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Chapter 3: Transport Layer last revised 16/03/05

Chapter goals:
understand principles 
behind transport layer 
services:

multiplexing/demultiplex
ing
reliable data transfer
flow control
congestion control

instantiation and 
implementation in the 
Internet

Chapter Overview:
transport layer services
multiplexing/demultiplexing
connectionless transport: UDP
principles of reliable data 
transfer
connection-oriented transport: 
TCP

reliable transfer
flow control
connection management

principles of congestion control
TCP congestion control
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Chapter 3 outline

3.1 Transport-layer 
services
3.2 Multiplexing and 
demultiplexing
3.3 Connectionless 
transport: UDP
3.4 Principles of 
reliable data transfer

3.5 Connection-oriented 
transport: TCP

segment structure
reliable data transfer
flow control
connection management

3.6 Principles of 
congestion control
3.7 TCP congestion 
control
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Transport services and protocols
provide logical communication
between app processes 
running on different hosts
transport protocols run in 
end systems 

send side: breaks app 
messages into segments, 
passes to  network layer
rcv side: reassembles 
segments into messages, 
passes to app layer

more than one transport 
protocol available to apps

Internet: TCP and UDP
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network
data link
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network
data link
physical

network
data link
physicalnetwork

data link
physical

logical end-end transport



3: Transport Layer 4Comp 361, Spring 2005

Transport vs. network layer
Household analogy:
12 kids sending letters 

to 12 kids
processes = kids
app messages = letters 
in envelopes
hosts = houses
transport protocol = 
Ann and Bill
network-layer protocol 
= postal service

network layer: logical 
communication 
between hosts
transport layer: logical 
communication 
between processes 

relies on, enhances, 
network layer services
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Transport-layer protocols

Internet transport services:
reliable, in-order unicast
delivery (TCP)

congestion 
flow control
connection setup

unreliable (“best-effort”), 
unordered unicast or 
multicast delivery: UDP
services not available: 

real-time
bandwidth guarantees
reliable multicast 
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3.2 Multiplexing and 
demultiplexing
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Multiplexing/demultiplexing
gathering data from multiple
sockets, enveloping data with 
header (later used for 
demultiplexing)

Multiplexing at send host:

delivering received segments
to correct socket

Demultiplexing at rcv host:

= socket = process

application

transport

network

link

physical

P1 application

transport

network

link

physical

application

transport

network

link

physical

P2P3 P4P1

host 1 host 2 host 3
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Multiplexing/demultiplexing
segment - unit of data 

exchanged between 
transport layer entities

aka TPDU: transport 
protocol data unit

Demultiplexing: delivering 
received segments to 
correct app layer processes

receiver

application
transport
network

M P2
application
transport
network

Ht
Hn segment

segment M
application
transport
network

P1
M

M M
P3 P4

segment
header

application-layer
data
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How demultiplexing works
host receives IP datagrams

each datagram has source 
IP address, destination IP 
address
each datagram carries 1 
transport-layer segment
each segment has source, 
destination port number 
(recall: well-known port 
numbers for specific 
applications)

host uses IP addresses & port 
numbers to direct segment to 
appropriate socket

source port # dest port #

32 bits

application
data 

(message)

other header fields

TCP/UDP segment format
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Connectionless demultiplexing
When host receives UDP 
segment:

checks destination port 
number in segment
directs UDP segment to 
socket with that port 
number

IP datagrams with 
different source IP 
addresses and/or source 
port numbers directed 
to same socket

Create sockets with port 
numbers:

DatagramSocket mySocket1 = new 
DatagramSocket(99111);

DatagramSocket mySocket2 = new 
DatagramSocket(99222);

UDP socket identified by  
two-tuple:

(dest IP address, dest port number)



3: Transport Layer 11Comp 361, Spring 2005

Connectionless demux (cont)
DatagramSocket serverSocket = new DatagramSocket(6428);

Client
IP:B

P3

client
IP: A

P1P1P3

server
IP: C

SP: 6428
DP: 9157

SP: 9157
DP: 6428

SP: 6428
DP: 5775

SP: 5775
DP: 6428

SP provides “return address”
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Connection-oriented demux

TCP socket identified 
by 4-tuple: 

source IP address
source port number
dest IP address
dest port number

recv host uses all four 
values to direct 
segment to appropriate 
socket

Server host may support 
many simultaneous TCP 
sockets:

each socket identified by 
its own 4-tuple

Web servers have 
different sockets for 
each connecting client

non-persistent HTTP will 
have different socket for 
each request
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Connection-oriented demux
(cont)

Client
IP:B

P3

client
IP: A

P1P1P3

server
IP: C

SP: 80
DP: 9157

SP: 9157
DP: 80

SP: 80
DP: 5775

SP: 5775
DP: 80

P4



3: Transport Layer 14Comp 361, Spring 2005

Connection-oriented demux: 
Threaded Web Server

Client
IP:B

P1

client
IP: A

P1P2

server
IP: C

SP: 9157
DP: 80

SP: 9157
DP: 80

P4 P3

D-IP:C
S-IP: A
D-IP:C

S-IP: B

SP: 5775
DP: 80

D-IP:C
S-IP: B
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Chapter 3 outline
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demultiplexing
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transport: UDP
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transport: TCP

segment structure
reliable data transfer
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congestion control
3.7 TCP congestion 
control
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UDP: User Datagram Protocol [RFC 768]

“no frills,” “bare bones”
Internet transport 
protocol
“best effort” service, UDP 
segments may be:

lost
delivered out of order 
to app

connectionless:
no handshaking between 
UDP sender, receiver
each UDP segment 
handled independently 
of others

Why is there a UDP?
no connection 
establishment (which can 
add delay)
simple: no connection state 
at sender, receiver
small segment header (8 
Bytes)
no congestion control: UDP 
can blast away as fast as 
desired
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UDP: more
often used for streaming 
multimedia apps

loss tolerant
rate sensitive

other UDP uses 
(why?):

DNS: small delay
SNMP: stressful cond.

reliable transfer over UDP: 
add reliability at 
application layer

application-specific 
error recover!

source port # dest port #

32 bits

Application
data 

(message)

length checksum
Length, in

bytes of UDP
segment,
including

header 

UDP segment format
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UDP checksum
Goal: detect  “errors” (e.g.,flipped bits) in transmitted 

segment

Receiver:
compute checksum of 
received segment
check if computed checksum 
equals checksum field value:

NO - error detected
YES - no error detected. 
But maybe errors 
nonetheless? More later ..

Receiver may choose to 
discard segment or send a 
warning to app in case error

Sender:
treat segment contents 
as sequence of 16-bit 
integers
checksum: addition (1’ s 
complement sum) of 
segment contents
sender puts checksum 
value into UDP checksum 
field
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Chapter 3 outline

3.1 Transport-layer 
services
3.2 Multiplexing and 
demultiplexing
3.3 Connectionless 
transport: UDP
3.4 Principles of 
reliable data transfer

3.5 Connection-oriented 
transport: TCP

segment structure
reliable data transfer
flow control
connection management

3.6 Principles of 
congestion control
3.7 TCP congestion 
control
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Principles of Reliable data transfer
important in app., transport, link layers
top-10 list of important networking topics!

characteristics of unreliable channel will determine 
complexity of reliable data transfer protocol (rdt)
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Reliable data transfer: getting started

send
side

receive
side

rdt_send(): called from above, 
(e.g., by app.). Passed data to 

deliver to receiver upper layer

udt_send(): called by rdt,
to transfer packet over 

unreliable channel to receiver

rdt_rcv(): called when packet 
arrives on rcv-side of channel

deliver_data(): called by 
rdt to deliver data to upper
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Reliable data transfer: getting started
We’ll:

incrementally develop sender, receiver sides of 
reliable data transfer protocol (rdt)
consider only unidirectional data transfer

but control info will flow on both directions!
use finite state machines (FSM)  to specify 
sender, receiver

state
1

state
2

event causing state transition
actions taken on state transition

state: when in this 
“state” next state 

uniquely determined 
by next event

event
actions
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Incremental Improvements

rdt1.0: assumes every packet sent arrives,    
and no errors introduced in transmission

rdt2.0: assumes every packet sent arrives, but 
some errors (bit flips) can occur within a 
packet. Introduces concept of ACK and NAK

rdt2.1: deals with corrupted ACKS/NAKS

rdt2.2: like rdt2.1 but does not need NAKs

Rdt3.0: Allows packets to be lost



Rdt1.0: reliable transfer over a reliable channel

underlying channel perfectly reliable
no bit errors
no loss of packets

separate FSMs for sender, receiver:
sender sends data into underlying channel
receiver read data from underlying channel

Wait for 
call from 
above packet = make_pkt(data)

udt_send(packet)

rdt_send(data)
extract (packet,data)
deliver_data(data)

Wait for 
call from 

below

rdt_rcv(packet)

sender receiver
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Rdt2.0: channel with bit errors

underlying channel may flip bits in packet
recall: UDP checksum to detect bit errors

the question: how to recover from errors:
acknowledgements (ACKs): receiver explicitly tells sender 
that pkt received OK
negative acknowledgements (NAKs): receiver explicitly 
tells sender that pkt had errors
sender retransmits pkt on receipt of NAK
human scenarios using ACKs, NAKs?

new mechanisms in rdt2.0 (beyond rdt1.0):
error detection
receiver feedback: control msgs (ACK,NAK) rcvr->sender
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rdt2.0: FSM specification

Wait for 
call from 
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) && 
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && 
corrupt(rcvpkt)

Wait for 
ACK or 

NAK

rdt_send(data)

receiver

Wait for 
call from 

below

Λ

sender
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rdt2.0: operation with no errors

Wait for 
call from 
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) && 
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && 
corrupt(rcvpkt)

Wait for 
ACK or 

NAK

Wait for 
call from 

below

rdt_send(data)

Λ
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rdt2.0: error scenario

Wait for 
call from 
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) && 
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && 
corrupt(rcvpkt)

Wait for 
ACK or 

NAK

Wait for 
call from 

below

rdt_send(data)

Λ
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rdt2.0 has a fatal flaw!
What happens if ACK/NAK 

corrupted?
sender doesn’t know what 
happened at receiver!
can’t just retransmit: possible 
duplicate.                            
But receiver waiting!

What to do?
sender ACKs/NAKs receiver’s 
ACK/NAK? What if sender 
ACK/NAK corrupted?
retransmit, but this might 
cause retransmission of 
correctly received pkt!
Receiver won’t know about 
duplication!

Handling duplicates: 
sender adds sequence number
(0/1) to each pkt
sender retransmits current 
pkt if ACK/NAK garbled
receiver discards (doesn’t 
deliver up) duplicate pkt
Duplicate packet is one with 
same sequence # as previous 
packet

Sender sends one packet, 
then waits for receiver 
response

stop and wait
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Sender: whenever sender receives control message it 
sends a packet to receiver.

A valid ACK: Sends next packet (if exists) with new sequence #
A NAK or corrupt response: resends old packet

Receiver: sends ACK/NAK to sender
If received packet is corrupt: send NAK
If received packet is valid and has different  sequence # as prev
packet: send ACK and deliver new data up.
If received packet is valid and has same sequence # as prev
packet, i.e., is a retransmission of duplicate: send ACK

Note: ACK/NAK  do not contain sequence #.
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rdt2.1: sender, handles garbled ACK/NAKs

Wait for 
call 0 from 

above

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_send(data)

Wait for 
ACK or 
NAK 0 udt_send(sndpkt)

rdt_rcv(rcvpkt) &&  
( corrupt(rcvpkt) ||
isNAK(rcvpkt) )

rdt_rcv(rcvpkt)   
&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt)

rdt_rcv(rcvpkt)   
&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt) 

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&  
( corrupt(rcvpkt) ||
isNAK(rcvpkt) )

Wait for
call 1 from 

above

Wait for 
ACK or 
NAK 1

Λ
Λ
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rdt2.1: receiver, handles garbled ACK/NAKs
rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) 

&& has_seq0(rcvpkt) 

Wait for 
0 from 
below

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && 
not corrupt(rcvpkt) &&
has_seq0(rcvpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) 
&& has_seq1(rcvpkt)

Wait for 
1 from 
below

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && 
not corrupt(rcvpkt) &&
has_seq1(rcvpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)
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rdt2.1: discussion

Sender:
seq # added to pkt
two seq. #’s (0,1) will 
suffice.  Why?
must check if received 
ACK/NAK corrupted 
twice as many states

state must “remember”
whether “current” pkt 
has 0 or 1 seq. #

Receiver:
must check if received 
packet is duplicate

state indicates whether 
0 or 1 is expected pkt 
seq #

note: receiver can not
know if its last 
ACK/NAK received OK 
at sender
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rdt2.2: a NAK-free protocol

same functionality as rdt2.1, using ACKs only
instead of NAK, receiver sends ACK for last pkt 
received OK

receiver must explicitly include seq # of pkt being ACKed
(in 2.1 seq #s included in data packets but not in ACKs/NAKs)

duplicate ACK at sender results in same action as 
NAK: retransmit current pkt
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rdt2.2: sender, receiver fragments

Wait for 
call 0 from 

above

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&  
( corrupt(rcvpkt) ||

isACK(rcvpkt,1) )

rdt_rcv(rcvpkt)   
&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt,0)

Wait for 
ACK

0
sender FSM

fragment

Wait for 
0 from 
below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) 
&& has_seq1(rcvpkt) 

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK,1, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && 
(corrupt(rcvpkt) ||

has_seq1(rcvpkt))

udt_send(sndpkt)
receiver FSM

fragment

Λ
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rdt3.0: channels with errors and loss

New assumption:
underlying channel can 
also lose packets (data 
or ACKs)

checksum, seq. #, ACKs, 
retransmissions will be 
of help, but not enough

Q: how to deal with loss?
sender waits until 
certain data or ACK 
lost, then retransmits
yuck: drawbacks?

Approach: sender waits 
“reasonable” amount of 
time for ACK 
retransmits if no ACK 
received in this time
(Retransmissions only
triggered by timeouts)
if pkt (or ACK) just delayed 
(not lost):

retransmission will be  
duplicate, but use of seq. 
#’s already handles this
receiver must specify seq 
# of pkt being ACKed

requires countdown timer
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rdt3.0 sender
sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

Wait 
for 

ACK0

rdt_rcv(rcvpkt) &&  
( corrupt(rcvpkt) ||
isACK(rcvpkt,1) )

Wait for 
call 1 from 

above

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

rdt_rcv(rcvpkt)   
&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt,0)

rdt_rcv(rcvpkt) &&  
( corrupt(rcvpkt) ||
isACK(rcvpkt,0) )

rdt_rcv(rcvpkt)   
&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt,1)

stop_timer
stop_timer

udt_send(sndpkt)
start_timer

timeout

udt_send(sndpkt)
start_timer

timeout

rdt_rcv(rcvpkt)

Wait for 
call 0from 

above

Wait 
for 

ACK1

Λ
rdt_rcv(rcvpkt)

Λ
Λ

Λ
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rdt3.0 in action
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rdt3.0 in action
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Performance of rdt3.0

rdt3.0 works, but performance stinks
example: 1 Gbps link, 15 ms e-e prop. delay, 1KB packet:

L (packet length in bits)
R (transmission rate, bps)

8kb/pkt
10**9 b/sec

Ttransmit = = = 8 microsec

U 
sender = 

.008
30.008 

= 0.00027 L / R 
RTT + L / R 

=

U sender: utilization – fraction of time sender busy sending
1KB pkt every 30 msec -> 33kB/sec thruput over 1 Gbps link
network protocol limits use of physical resources!



rdt3.0: stop-and-wait operation

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send 
ACK

ACK arrives, send next 
packet, t = RTT + L / R

U 
sender =

.008 
30.008 

= 0.00027 L / R 
RTT + L / R 

=
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Pipelined protocols
Pipelining: sender allows multiple, “in-flight”, yet-to-be-acknowledged pkts

range of sequence numbers must be increased
buffering at sender and/or receiver
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Pipelined protocols

Advantage:  much better bandwidth 
utilization than stop-and-wait

Disadvantage: More complicated to deal 
with reliability issues, e.g., corrupted, lost, 
out of order data.

Two generic approaches to solving this
• go-Back-N protocols
• selective repeat protocols

Note: TCP is not exactly either



Pipelining: increased utilization

first packet bit transmitted, t = 0

sender receiver

RTT 

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next 
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

U 
sender =

.024
30.008 

= 0.0008 3 * L / R 
RTT + L / R 

=

Increase utilization
by a factor of 3!
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Go-Back-N
Sender:

k-bit seq # in pkt header
“window” of up to N, consecutive unack’ed pkts allowed

ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK”
may receive duplicate ACKs (see receiver)

Only one timer:  for oldest unacknowledged pkt
timeout(n): retransmit pkt n and all higher seq # pkts in window
Called a sliding-window protocol
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GBN: Sender

rdt_Send() called: checks to see if window is full.  
No: send out packet
Yes: return data to application level

Receipt of ACK(n): cumulative acknowledgement 
that all packets up to and including n have been 
received.  Updates window accordingly and 
restarts timer

Timeout: resends ALL packets that have been sent 
but not yet acknowledged.

This is only event that triggers resend.
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GBN: sender extended FSM
rdt_send(data)

Wait start_timer
udt_send(sndpkt[base])
udt_send(sndpkt[base+1])
…
udt_send(sndpkt[nextseqnum-1])

timeout

if (nextseqnum < base+N) {
sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)
udt_send(sndpkt[nextseqnum])
if (base == nextseqnum)

start_timer
nextseqnum++
}

else
refuse_data(data)

base = getacknum(rcvpkt)+1
If (base == nextseqnum)

stop_timer
else

start_timer

rdt_rcv(rcvpkt) && 
notcorrupt(rcvpkt) 

base=1
nextseqnum=1

rdt_rcv(rcvpkt) 
&& corrupt(rcvpkt)

Λ
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GBN: receiver extended FSM

Wait

udt_send(sndpkt)
default

rdt_rcv(rcvpkt)
&& notcurrupt(rcvpkt)
&& hasseqnum(rcvpkt,expectedseqnum) 

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedseqnum++

expectedseqnum=1
sndpkt =    

make_pkt(0,ACK,chksum)

Λ

If expected packet received:
Send ACK and deliver packet upstairs

If out-of-order packet received: 
discard (don’t buffer) -> no receiver buffering!
Re-ACK pkt with highest in-order seq #
may generate duplicate ACKs
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More on receiver

The receiver always sends ACK for last 
correctly received packet with highest in-
order seq #
Receiver only sends ACKS (no NAKs)
Can generate duplicate ACKs
need only remember expectedseqnum
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GBN in
action



GBN is easy to code but might have  performance 
problems.

In particular,  if many packets are in pipeline at 
one time (bandwidth-delay product large) then 
one error can force retransmission of huge 
amounts of data!

Selective Repeat protocol allows receiver to 
buffer data and only forces retransmission of 
required packets.
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Selective Repeat

receiver individually acknowledges all correctly 
received pkts

buffers pkts, as needed, for eventual in-order delivery 
to upper layer

sender only resends pkts for which ACK not 
received

sender timer for each unACKed pkt
Compare to GBN which only had timer for base packet

sender window
N consecutive seq #’s
again limits seq #s of sent, unACKed pkts
Important:  Window size < seq # range
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Selective repeat: sender, receiver windows
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Selective repeat

pkt n in [rcvbase, rcvbase+N-1]

send ACK(n)
out-of-order: buffer
in-order: deliver (also 
deliver buffered, in-order 
pkts), advance window to 
next not-yet-received pkt

pkt n in [rcvbase-N,rcvbase-1]

ACK(n) (note this is a reACK)

otherwise:
ignore 

receiver
data from above :

if next available seq # in 
window, send pkt

timeout(n):
resend pkt n, restart timer

ACK(n) in [sendbase,sendbase+N]:

mark pkt n as received
if n smallest unACKed pkt, 
advance window base to 
next unACKed seq # 

sender
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Selective repeat in action
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Selective repeat:
dilemma

Example: 
seq #’s: 0, 1, 2, 3
window size=3

receiver sees no 
difference in two 
scenarios!
incorrectly passes 
duplicate data as new 
in (a)

Q: what is relationship 
between seq # size 
and window size?
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Chapter 3 outline

3.1 Transport-layer 
services
3.2 Multiplexing and 
demultiplexing
3.3 Connectionless 
transport: UDP
3.4 Principles of 
reliable data transfer

3.5 Connection-oriented 
transport: TCP

segment structure
reliable data transfer
flow control
connection management

3.6 Principles of 
congestion control
3.7 TCP congestion 
control
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TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

full duplex data:
bi-directional data flow 
in same connection
MSS: maximum segment 
size

connection-oriented:
handshaking (exchange 
of control msgs) init’s
sender, receiver state 
before data exchange

flow controlled:
sender will not 
overwhelm receiver

point-to-point:
one sender, one receiver

reliable, in-order byte 
steam:

no “message boundaries”
pipelined:

TCP congestion and flow 
control set window size

send & receive buffers

socket
door

TCP
send buffer

TCP
receive buffer

socket
door

segment

application
writes data

application
reads data
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More TCP Details
Maximum Segment Size (MSS)

Depends upon implementation (can often be set)
The Max amount of application-layer data in 
segment

Application Data + TCP Header = TCP Segment

Three way Handshake
Client sends special TCP segment to server requesting 
connection. No payload (Application data) in this segment.
Server responds with second special TCP segment 

(again no payload)
Client responds with third special segment 

This can contain payload
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Even More TCP Details

A TCP connection between client and 
server creates, in both client and server

(i) buffers
(ii) variables and  

(iii) a socket connection to process.

TCP only exists in the two end machines.
No buffers and variables allocated to the connection in 

any of the network elements between the host and 
server.
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TCP segment structure

source port # dest port #

32 bits

application
data 

(variable length)

sequence number
acknowledgement number

Receive window
Urg data pnterchecksum

FSRPAUhead
len

not
used

Options (variable length)

URG: urgent data 
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

# bytes 
rcvr willing
to accept

Internet
checksum

(as in UDP)

counting
by bytes 
of data
(not segments!)
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TCP seq. #’s and ACKs
Seq. #’s:

byte stream 
“number” of first 
byte in segment’s 
data

ACKs:
seq # of next byte 
expected from 
other side
cumulative ACK

Q: how receiver handles 
out-of-order segments

A: TCP spec doesn’t 
say, - up to 
implementer

Host BHost A

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

User
types

‘C’
host ACKs
receipt of
‘C’, echoes

back ‘C’

host ACKs
receipt 

of echoed
‘C’

time
simple telnet scenario
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TCP Round Trip Time and Timeout

Q: how to estimate RTT?
SampleRTT: measured time from 
segment transmission until ACK 
receipt

ignore retransmissions
SampleRTT will vary, want 
estimated RTT “smoother”

average several recent 
measurements, not just 
current SampleRTT

Q: how to set TCP 
timeout value?
longer than RTT

but RTT varies
too short: premature 
timeout

unnecessary 
retransmissions

too long: slow reaction 
to segment loss
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TCP Round Trip Time and Timeout

EstimatedRTT = (1- α)*EstimatedRTT + α*SampleRTT

Exponential weighted moving average
influence of past sample decreases exponentially fast
typical value: α = 0.125
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Example RTT estimation:
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

RT
T 

(m
ill

ise
co

nd
s)

SampleRTT Estimated RTT
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TCP Round Trip Time and Timeout

Setting the timeout
EstimtedRTT plus “safety margin”

large variation in EstimatedRTT -> larger safety margin
first estimate of how much SampleRTT deviates from 
EstimatedRTT: 

DevRTT = (1-β)*DevRTT +
β*|SampleRTT-EstimatedRTT|

(typically, β = 0.25)

Then set timeout interval:

TimeoutInterval = EstimatedRTT + 4*DevRTT
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Chapter 3 outline

3.1 Transport-layer 
services
3.2 Multiplexing and 
demultiplexing
3.3 Connectionless 
transport: UDP
3.4 Principles of 
reliable data transfer

3.5 Connection-oriented 
transport: TCP

segment structure
reliable data transfer
flow control
connection management

3.6 Principles of 
congestion control
3.7 TCP congestion 
control
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TCP reliable data transfer

TCP creates rdt
service on top of IP’s 
unreliable service
Pipelined segments
Cumulative acks
TCP uses single 
retransmission timer

Retransmissions are 
triggered by:

timeout events
duplicate acks

Initially consider 
simplified TCP sender:

ignore duplicate acks
ignore flow control, 
congestion control
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TCP sender events:
data rcvd from app:

Create segment with 
seq #
seq # is byte-stream 
number of first data 
byte in  segment
start timer if not 
already running (think 
of timer as for oldest 
unacked segment)
expiration interval: 
TimeOutInterval

timeout:
retransmit segment 
that caused timeout
restart timer

Ack rcvd:
If acknowledges 
previously unacked
segments

update what is known to 
be acked
start timer if there are  
outstanding segments



TCP 
sender
(simplified)

NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum

loop (forever) {
switch(event)

event: data received from application above 
create TCP segment with sequence number NextSeqNum
if (timer currently not running)

start timer
pass segment to IP 
NextSeqNum = NextSeqNum + length(data) 

event: timer timeout
retransmit not-yet-acknowledged segment with 

smallest sequence number
start timer

event: ACK received, with ACK field value of y 
if (y > SendBase) { 

SendBase = y
if (there are currently not-yet-acknowledged segments)

start timer 
} 

}  /* end of loop forever */

Comment:
• SendBase-1: last 
cumulatively 
ack’ed byte
Example:
• SendBase-1 = 71;
y= 73, so the rcvr
wants 73+ ;
y > SendBase, so
that new data is 
acked

3: Transport Layer 70Comp 361, Spring 2005



3: Transport Layer 71Comp 361, Spring 2005

TCP: retransmission scenarios
Host A

Seq=100, 20 bytes data

ACK=100

time
premature timeout

Host B

Seq=92, 8 bytes data

ACK=120

Seq=92, 8 bytes data

Se
q=

92
 t

im
eo

ut

ACK=120

Host A

Seq=92, 8 bytes data

ACK=100

loss

ti
m

eo
ut

lost ACK scenario

Host B

X

Seq=92, 8 bytes data

ACK=100

time

SendBase
= 120

SendBase
= 120

Sendbase
= 100

Se
q=

92
 t

im
eo

ut
SendBase

= 100
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TCP retransmission scenarios (more)
Host A

Seq=92, 8 bytes data

ACK=100

loss

ti
m

eo
ut

Cumulative ACK scenario

Host B

X

Seq=100, 20 bytes data

ACK=120

time

SendBase
= 120
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TCP ACK generation [RFC 1122, RFC 2581]

Event at Receiver

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Arrival of in-order segment with
expected seq #. One other 
segment has ACK pending

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Arrival of segment that 
partially or completely fills gap

TCP Receiver action

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Immediately send single cumulative 
ACK, ACKing both in-order segments 

Immediately send duplicate ACK, 
indicating seq. # of next expected byte

Immediate send ACK, provided that
segment starts at lower end of gap
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More on Sender Policies

Doubling the Timeout Interval
Used by most TCP implementations
If timeout occurs then, after retransmisison, 
Timeout Interval is doubled
Intervals grow exponentially with each 
consecutive timeout
When Timer restarted because of (i) new data 
from above or (ii) ACK received, then Timeout 
Interval is reset as described previously using 
Estimated RTT and DevRTT.
Limited form of Congestion Control
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Fast  Retransmit

Time-out period  often 
relatively long:

long delay before 
resending lost packet

Detect lost segments 
via duplicate ACKs.

Sender often sends 
many segments back-to-
back
If segment is lost, 
there will likely be many 
duplicate ACKs.

If sender receives 3 
ACKs for the same 
data, it supposes that 
segment after ACKed
data was lost:

fast retransmit: resend 
segment before timer 
expires
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Fast retransmit algorithm:

event: ACK received, with ACK field value of y 
if (y > SendBase) { 

SendBase = y
if (there are currently not-yet-acknowledged segments)

start timer 
} 

else { 
increment count of dup ACKs received for y
if (count of dup ACKs received for y = 3) {

resend segment with sequence number y
}

a duplicate ACK for 
already ACKed segment

fast retransmit
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TCP: GBN or Selective Repeat?

Basic TCP looks a lot like GBN

Many TCP implementations will buffer 
received out-of-order segments and then 
ACK them all after filling in the range

This looks  a lot like Selective Repeat

TCP is a hybrid
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Chapter 3 outline

3.1 Transport-layer 
services
3.2 Multiplexing and 
demultiplexing
3.3 Connectionless 
transport: UDP
3.4 Principles of 
reliable data transfer

3.5 Connection-oriented 
transport: TCP

segment structure
reliable data transfer
flow control
connection management

3.6 Principles of 
congestion control
3.7 TCP congestion 
control
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TCP Flow Control

Sender should not overwhelm receiver’s 
capacity to receive data
If necessary, sender should slow down 
transmission rate to accommodate 
receiver’s rate.
Different from Congestion Control whose 
purpose was to handle congestion in 
network. (But both congestion control and flow control 
work by slowing down data transmission)
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TCP Flow Control
sender won’t overflow
receiver’s buffer by

transmitting too much,
too fast

flow control
receive side of TCP 
connection has a 
receive buffer:

speed-matching 
service: matching the 
send rate to the 
receiving app’s drain 
rate

app process may be 
slow at reading from 
buffer
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TCP segment structure

source port # dest port #

32 bits

application
data 

(variable length)

sequence number
acknowledgement number

Receive window
Urg data pnterchecksum

FSRPAUhead
len

not
used

Options (variable length)

URG: urgent data 
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

# bytes 
rcvr willing
to accept

Internet
checksum

(as in UDP)

counting
by bytes 
of data
(not segments!)
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TCP Flow control: how it works

(Suppose TCP receiver 
discards out-of-order 
segments)
spare room in buffer

= RcvWindow
= RcvBuffer-[LastByteRcvd -

LastByteRead]

Rcvr advertises spare 
room by including value 
of RcvWindow in 
segments
Sender limits unACKed
data to RcvWindow

guarantees receive 
buffer doesn’t overflow
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Technical Issue

Suppose  RcvWindow=0 and that receiver has 
already ACK’d ALL packets in buffer
Sender does not transmit new packets until it 
hears RcvWindow>0.
Receiver never sends RcvWindow>0 since it has no 
new ACKS to send to Sender
DEADLOCK

Solution: TCP specs require sender to continue 
sending packets with one data byte while 
RcvWindow=0, just to keep  receiving ACKS from 
B. At some point the receiver’s buffer will empty 
and RcvWindow>0 will be transmitted back to 
sender.
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Note on UDP

UDP has no flow control!

UDP appends packets to receiving socket’s 
buffer.  If buffer is full then packets are 
lost!
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Chapter 3 outline

3.1 Transport-layer 
services
3.2 Multiplexing and 
demultiplexing
3.3 Connectionless 
transport: UDP
3.4 Principles of 
reliable data transfer

3.5 Connection-oriented 
transport: TCP

segment structure
reliable data transfer
flow control
connection management

3.6 Principles of 
congestion control
3.7 TCP congestion 
control
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TCP Connection Management

Three way handshake:
Step 1: client end system sends 

TCP SYN control segment to 
server

specifies client_isn, the 
initial seq #
No application data

Step 2: server end system 
receives SYN, replies with 
SYNACK control segment

ACKs received SYN
allocates buffers
Replies with client_isn+1 in 
ACK field to signal 
synchronization
Specifies server_isn
No application data

Recall: TCP sender, receiver 
establish “connection”
before exchanging data 
segments
initialize TCP variables:

seq. #s
buffers, flow control 
info (e.g. RcvWindow)

client: connection initiator
Socket clientSocket = new   
Socket("hostname","port 
number");

server: contacted by client
Socket connectionSocket = 
welcomeSocket.accept();
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TCP Connection Management (cont.)

Step 3: client end system 
receives SYNACK, replies 
with SYN=0 and 
server_isn+1

Allocate buffers
Allocates buffers
Can include application 
data

SYN=0 signals that 
connection  established
server_isn+1 signals that # 
is synchronized

client
Connection request (SYN=1 seq=client_isn)

server

Connection granted (SYN=1, server_isn,

ACK (SYN=0, seq=client_isn+1)

ack=client_isn+1)

ack=server_isn+1
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TCP Connection Management (cont.)

Closing a connection:

client closes socket:
clientSocket.close();

Step 1: client end system 
sends TCP FIN control 
segment to server

Step 2: server receives 
FIN, replies with ACK. 
Closes connection, sends 
FIN. 

client

FIN

server

ACK

ACK

FIN

close

close

closed

ti
m

ed
 w

ai
t



3: Transport Layer 89Comp 361, Spring 2005

TCP Connection Management (cont.)

Step 3: client receives FIN, 
replies with ACK. 

Enters “timed wait” –
during which will respond 
with ACK to received 
FINs (that might arrive 
if ACK gets lost).

Closes down after timed-
wait

Step 4: server, receives ACK.  
Connection closed. 

Note: with small modification, 
can handle simultaneous FINs.

client

FIN

server

ACK

ACK

FIN

closing

closing

closed

ti
m

ed
 w

ai
t

closed
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TCP Connection Management (cont)

ExampleTCP server
lifecycle

Example TCP client
lifecycle
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A few special cases

Have not discussed what happens if both 
client and server decide to close down 
connection at same time.

It is possible that first ACK (from server) 
and second FIN (also from server) are sent 
in same segment



3: Transport Layer 92Comp 361, Spring 2005

Chapter 3 outline

3.1 Transport-layer 
services
3.2 Multiplexing and 
demultiplexing
3.3 Connectionless 
transport: UDP
3.4 Principles of 
reliable data transfer

3.5 Connection-oriented 
transport: TCP

segment structure
reliable data transfer
flow control
connection management

3.6 Principles of 
congestion control
3.7 TCP congestion 
control
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Principles of Congestion Control

Congestion:
informally: “too many sources sending too much 
data too fast for network to handle”
different from flow control!
manifestations:

lost packets (buffer overflow at routers)
long delays (queuing in router buffers)

a top-10 problem!
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Causes/costs of congestion: scenario 1
two senders, two 
receivers
one router, 
infinite buffers 
no retransmission
Send rate 0-C/2

large delays 
when congested
maximum 
achievable 
throughput
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Causes/costs of congestion: scenario 2

one router, finite buffers 
sender retransmission of lost packet
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(a) (b) & (c):  always                        (goodput)
(a) Magic transmission; only send when there’s space in buffer
(b) “perfect” retransmission only when loss:

(c) retransmission of delayed (not lost) packet makes         larger (than 
perfect case) for same

λin λout=

λin λout>
λ

inλout

“costs” of congestion:
(b) and (c) more work (retrans) for given “goodput”
(c) unneeded retransmissions: link carries multiple copies of pkt

(c)(a) (b)
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Causes/costs of congestion: scenario 3
four senders
multihop paths
timeout/retransmit

λ
in

Q: what happens as      
and     increase ?λ

in
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Causes/costs of congestion: scenario 3

Another “cost” of congestion:
when packet dropped, any “upstream transmission 
capacity used for that packet was wasted!
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Approaches towards congestion control

Two broad approaches towards congestion control:

End-end congestion 
control:
no explicit feedback from 
network
congestion inferred from 
end-system observed loss, 
delay
approach taken by TCP

Network-assisted 
congestion control:
routers provide feedback 
to end systems

single bit indicating 
congestion (SNA, 
DECbit, TCP/IP ECN, 
ATM)
explicit rate sender 
should send at
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Case study: ATM ABR congestion control

RM (resource management) 
cells:
sent by sender, interspersed 
with data cells
bits in RM cell set by switches 
(“network-assisted”) 

NI bit: no increase in rate 
(mild congestion)
CI bit: severe congestion 
indicator

RM cells returned to sender by 
receiver, with bits intact

small exception – see next page

ABR: available bit rate:
“elastic service”
if sender’s path 
“underloaded”: 

sender should use 
available bandwidth

if sender’s path congested: 
sender throttled to 
minimum guaranteed rate
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Case study: ATM ABR congestion control

two-byte ER (explicit rate) field in RM cell
congested switch may lower ER value in cell
sender’s send rate thus minimum supportable rate on path

EFCI bit in data cells: set to 1 by congested switch
Signals congestion
if data cell preceding RM cell has EFCI=1, destination sets 
CI bit=1 before returning RM cell to source.
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Chapter 3 outline

3.1 Transport-layer 
services
3.2 Multiplexing and 
demultiplexing
3.3 Connectionless 
transport: UDP
3.4 Principles of 
reliable data transfer

3.5 Connection-oriented 
transport: TCP

segment structure
reliable data transfer
flow control
connection management

3.6 Principles of 
congestion control
3.7 TCP congestion 
control
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TCP Congestion Control
end-end control (no network assistance)
transmission rate limited by congestion window size, Congwin, 
over segments.   Congwin dynamically modified to reflect perceived congestion.

Congwin

w segments, each with MSS bytes sent in one RTT:

throughput = w * MSS
RTT Bytes/sec
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To simplify presentation we assume that RcvBuffer
is large enough that it will not overflow

Tools are  “similar” to flow control.                 
sender limits transmission using:

LastByteSent-LastByteAcked ≤ CongWin

How does  sender perceive congestion?
loss event = timeout or 3 duplicate acks
TCP sender reduces rate (CongWin) after loss event

three mechanisms:
AIMD = Additive Increase Multiplicative Decrease
slow start = CongWin set to 1 and then grows exponentially
conservative after timeout events
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TCP AIMD
multiplicative decrease: additive increase: increase  

CongWin by 1 MSS every 
RTT in the absence of loss 
events:  probing also known as
congestion avoidance

cut CongWin in half 
after loss event

8 Kbytes

16 Kbytes

24 Kbytes

time

congestion
window

Long-lived TCP connection
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TCP Slow Start

When connection begins, 
CongWin = 1 MSS

Example: MSS = 500 
bytes & RTT = 200 msec
initial rate = 20 kbps

available bandwidth may 
be >> MSS/RTT

desirable to quickly ramp 
up to respectable rate

When connection begins, 
increase rate 
exponentially fast until 
first loss event
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TCP Slow Start (more)

When connection 
begins, increase rate 
exponentially until 
first loss event:

double CongWin every 
RTT
done by incrementing 
CongWin for every ACK 
received

Summary: initial rate 
is slow but ramps up 
exponentially fast

Host A

one segment

RT
T

Host B

time

two segments

four segments
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So Far
Slow-Start:  ramps up exponentially
Followed by AIMD: sawtooth pattern

Reality (TCP Reno)
Introduce new variable threshold
threshold initially very large
Slow-Start exponential growth stops when 
reaches threshold and then switches to AIMD
Two different types of loss events

• 3 dup ACKS: cut CongWin in half  and set 
threshold=CongWin (now in standard AIMD) 

• Timeout: set  threshold=CongWin/2,  CongWin=1
and switch to Slow-Start
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Reason for treating 3 dup ACKS differently than timeout 
is that 3 dup ACKs indicates  network capable of  
delivering some segments while timeout before 3 dup  
ACKs is “more alarming”.

Note that older protocol, TCP Tahoe,  treated both types 
of loss events the same and always goes to slowstart with 
Congwin=1 after a loss event.

TCP Reno’s skipping of the slow start for a 3-DUP-ACK 
loss event is known as fast-recovery.
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Summary: TCP Congestion Control

When CongWin is below Threshold, sender in 
slow-start phase, window grows exponentially.

When CongWin is above Threshold, sender is in 
congestion-avoidance phase, window grows linearly.

When a triple duplicate ACK occurs, Threshold
set to CongWin/2 and CongWin set to 
Threshold.  (only in TCP Reno)

When timeout occurs, Threshold set to 
CongWin/2 and CongWin is set to 1 MSS.
(TCP Tahoe does this for 3 Dup Acks as well)
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The Big Picture
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TCP sender congestion control
Event State TCP Sender Action Commentary

ACK receipt 
for previously 
unacked
data 

Slow Start 
(SS)

CongWin = CongWin + MSS, 
If (CongWin > Threshold)

set state to “Congestion             
Avoidance”

Resulting in a doubling of 
CongWin every RTT

ACK receipt 
for previously 
unacked
data

Congestion
Avoidance 
(CA) 

CongWin = CongWin+MSS * 
(MSS/CongWin)

Additive increase, resulting 
in increase of CongWin by 
1 MSS every RTT

Loss event 
detected by 
triple 
duplicate 
ACK

SS or CA Threshold = CongWin/2,      
CongWin = Threshold,
Set state to “Congestion 
Avoidance”

Fast recovery, 
implementing multiplicative 
decrease. CongWin will not 
drop below 1 MSS.

Timeout SS or CA Threshold = CongWin/2,      
CongWin = 1 MSS,
Set state to “Slow Start”

Enter slow start

Duplicate 
ACK

SS or CA Increment duplicate ACK count 
for segment being acked

CongWin and Threshold not 
changed
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TCP throughput

What’s the average throughput of TCP as a 
function of window size and RTT?

Ignore slow start
Let W be the window size when loss occurs.
When window is W, throughput is W/RTT
Just after loss, window drops to W/2, 
throughput to W/2RTT. 
Average throughout: .75 W/RTT
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TCP Futures

Example: 1500 byte segments, 100ms RTT, want 10 
Gbps throughput
Requires window size W = 83,333 in-flight 
segments
Throughput in terms of loss rate:

➜ L = 2·10-10  Wow
New versions of TCP for high-speed needed!

LRTT
MSS⋅22.1
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TCP Fairness
Fairness goal: if K TCP sessions share same 

bottleneck link of bandwidth R, each should have 
average rate of R/K

TCP connection 1

bottleneck
router

capacity R

TCP 
connection 2
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Why is TCP fair?
Two competing sessions:

Additive increase gives slope of 1, as throughout increases
multiplicative decrease decreases throughput proportionally 

R

R

equal bandwidth share

Connection 1 throughput

Co
nn

ec
ti

on
 2

 t
hr

ou
gh

p u
t

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2
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Fairness (more)
Fairness and UDP

Multimedia apps often do 
not use TCP

do not want rate throttled 
by congestion control

Instead use UDP:
pump audio/video at 
constant rate, tolerate 
packet loss

Current Research area: 
How to keep UDP from 
congesting the internet.

Fairness and parallel TCP 
connections
nothing prevents app from 
opening parallel cnctions
between 2 hosts.
Web browsers do this 
Example: link of rate R 
supporting 9 cnctions; 

new app asks for 1 TCP, gets 
rate R/10
new app asks for 11 TCPs, gets 
R/2 !
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TCP Latency Modeling
Notation, assumptions:

Assume one link between 
client and server of rate R
S: MSS (bits)
O: object size (bits)
no retransmissions (no loss, 
no corruption)

Window size:
First assume: fixed 
congestion window, W 
segments
Then dynamic window, 

modeling slow start

Q: How long does it take to 
completely receive an 
object from a Web server 
after sending a request? 
This is known as the latency of the 
(request for the) object.

Ignoring congestion, delay is 
influenced by:
TCP connection establishment
data transmission delay
slow start
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Fixed Congestion Window (W)
Two cases

1. WS/R > RTT + S/R: 
ACK for first segment in window returns before 

window’s worth of data sent
Latency = 2RTT + O/R

2. WS/R < RTT + S/R: 
ACK for first segment in window returns after  

window’s worth of data sent
Latency = 2RTT + O/R + (K-1)[S/R + RTT - WS/R]
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Fixed congestion window (1)

First case:
WS/R > RTT + S/R: ACK for 

first segment in window 
returns before window’s 
worth of data sent

latency = 2RTT + O/R
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Fixed congestion window (2)

Second case:
WS/R < RTT + S/R: wait 
for ACK after sending 
window’s worth of data 
sent

latency = 2RTT + O/R
+ (K-1)[S/R + RTT - WS/R]
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TCP Latency Modeling: Slow Start (1)

Now suppose window grows according to slow start
(with no threshold and no loss events)

Will show that the delay for one object is:

R
S

R
SRTTP

R
ORTTLatency P )12(2 −−⎥⎦

⎤
⎢⎣
⎡ +++=

where P is the number of times TCP idles at server:
}1,{min −= KQP

- where Q is the number of times the server idles
if the object were of infinite size.

- and  K is the number of windows that cover the object.
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TCP Latency Modeling: Slow Start (2)

RTT

initiate TCP
connection

request
object

first window
= S/R

second window
= 2S/R

third window
= 4S/R

fourth window
= 8S/R

complete
transmissionobject

delivered

time at
client

time at
server

Example:
• O/S  = 15 segments
• K = 4 windows
• Q = 2
• P = min{K-1,Q} = 2

Server idles P=2 times

Delay components:
• 2 RTT for connection 
estab and request
• O/R to transmit 
object
• time server idles due 
to slow start

Server idles: 
P = min{K-1,Q} times
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TCP Latency Modeling (3)
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TCP Latency Modeling (4)
Recall K = number of windows that cover object

How do we calculate K ?
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Calculation of Q, number  of idles for infinite-size object,
is similar.
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HTTP Modeling
Assume Web page consists of:

1 base HTML page (of size O bits)
M images (each of size O bits)

Non-persistent HTTP: 
M+1 TCP connections in series
Response time = (M+1)O/R + (M+1)2RTT + sum of idle times

Persistent HTTP:
2 RTT to request and receive base HTML file
1 RTT to request and receive M images
Response time = (M+1)O/R + 3RTT + sum of idle times

Non-persistent HTTP with X parallel connections
Suppose M/X integer.
1 TCP connection for base file
M/X sets of parallel connections for images.
Response time = (M+1)O/R +  (M/X + 1)2RTT + sum of idle times
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HTTP Response time (in seconds)
RTT = 100 msec, O = 5 Kbytes, M=10 and X=5
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non-persistent
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parallel non-
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For low bandwidth, connection & response time  dominated by 
transmission time.
Persistent connections only give minor improvement over parallel
connections.
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HTTP Response time (in seconds)

0

10

20

30

40

50

60

70

28
Kbps

100
Kbps

1 Mbps 10
Mbps

non-persistent

persistent

parallel non-
persistent

RTT =1 sec, O = 5 Kbytes, M=10 and X=5

For larger RTT, response time dominated by TCP establishment 
& slow start delays. Persistent connections now give important 
improvement: particularly in high delay•bandwidth networks.
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Chapter 3: Summary
principles behind transport 
layer services:

multiplexing, 
demultiplexing
reliable data transfer
flow control
congestion control

instantiation and 
implementation in the 
Internet

UDP
TCP

Next:
leaving the network 
“edge” (application, 
transport layers)
into the network 
“core”
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