.7 Broadcast and multicast routing (maybe)

Hierarchical Routing

Our routing study thus far - idealization

- □ all routers identical
- network "flat"

... not true in practice

scale: with 200 million destinations:

- can't store all dest's in routing tables!
- routing table exchange would swamp links!

administrative autonomy

- internet = network of networks
- each network admin may want to control routing in its own network

Hierarchical Routing

- aggregate routers into regions, "autonomous systems" (AS)
- routers in same AS run same routing protocol
 - "intra-AS" routing protocol
 - o routers in different AS can run different intra-AS routing protocol

gateway routers

- special routers in AS
- run intra-AS routing protocol with all other routers in AS
- also responsible for routing to destinations outside AS
 - o run inter-A5 routing protocol with other gateway routers

Intra-AS and Inter-AS routing

Intra-AS and Inter-AS routing

□ We'll examine specific inter-AS and intra-AS Internet routing protocols shortly

Inter-AS tasks

- Suppose router in AS1 receives datagram for which dest is outside of AS1
 - Router should forward packet towards one of the gateway routers, but which one?

AS1 needs:

- to learn which dests are reachable through AS2 and which through AS3
- 2. to propagate this reachability info to all routers in AS1

Job of inter-AS routing!

Example: Setting forwarding table in router 1d

- Suppose AS1 learns from the inter-AS protocol that subnet x is reachable from AS3 (gateway 1c) but not from AS2.
- □ Inter-AS protocol propagates reachability info to all internal routers.
- Router 1d determines from intra-AS routing info that its interface I is on the least cost path to 1c.
- \square Adds entry (x,I) to forwarding table

Example: Choosing among multiple ASes

- □ Now suppose AS1 learns from the inter-AS protocol that subnet x is reachable from AS3 and from AS2.
- □ To configure forwarding table, router 1d must determine towards which gateway it should forward packets for dest x.
- This is also the job of inter-AS routing protocol!
- □ Hot potato routing: send packet towards closest of two routers.

Comp 361 Spring 2005

4: Network Laver

Chapter 4: Network Layer

- 4.1 Introduction
- 4.2 Virtual circuit and datagram networks
- 4.3 What's inside a router
- ☐ 4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - o IPv6

- 4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- 4.6 Routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Broadcast and multicast routing (maybe)

Routing in the Internet

- The Global Internet consists of Autonomous Systems (AS) interconnected with each other:
 - Stub AS: small corporation: one connection to other AS's
 - Multihomed AS: large corporation (no transit): multiple connections to other AS's
 - Transit AS: provider, hooking many AS's together
- □ Two-level routing:
 - Intra-AS: (within AS) administrator responsible for choice of routing algorithm within network
 - Inter-AS: (between Ass) unique standard for inter-AS routing: BGP

Internet AS Hierarchy

Inter-AS border (exterior gateway) routers

Intra-AS (interior) routers

Intra-AS Routing

- Also known as Interior Gateway Protocols (IGP)
- Most common Intra-AS routing protocols:
 - RIP: Routing Information Protocol
 - OSPF: Open Shortest Path First
 - IGRP: Interior Gateway Routing Protocol (Cisco proprietary)

Comp 361 Spring 2005

Chapter 4: Network Layer

- 4.1 Introduction
- 4.2 Virtual circuit and datagram networks
- 4.3 What's inside a router
- ☐ 4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - o IPv6

- 4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- 4.6 Routing in the Internet
 - o RIP
 - OSPF
 - BGP
- 4.7 Broadcast and multicast routing (maybe)

RIP (Routing Information Protocol)

- □ Distance vector algorithm
- Included in BSD-UNIX Distribution in 1982
- □ Distance metric: # of hops (max = 15 hops)

destination	hops
u	1
V	2
W	2
×	3
У	3
Z	2

RIP advertisements

- Distance vectors: exchanged among neighbors every 30 sec via Response Message (also called advertisement)
- □ Each advertisement: list of up to 25 destination nets within AS

RIP: Example

Destination Network	Next Router	Num. of hops to dest.
w	A	2
у	В	2
Z	В	7
X		1
	••••	• • • •

Routing table in D

Comp 361 Spring 2005

RIP: Example

Routing table in D

RIP: Link Failure and Recovery

If no advertisement heard after 180 sec --> neighbor/link declared dead

- o routes via neighbor invalidated
- o new advertisements sent to neighbors
- neighbors in turn send out new advertisements (if tables changed)
- o link failure info quickly propagates to entire net
- poison reverse used to prevent ping-pong loops (infinite distance = 16 hops)

RIP Table processing

- RIP routing tables managed by application-level process called route-d (daemon)
- advertisements sent in UDP packets, periodically repeated

RIP Table example (continued)

Router: giroflee.eurocom.fr

Destination	Gateway	Flags	Ref	Use	Interface
127.0.0.1	127.0.0.1	UH	0	26492	100
192.168.2.	192.168.2.5	U	2	13	fa0
193.55.114.	193.55.114.6	U	3	58503	le0
192.168.3.	192.168.3.5	U	2	25	qaa0
224.0.0.0	193.55.114.6	U	3	0	le0
default	193.55.114.129	UG	0	143454	

- Three attached class C networks (LANs)
- Router only knows routes to attached LANs
- Default router used to "go up"
- Route multicast address: 224.0.0.0
- Loopback interface (for debugging)

Chapter 4: Network Layer

- 4.1 Introduction
- 4.2 Virtual circuit and datagram networks
- 4.3 What's inside a router
- □ 4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - o IPv6

- 4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- 4.6 Routing in the Internet
 - O RIP
 - OSPF
 - BGP
- □ 4.7 Broadcast and multicast routing (maybe)

OSPF (Open Shortest Path First)

- "open": publicly available
- Uses Link State algorithm
 - LS packet dissemination
 - Topology map at each node
 - Route computation using Dijkstra's algorithm
- OSPF advertisement carries one entry per neighbor router
- Advertisements disseminated to entire AS (via flooding)
 - O Carried in OSPF messages directly over IP (rather than TCP) or UDP

OSPF "advanced" features (not in RIP)

- □ Security: all OSPF messages authenticated (to prevent malicious intrusion)
- Multiple same-cost paths allowed (only one path in RIP)
- For each link, multiple cost metrics for different TOS (e.g., satellite link cost set "low" for best effort; high for real time)
- □ Integrated uni- and multicast support:
 - Multicast OSPF (MOSPF) uses same topology data base as OSPF
- Hierarchical OSPF in large domains.

Comp 361 Spring 2005

Hierarchical OSPF

Hierarchical OSPF

- □ Two-level hierarchy: local area, backbone.
 - Link-state advertisements only in area
 - o each nodes has detailed area topology; only know direction (shortest path) to nets in other areas.
- □ Area border routers: "summarize" distances to nets in own area, advertise to other Area Border routers.
- □ Backbone routers: run OSPF routing limited to backbone.
- Boundary routers: connect to other AS's.

Chapter 4: Network Layer

- 4.1 Introduction
- 4.2 Virtual circuit and datagram networks
- 4.3 What's inside a router
- □ 4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - o IPv6

- 4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- 4.6 Routing in the Internet
 - O RIP
 - OSPF
 - o BGP
- □ 4.7 Broadcast and multicast routing (maybe)

Inter-AS routing in the Internet: BGP

Internet inter-AS routing: BGP

- □ BGP (Border Gateway Protocol): the de facto standard
- □ BGP provides each AS a means to:
 - Obtain subnet reachability information from neighboring ASs.
 - 2. Propagate the reachability information to all routers internal to the AS.
 - 3. Determine "good" routes to subnets based on reachability information and policy.
- □ Allows a subnet to advertise its existence to rest of the Internet: "I am here"

- □ In BGP, destination are not individual hosts, they are networks!
- ☐ A network is represented by a CIDR prefix, e.g., 138.16.64/24
- ☐ If a gateway router broadcasts a BGP message stating that it is 138.16.64/24, it is advertising that it can deliver messages to any host in subnet 138.16.64/24.
- □ BGP messages between routers in same AS are called (interior) iBGP messages
- □ BGP messages between routers in diff AS are called (exterior) eBGP messages

Comp 361 Spring 2005

BGP basics

- □ Pairs of routers (BGP peers) exchange routing info over semipermanent TCP conctns: BGP sessions
- Note that BGP sessions do not correspond to physical links.
- When AS2 advertises a prefix to AS1, AS2 is promising it will forward any datagrams destined to that prefix towards the prefix.
 - AS2 can aggregate prefixes in its advertisement

Distributing reachability info

- With eBGP session between 3a and 1c, AS3 sends prefix reachability info to AS1.
- □ 1c can then use iBGP do distribute this new prefix reach info to all routers in AS1
- □ 1b can then re-advertise the new reach info to AS2 over the 1b-to-2a eBGP session
- When router learns about a new prefix, it creates an entry for the prefix in its forwarding table.

Path attributes & BGP routes

- When advertising a prefix, advert includes BGP attributes.
 - prefix + attributes = "route"
- Two important attributes:
 - AS-PATH: contains the ASs through which the advert for the prefix passed: AS 67, AS 17, ...
 - NEXT-HOP: Indicates the specific internal-AS router to next-hop AS. (There may be multiple links from current AS to next-hop-AS.)
- When gateway router receives route advert, uses import policy to accept/decline.

BGP route selection

- Router may learn about more than 1 route to some prefix. Router must select route.
- Elimination rules:
 - 1. Local preference value attribute: policy decision
 - 2. Shortest AS-PATH
 - 3. Closest NEXT-HOP router: hot potato routing
 - 4. Additional criteria

BGP messages

- □ BGP messages exchanged using TCP.
- □ BGP messages:
 - OPEN: opens TCP connection to peer and authenticates sender
 - UPDATE: advertises new path (or withdraws old)
 - KEEPALIVE keeps connection alive in absence of UPDATES; also ACKs OPEN request
 - NOTIFICATION: reports errors in previous msg; also used to close connection

BGP: Controlling who routes through you

- □ A,B,C are provider networks
- X,W,Y are customer (of provider networks)
- X is dual-homed: attached to two networks
 - X does not want to route from B via X to C
 - so X will not advertise to B a route to C

Comp 361 Spring 2005

BGP: Controlling who routes through you

- A advertises to B the path AW
- B advertises to X the path BAW
- □ Should B advertise to C the path BAW?
 - No way! B gets no "revenue" for routing CBAW since neither W nor C are B's customers
 - B wants to force C to route to w via A
 - B wants to route only to/from its customers!

Comp 361 Spring 2005

Why different Intra- and Inter-AS routing?

Policy:

- Inter-AS: admin wants control over how its traffic routed, who routes through its net.
- □ Intra-AS: single admin, so no policy decisions needed

Scale:

hierarchical routing saves table size, reduced update traffic

Performance:

- □ Intra-AS: can focus on performance
- □ Inter-AS: policy may dominate over performance

Chapter 4: Network Layer

- 4.1 Introduction
- 4.2 Virtual circuit and datagram networks
- □ 4.3 What's inside a router
- □ 4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - o IPv6

- 4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- 4.6 Routing in the Internet
 - O RIP
 - OSPF
 - BGP
- 4.7 Broadcast and multicast routing (maybe: See textbook)

Network Layer: summary

What we've covered:

- network layer services
- routing principles: link state and distance vector
- hierarchical routing
- ☐ IP
- Internet routing protocols RIP, OSPF, BGP
- ¬ what's inside a router?
- □ IPv6

Next stop: the Data link layer!