
(or via instructor’s web site) contains all notes, announcements, etc. Check it regularly!

Class meets Tuesday/Thursday 12:00-13:20, LTD

Labs: Wed 14-14:50, 15-15:50 in Rm 4214

No Labs Feb 2
Textbook: James Kurose and Keith Ross

Course material is based on lecture notes and chapters in the textbook. You are responsible to read the corresponding book chapters.

There is one project (to be announced in March. Will take one month)

Labs are actually tutorials to review material and time to work on project. You will be given homework questions to practice on but they will not be marked

Class Grading Scheme:

<table>
<thead>
<tr>
<th>Component</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small assignments</td>
<td>2</td>
</tr>
<tr>
<td>Midterm Examination</td>
<td>33</td>
</tr>
<tr>
<td>Final Examination</td>
<td>45</td>
</tr>
<tr>
<td>Course Project</td>
<td>20</td>
</tr>
</tbody>
</table>

Important

Although COMP 361 L1 & COMP361 L2 share 90% of the same material their exams will be different, based on material taught in the individual classes.
Other Stuff

You must have a CS department UG UNIX account (not a windows account) in order to work on the project.

The project will have to be written in Java. Please see the notes section of the web site
under Lab notes (week 1) for a tutorial (re)introduction to Java.

The textbook has a an accompanying web site
with useful resource material, e.g., illustrative applets.
Protected section of the site also has self-study quizzes.
Copyright Notice

Material that follows (in this section and all of the following) is substantially based on powerpoint slides developed and copyrighted by J.F. Kurose and K.W. Ross, 1996-2004.
Philosophical Quandary: Top Down or Bottom Up?

Two ways to teach

- **Bottom Up**: Start with Physical (e.g., wires) layer and move up to Application (e.g., mail, web browsers) layer explaining how known resources can be used to implement requested services

- **Top Down**: Start with Application layer and move down to Physical layer, explaining how required applications can be implemented

We teach top down!
Chapter 1: Computer Networks and the Internet

Chapter goal:
- get context, overview, “feel” of networking
- more depth, detail later in course
- approach:
 - descriptive
 - use Internet as example

Overview:
- 1.1 what’s the Internet?
- 1.2 what’s a protocol?
- 1.3 network edge – end devices
- 1.4 network core – circuit, packet, and message switching
- 1.5 access networks & physical media
- 1.6 performance: loss, delay
- 1.7 protocol layers & service models
- 1.8 Internet backbones, NAPs, ISPs
- 1.9 history
What’s the Internet: “nuts and bolts” view

- **Internet**: “network of networks”
 - loosely hierarchical: company networks, access networks, local ISPs (*Internet Service Providers*), regional ISPs
 - millions of connected computing devices: *hosts, end-systems*
 - pc’s workstations, servers
 - PDA’s phones, toasters
 - running *network applications*

- *communication links* made up of different physical media:
 - fiber, copper, radio, satellite

- *routers*: forward packets (chunks) of data thru network
1.1 What’s the Internet: “nuts and bolts” view

- **protocols** control the sending and receiving of information *(messages)* within the Internet
 - e.g., TCP, IP, HTTP, FTP, PPP

- Internet standards
 - IETF, the *Internet Engineering Task Force*, is where many of the “standards” used in the Internet today were discussed and created. IETF is a forum that is open to any interested individuals. The standards it created are contained in documents known as RFCs, *Request for comments*.

 - Important websites:
 - Internet Engineering Task Force (IETF) – www.ietf.org
 - Internet Society – www.isoc.org
 - The World Wide Web Consortium (W3C) – www.w3.org/Consortium
 and others listed in section 1.1.3 of the text.
What’s the Internet: a service view

- communication *infrastructure* enables distributed applications:
 - WWW, email, games, e-commerce, database, voting,
 - more?

- communication services provided:
 - Connectionless
 - Vs.
 - Connection-oriented

 - The dichotomy of connectionless/connection-oriented service can be applied to different communication *layers*. We will return later to the concept of *layering*.
Chapter 1: Computer Networks and the Internet

- 1.1 what’s the Internet?
- 1.2 what’s a protocol?
- 1.3 network edge – end devices
- 1.4 network core – circuit, packet, and message switching
- 1.5 access networks & physical media
- 1.6 performance: loss, delay
- 1.7 protocol layers & service models
- 1.8 Internet backbones, NAPs, ISPs
- 1.9 history
1.2 What’s a protocol?

human protocols:
- “what’s the time?”
- “I have a question”
- introductions

network protocols:
- machines rather than humans
- all communication activity in Internet governed by protocols

An important concept is that Communication protocols are structured in layers. Each protocol layer makes uses of the services provided by the layer below and provides a service to the layer above.
What’s a protocol?

A human protocol and a computer network protocol:

Q: Other human protocol?
A closer look at network structure:

- **network edge:** applications and hosts
- **network core:**
 - routers
 - network of networks
- **access networks, physical media:** communication links
Chapter 1: Computer Networks and the Internet

- 1.1 what’s the Internet?
- 1.2 what’s a protocol?
- 1.3 network edge – end devices
- 1.4 network core – circuit, packet, and message switching
- 1.5 access networks & physical media
- 1.6 performance: loss, delay
- 1.7 protocol layers & service models
- 1.8 Internet backbones, NAPs, ISPs
- 1.9 history
1.3 The network edge:

- **end systems (hosts):**
 - run application programs
 - e.g., WWW, email
 - at “edge of network”

- **client/server model**
 - client initiates requests to and receives service from server
 - e.g., WWW client (browser)/server; email client/server

- **peer-peer model:**
 - host interaction is symmetric
 - e.g.: teleconferencing
Network edge: connection-oriented service

Goal: data transfer between end sys.
- **handshaking:** setup (prepare for) data transfer ahead of time
 - Hello, hello back human protocol
 - set up "state" in two communicating hosts
- **TCP - Transmission Control Protocol**
 - Internet’s connection-oriented service

TCP service [RFC 793]
- **reliable, in-order byte-stream data transfer**
 - loss: acknowledgements and retransmissions
- **flow control:**
 - sender won’t overwhelm receiver
- **congestion control:**
 - senders “slow down sending rate” when network congested
Network edge: connectionless service

Goal: data transfer between end systems
- same as before!
- **UDP** - User Datagram Protocol [RFC 768]: Internet’s connectionless service
 - unreliable data transfer
 - no flow control
 - no congestion control
 - but faster!

App’s using TCP:
- HTTP (WWW), FTP (file transfer), Telnet (remote login), SMTP (email)

App’s using UDP:
- streaming media, teleconferencing, Internet telephony

Why do we need both?
Chapter 1: Computer Networks and the Internet

- 1.1 what’s the Internet?
- 1.2 what’s a protocol?
- 1.3 network edge – end devices
- 1.4 network core – circuit, packet, and message switching
- 1.5 access networks & physical media
- 1.6 performance: loss, delay
- 1.7 protocol layers & service models
- 1.8 Internet backbones, NAPs, ISPs
- 1.9 history
1.4 Network Core

Circuit Switching vs. Packet Switching

- the fundamental question: how is data transferred through net?
 - Circuit switching: dedicated circuit per call: telephone net
 - Packet switching: data sent thru net in discrete “chunks”
 - In circuit switching, a channel of fixed rate (bandwidth) is provided between the communicating end-points.
 - In packet switching, packets are exchanged only as needed.
 - In circuit switching, identity of the data being transferred is provided implicitly by its time slot or frequency assignment.
 - In packet switching, identity of data must be explicitly specified by a header.
 - Circuit switching must be connection-oriented.
 Packet switching can be connectionless (datagram), or connection-oriented (virtual circuit).

- Modern computer communication is based on packet switching
Clarification

Switching Paradigm

Circuit Switching vs Packet Switching (or Message Switching) occurs at the physical switching layer. Circuit Switching is the system usually used by telephone networks but is not used in the Internet (except, e.g., when you dial up to an ISP using a modem).

Network Layer (Assuming Packet Switching)

Datagram and Virtual Circuits are network service models at the Network Layer. Current Internet architecture only provides a Datagram service.
Network Core - Circuit Switching

Circuit Switching

- call setup (and tear-down) required
- split bandwidth into “pieces” by
 - frequency division or
 - time division
- Bandwidth and switch resources reserved for the duration of a call
- dedicated resources: no sharing
- circuit-like (guaranteed) performance
- Ex: telephone network

FDM:

```
+----------------------------------+
|                                4 KHz. |
|                                ↓    |
|                                ↓    |
+----------------------------------+
```

TDM:

```
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
Slot .Frame
```

All slots labelled are dedicated to a specific sender-receiver pair.
Numerical example

How long does it take to send a file of 640,000 bits from host A to host B over a circuit-switched network?

- All links are 1.536 Mbps
- Each link uses TDM with 24 slots
- 500 msec to establish end-to-end circuit

Work it out!
Network Core: Packet Switching

Each end-end data stream divided into packets:
- User A, B packets share network resources.
- Each packet transmitted at full link bandwidth.
- Resources used as needed.

Resource contention:
- Aggregate resource demand can exceed amount available.
- Congestion: packets queue, wait for link use.
- Store and forward: packets move one hop at a time.
 - Transmit over link.
 - Wait turn at next link.

Bandwidth division into pieces:
Dedicated allocation.
Resource reservation.
Network Core: Packet Switching

Packet-switching versus circuit switching: human restaurant analogy
Packet switching versus circuit switching

Packet switching allows more users to use network!

- 1 Mbit link
- each user:
 - 100Kbps when “active”
 - active 10% of time
- circuit-switching:
 - 10 users
- packet switching:
 - with 35 users, the probability that more than 10 users are active in a given time is less than .004. When it happens, excess packets are queued up and suffer additional delays.
Number of users = 35
Probability that individual user is active = 0.1
Packet switching versus circuit switching

Is packet switching a “slam dunk winner?”

- Great for bursty data
 - resource sharing
 - no call setup
- Excessive congestion: packet delay and loss
 - protocols needed for reliable data transfer, congestion control
- Q: How to provide circuit-like behavior?
 - bandwidth guarantees needed for audio/video apps
 still an unsolved problem (chapter 6)
Packet-switching: store-and-forward

- Takes L/R seconds to transmit (push out) packet of L bits on to link with rate R bps
- Entire packet must arrive at router before it can be transmitted on next link: store and forward
- delay = $3L/R$

Example:
- $L = 7.5$ Mbits
- $R = 1.5$ Mbps
- delay = 15 sec
Packet Switching: Message Segmenting

Now break up the message into 5000 packets

- Each packet 1,500 bits
- 1 msec to transmit packet on one link
- *pipelining*: each link works in parallel
- Delay reduced from 15 sec to 5.002 sec
- M.S can improve P.S!
Packet-switched networks: routing

- **Goal:** move packets among routers from source to destination
 - we’ll study several path selection algorithms (chapter 4)

- **datagram network:**
 - *destination address* determines next hop
 - routes may change during session
 - analogy: driving, asking directions

- **virtual circuit (VC) network:**
 - each packet carries tag (virtual circuit ID), tag determines next hop
 - fixed path determined at *call setup time*, remains fixed thru call
 - routers maintain per-call state
Network Taxonomy

- Datagram network is not, a-priori, forced to be connection-oriented or connectionless.
- Internet is a Datagram Network. Provides both connection-oriented (TCP) and connectionless services (UDP) to apps.
Chapter 1: Computer Networks and the Internet

- 1.1 what’s the Internet?
- 1.2 what’s a protocol?
- 1.3 network edge – end devices
- 1.4 network core – circuit, packet, and message switching
- 1.5 access networks & physical media
- 1.6 performance: loss, delay
- 1.7 protocol layers & service models
- 1.8 Internet backbones, NAPs, ISPs
- 1.9 history
1.5 Access networks and physical media

Q: How to connect end systems to edge router?

- residential access nets
- institutional access networks (school, company)
- mobile access networks

Keep in mind:
- bandwidth (bits per second) of access network?
- shared or dedicated?
Residential access

Point-to-point

- Dialup via modem
 - up to 56Kbps direct access to router (conceptually)
- ISDN: integrated services digital network: 128Kbps all-digital connect to router
- ADSL: asymmetric digital subscriber line
 - up to 1 Mbps home-to-router (upstream)
 - up to 8 Mbps router-to home (downstream)

Cable Modem

- HFC: hybrid fiber coax
 - asymmetric: up to 30Mbps downstream, 2 Mbps upstream
- network of cable and fiber attaches homes to ISP router
 - shared access to router among homes
 - issues: congestion, dimensioning
- deployment: available via cable TV companies
Residential access: cable modems

Cable Network Architecture: Overview

Typically 500 to 5,000 homes
Cable Network Architecture: Overview

Cable headend

cable distribution network (simplified)

home

Set-Top Box

Home Environment

TV

Cable Modem

PC

10 Mbps Ethernet

Coax

Splitter

Coax
Cable Network Architecture: Overview
Cable Network Architecture: Overview

FDM:

Cable headend

Cable distribution network

home

Channels

Comp 361, Spring 2005

Chapter 1: Introduction
Company access: local area networks

- company/univ local area network (LAN) connects end system to edge router
- Ethernet:
 - shared or dedicated link connects end system and router
 - 10 Mbs, 100Mbps, Gigabit Ethernet
- LANs: chapter 5
Wireless access networks

- shared wireless access network connects end system to router
 - via base station aka “access point”
- wireless LANs:
 - 802.11b (WiFi): 11 Mbps
- wider-area wireless access
 - provided by telco operator
 - 3G ~ 384 kbps
 - Will it happen??
 - WAP/GPRS in Europe
Home networks

Typical home network components:
- ADSL or cable modem
- wireless access/ router/firewall/NAT
- Ethernet
Physical Media

- **physical link:** transmitted data bit propagates across link

- **guided media:**
 - signals propagate in solid media: copper, fiber

- **unguided media:**
 - signals propagate freely, e.g., radio

Twisted Pair (TP)

- two insulated copper wires
 - Category 3: traditional phone wires, 10 Mbps Ethernet
 - Category 5 TP: 100Mbps Ethernet
Physical Media: coax, fiber

Coaxial cable:
- wire (signal carrier) within a concentric shield
 - Baseband (50 ohm): single channel on cable. ~1 cm thick, popular in old 10 Mbs Ethernet
 - Broadband (75 ohm): multiple channels on cable, each channel shifted to a different frequency band. Thick and stiffer, common in cable TV systems.
- bidirectional

Fiber optic cable:
- glass fiber carrying light pulses
- high-speed operation:
 - 100Mbps Ethernet
 - high-speed point-to-point transmission (e.g., 10 Gps)
- low error rate
Physical media: radio

- signal carried in electromagnetic spectrum
- no physical “wire”
- bidirectional
- propagation environment effects:
 - reflection
 - obstruction by objects
 - interference

Radio link types:

- terrestrial microwave
 - e.g. up to 45 Mbps channels
- LAN (e.g., Wifi)
 - 2Mbps, 11Mbps
- wide-area (e.g., cellular)
 - e.g. 3G: hundreds of kbps
- satellite
 - up to 50Mbps channel (or multiple smaller channels)
 - 270 msec end-end delay
 - geosynchronous versus low altitude
Chapter 1: Computer Networks and the Internet

- 1.1 what’s the Internet?
- 1.2 what’s a protocol?
- 1.3 network edge – end devices
- 1.4 network core – circuit, packet, and message switching
- 1.5 access networks & physical media
- 1.6 performance: loss, delay
- 1.7 protocol layers & service models
- 1.8 Internet backbones, NAPs, ISPs
- 1.9 history
1.6 Delay & Loss in packet-switched networks

packets *queue* in router buffers

- packet arrival rate to link exceeds output link capacity
- packets queue, wait for turn

- packet being transmitted *(delay)*
- packets queuing *(delay)*
- free (available) buffers: arriving packets dropped *(loss)* if no free buffers
Delay in packet-switched networks

packets experience delay on end-to-end path

- four sources of delay at each hop

1. nodal processing:
 - check bit errors
 - determine output link

2. queuing:
 - time waiting at output link for transmission
 - depends on congestion level of router
Delay in packet-switched networks

3. transmission delay:
- \(R = \) link bandwidth (bps)
- \(L = \) packet length (bits)
- time to send bits into link = \(L/R \)

4. propagation delay:
- \(d = \) length of physical link
- \(s = \) propagation speed in medium (\(\sim 2 \times 10^8 \) m/sec)
- propagation delay = \(d/s \)

Note: \(s \) and \(R \) are very different quantities!
Caravan analogy

- Cars “propagate” at 100 km/hr
- Toll booth takes 12 sec to service a car (transmission time)
- car~bit; caravan ~ packet
- Q: How long until caravan is lined up before 2nd toll booth?
- A: 62 minutes

Time to “push” entire caravan through toll booth onto highway = 12*10 = 120 sec
Time for last car to propagate from 1st to 2nd toll both:
100km/(100km/hr)= 1 hr
Caravan analogy (more)

- Cars now “propagate” at 1000 km/hr
- Toll booth now takes 1 min to service a car
- Q: Will cars arrive to 2nd booth before all cars serviced at 1st booth?
 - Yes! After 7 min, 1st car at 2nd booth and 3 cars still at 1st booth.
 - 1st bit of packet can arrive at 2nd router before packet is fully transmitted at 1st router!
 - See Ethernet applet at AWL Web site

Nodal delay

\[d_{\text{nodal}} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} + d_{\text{prop}} \]

- \(d_{\text{proc}} = \) processing delay
 - typically a few microsecs or less
- \(d_{\text{queue}} = \) queuing delay
 - depends on congestion
- \(d_{\text{trans}} = \) transmission delay
 - = L/R, significant for low-speed links
- \(d_{\text{prop}} = \) propagation delay
 - a few microsecs to hundreds of msecs
Queuing delay (revisited)

- \(R = \text{link bandwidth (bps)} \)
- \(L = \text{packet length (bits)} \)
- \(a = \text{average packet arrival rate} \)

Traffic intensity = \(\frac{La}{R} \)

- \(\frac{La}{R} \sim 0: \) average queuing delay small
- \(\frac{La}{R} \rightarrow 1: \) delays become large
- \(\frac{La}{R} > 1: \) more “work” arriving than can be serviced, average delay infinite!
“Real” Internet delays and routes

- What do “real” Internet delay & loss look like?
- **Traceroute program**: provides delay measurement from source to router along end-end Internet path towards destination. For all i:
 - Sends three packets that will reach router i on path towards destination
 - Router i will return packets to sender
 - Sender times interval between transmission and reply.
traceroute www.weather.org.hk

trace route to www.weather.org.hk (202.72.0.62), 30 hops max, 40 byte packets

1 betamach (143.89.43.201) 1.141 ms 0.727 ms 0.648 ms
2 202.40.138.120 (202.40.138.120) 1.204 ms 0.709 ms 0.652 ms
3 c7603.ust.hk (202.40.138.254) 1.709 ms 1.735 ms 1.769 ms
4 202.40.217.65 (202.40.217.65) 2.480 ms 10.606 ms 11.267 ms
5 ***
6 J-4-0-0Z30.wc-core2.noc.cpcnet-hk.com (202.76.9.57) 5.270 ms 9.637 ms 9.987 ms
7 C-0-1.wc-qb1.noc.cpcnet-hk.com (210.184.16.218) 10.554 ms 10.694 ms 11.474 ms
8 C-0-0.qb-fm1.noc.cpcnet-hk.com (202.76.120.10) 10.873 ms 12.380 ms 11.008 ms
9 202.72.30.2 (202.72.30.2) 53.747 ms * 48.373 ms
10 202.72.0.62 (202.72.0.62) 11.893 ms 7.637 ms 10.137 ms
traceroute www.cs.princeton.edu

ttraceroute to www.cs.princeton.edu (128.112.136.35), 30 hops max, 40 byte packets

1 betamach (143.89.43.201) 1.231 ms 0.703 ms 0.640 ms
2 fcdscr3.ust.hk (202.40.138.121) 0.796 ms 0.938 ms 0.786 ms
3 * * *
4 * * *
5 192.245.196.82 (192.245.196.82) 2.767 ms 3.081 ms 3.723 ms
6 192.245.196.110 (192.245.196.110) 235.428 ms 234.831 ms 234.870 ms
7 chinng-iplsng.abilene.ucaid.edu (198.32.8.76) 244.737 ms 238.280 ms 238.537 ms
8 nycmng-chinng.abilene.ucaid.edu (198.32.8.83) 259.712 ms 258.783 ms 258.455 ms
9 washng-nycmng.abilene.ucaid.edu (198.32.8.85) 263.580 ms 263.689 ms 268.510 ms
10 local1.abilene.magpi.net (198.32.42.209) 265.515 ms 267.031 ms 265.328 ms
11 remote.princeton.magpi.net (198.32.42.66) 267.300 ms 268.220 ms 266.764 ms
12 gigagate1.Princeton.EDU (128.112.12.21) 266.824 ms 267.111 ms 267.585 ms
13 csgate.Princeton.EDU (128.112.128.144) 269.710 ms 267.710 ms 266.836 ms
14 targe.CS.Princeton.EDU (128.112.139.194) 268.235 ms 268.071 ms 267.733 ms
15 ignition.CS.Princeton.EDU (128.112.138.1) 268.132 ms 268.364 ms 267.561 ms
16 web0.CS.Princeton.EDU (128.112.136.35) 268.589 ms 268.695 ms 268.591 ms
Packet loss

- queue (aka buffer) preceding link in buffer has finite capacity
- when packet arrives to full queue, packet is dropped (aka lost)
- lost packet may be retransmitted by previous node, by source end system, or not retransmitted at all
Chapter 1: Computer Networks and the Internet

- 1.1 what’s the Internet?
- 1.2 what’s a protocol?
- 1.3 network edge – end devices
- 1.4 network core – circuit, packet, and message switching
- 1.5 access networks & physical media
- 1.6 performance: loss, delay
- 1.7 protocol layers & service models
- 1.8 Internet backbones, NAPs, ISPs
- 1.9 history
1.7 - Protocol “Layers”

Networks are complex!
- many “pieces”:
 - hosts
 - routers
 - links of various media
 - applications
 - protocols
 - hardware, software

Question:
Is there any hope of organizing structure of network?
Or at least our discussion of networks?

Layering breaks a complex problem into smaller pieces with clear relationships
- explicit structure allows identification, relationship of complex system’s pieces
 - Provide a reference model for discussion
- modularization eases maintenance, updating of system
 - Allow changes in implementation of a layer without affecting the rest of the system
Protocol Layering and Data

Each protocol layer:

- Contains “entities” implementing layer functions at each node, which may include: Error Control, Flow Control, Segmentation and Reassembly, Multiplexing, and Connection Setups.

- Entities perform actions and exchange messages known as Protocol Data Units (PDU) with peers. Layer n entities would exchange n-PDU using the service of layer n-1.

- Each layer takes data from above
 - adds layer header information to create new data unit
 - passes new data unit to layer below
Internet protocol stack

- **application**: supporting network applications
 - ftp, smtp, http
- **transport**: host-host data transfer
 - tcp, udp
- **network**: routing of datagrams from source to destination
 - ip, routing protocols
- **link**: data transfer between neighboring network elements
 - ppp, ethernet
- **physical**: bits “on the wire”, modulation scheme, line-coding format, electrical & physical specifications, etc.

- Routers in the network operate only up to the Network Layer
Example of Layering: *logical* communication

E.g.: transport

- take data from app
- add addressing, reliability check info to form “datagram”
- send datagram to peer using service provided by the Network Layer
- wait for peer to acknowledge receipt
Layering: physical communication
The OSI Reference Model

What we just saw is the Internet stack or, more formally, the **TCP/IP Reference Model**.

There is another breakdown of how to separate levels in open networks, the **Open Systems Interconnection (OSI) Reference Model (1983 & then rev 1995)**

In this course we usually use the TCP/IP RM.
Chapter 1: Computer Networks and the Internet

- 1.1 what’s the Internet?
- 1.2 what’s a protocol?
- 1.3 network edge – end devices
- 1.4 network core – circuit, packet, and message switching
- 1.5 access networks & physical media
- 1.6 performance: loss, delay
- 1.7 protocol layers & service models
- 1.8 Internet backbones, NAPs, ISPs
- 1.9 history
Tier-1 ISP: e.g., Sprint

Sprint US backbone network
Internet structure: network of networks

- “Tier-2” ISPs: smaller (often regional) ISPs
 - Connect to one or more tier-1 ISPs, possibly other tier-2 ISPs

- Tier-2 ISP pays tier-1 ISP for connectivity to rest of Internet
- tier-2 ISP is customer of tier-1 provider

Tier-2 ISPs also peer privately with each other, interconnect at NAP
Internet structure: network of networks

- “Tier-3” ISPs and local ISPs
 - last hop (“access”) network (closest to end systems)

Local and tier-3 ISPs are customers of higher tier ISPs connecting them to rest of Internet
Internet structure: network of networks

- a packet passes through many networks!
Chapter 1: Computer Networks and the Internet

- 1.1 what’s the Internet?
- 1.2 what’s a protocol?
- 1.3 network edge – end devices
- 1.4 network core – circuit, packet, and message switching
- 1.5 access networks & physical media
- 1.6 performance: loss, delay
- 1.7 protocol layers & service models
- 1.8 Internet backbones, NAPs, ISPs
- 1.9 history
1.9 Internet History

1961-1972: Early packet-switching principles

- 1961: Kleinrock - queueing theory shows effectiveness of packet-switching
- 1964: Baran - packet-switching in military nets
- 1967: ARPAnet conceived by Advanced Research Projects Agency
- 1969: first ARPAnet node operational

- 1972:
 - ARPAnet demonstrated publicly
 - NCP (Network Control Protocol) first host-host protocol
 - first e-mail program
 - ARPAnet has 15 nodes
Internet History

1972-1980: Internetworking, new and proprietary nets

- 1970: ALOHAnet satellite network in Hawaii
- 1973: Metcalfe’s PhD thesis proposes Ethernet
- 1974: Cerf and Kahn - architecture for interconnecting networks
- Late 70’s: proprietary architectures: DECnet, SNA, XNA
- Late 70’s: switching fixed length packets (ATM precursor)
- 1979: ARPAnet has 200 nodes

Cerf and Kahn’s internetworking principles:

- minimalism, autonomy - no internal changes required to interconnect networks
- best effort service model
- stateless routers
- decentralized control

define today’s Internet architecture
Internet History

1980-1990: new protocols, a proliferation of networks

- 1983: deployment of TCP/IP
- 1982: smtp e-mail protocol defined
- 1983: DNS defined for name-to-IP-address translation
- 1983: new national networks: Csnet, BITnet, NSFnet, Minitel
- 1985: ftp protocol defined
- 1988: TCP congestion control
- 100,000 hosts connected to confederation of networks
Internet History

1990, 2000’s: commercialization, the Web, new apps

- Early 1990’s: ARPAnet decommissioned
- early 1990s: Web
 - hypertext [Bush 1945, Nelson 1960’s]
 - HTML, HTTP: Berners-Lee
 - 1994: Mosaic, later Netscape
 - late 1990’s: commercialization of the Web

Late 1990’s – 2000’s:
- more killer apps: instant messaging, P2P file sharing
- network security to forefront
- est. 50 million host, 100 million+ users
- backbone links running at Gbps
Chapter 1: Summary

Covered a “ton” of material!
- Internet overview
- what’s a protocol?
- network edge, core, access network
- performance: loss, delay
- layering and service models
- backbones, NAPs, ISPs
- history

You now hopefully have:
- context, overview, “feel” of networking
- more depth, detail later in course