
3: Transport Layer 1Comp 361, Spring 2005

Chapter 3: Transport Layer last revised 16/03/05

Chapter goals:
understand principles
behind transport layer
services:

multiplexing/demultiplex
ing
reliable data transfer
flow control
congestion control

instantiation and
implementation in the
Internet

Chapter Overview:
transport layer services
multiplexing/demultiplexing
connectionless transport: UDP
principles of reliable data
transfer
connection-oriented transport:
TCP

reliable transfer
flow control
connection management

principles of congestion control
TCP congestion control

3: Transport Layer 2Comp 361, Spring 2005

Chapter 3 outline

3.1 Transport-layer
services
3.2 Multiplexing and
demultiplexing
3.3 Connectionless
transport: UDP
3.4 Principles of
reliable data transfer

3.5 Connection-oriented
transport: TCP

segment structure
reliable data transfer
flow control
connection management

3.6 Principles of
congestion control
3.7 TCP congestion
control

3: Transport Layer 3Comp 361, Spring 2005

Transport services and protocols
provide logical communication
between app processes
running on different hosts
transport protocols run in
end systems

send side: breaks app
messages into segments,
passes to network layer
rcv side: reassembles
segments into messages,
passes to app layer

more than one transport
protocol available to apps

Internet: TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

logical end-end transport

3: Transport Layer 4Comp 361, Spring 2005

Transport vs. network layer
Household analogy:
12 kids sending letters

to 12 kids
processes = kids
app messages = letters
in envelopes
hosts = houses
transport protocol =
Ann and Bill
network-layer protocol
= postal service

network layer: logical
communication
between hosts
transport layer: logical
communication
between processes

relies on, enhances,
network layer services

3: Transport Layer 5Comp 361, Spring 2005

Transport-layer protocols

Internet transport services:
reliable, in-order unicast
delivery (TCP)

congestion
flow control
connection setup

unreliable (“best-effort”),
unordered unicast or
multicast delivery: UDP
services not available:

real-time
bandwidth guarantees
reliable multicast

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

logical end-end transport

3: Transport Layer 6Comp 361, Spring 2005

Chapter 3 outline

3.1 Transport-layer
services
3.2 Multiplexing and
demultiplexing
3.3 Connectionless
transport: UDP
3.4 Principles of
reliable data transfer

3.5 Connection-oriented
transport: TCP

segment structure
reliable data transfer
flow control
connection management

3.6 Principles of
congestion control
3.7 TCP congestion
control

3: Transport Layer 7Comp 361, Spring 2005

Multiplexing/demultiplexing
gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

Multiplexing at send host:

delivering received segments
to correct socket

Demultiplexing at rcv host:

= socket = process

application

transport

network

link

physical

P1 application

transport

network

link

physical

application

transport

network

link

physical

P2P3 P4P1

host 1 host 2 host 3

3: Transport Layer 8Comp 361, Spring 2005

Multiplexing/demultiplexing
segment - unit of data

exchanged between
transport layer entities

aka TPDU: transport
protocol data unit

Demultiplexing: delivering
received segments to
correct app layer processes

receiver

application
transport
network

M P2
application
transport
network

Ht
Hn segment

segment M
application
transport
network

P1
M

M M
P3 P4

segment
header

application-layer
data

3: Transport Layer 9Comp 361, Spring 2005

How demultiplexing works
host receives IP datagrams

each datagram has source
IP address, destination IP
address
each datagram carries 1
transport-layer segment
each segment has source,
destination port number
(recall: well-known port
numbers for specific
applications)

host uses IP addresses & port
numbers to direct segment to
appropriate socket

source port # dest port #

32 bits

application
data

(message)

other header fields

TCP/UDP segment format

3: Transport Layer 10Comp 361, Spring 2005

Connectionless demultiplexing
When host receives UDP
segment:

checks destination port
number in segment
directs UDP segment to
socket with that port
number

IP datagrams with
different source IP
addresses and/or source
port numbers directed
to same socket

Create sockets with port
numbers:

DatagramSocket mySocket1 = new
DatagramSocket(99111);

DatagramSocket mySocket2 = new
DatagramSocket(99222);

UDP socket identified by
two-tuple:

(dest IP address, dest port number)

3: Transport Layer 11Comp 361, Spring 2005

Connectionless demux (cont)
DatagramSocket serverSocket = new DatagramSocket(6428);

Client
IP:B

P3

client
IP: A

P1P1P3

server
IP: C

SP: 6428
DP: 9157

SP: 9157
DP: 6428

SP: 6428
DP: 5775

SP: 5775
DP: 6428

SP provides “return address”

3: Transport Layer 12Comp 361, Spring 2005

Connection-oriented demux

TCP socket identified
by 4-tuple:

source IP address
source port number
dest IP address
dest port number

recv host uses all four
values to direct
segment to appropriate
socket

Server host may support
many simultaneous TCP
sockets:

each socket identified by
its own 4-tuple

Web servers have
different sockets for
each connecting client

non-persistent HTTP will
have different socket for
each request

3: Transport Layer 13Comp 361, Spring 2005

Connection-oriented demux
(cont)

Client
IP:B

P3

client
IP: A

P1P1P3

server
IP: C

SP: 80
DP: 9157

SP: 9157
DP: 80

SP: 80
DP: 5775

SP: 5775
DP: 80

P4

3: Transport Layer 14Comp 361, Spring 2005

Connection-oriented demux:
Threaded Web Server

Client
IP:B

P1

client
IP: A

P1P2

server
IP: C

SP: 9157
DP: 80

SP: 9157
DP: 80

P4 P3

D-IP:C
S-IP: A
D-IP:C

S-IP: B

SP: 5775
DP: 80

D-IP:C
S-IP: B

3: Transport Layer 15Comp 361, Spring 2005

Chapter 3 outline

3.1 Transport-layer
services
3.2 Multiplexing and
demultiplexing
3.3 Connectionless
transport: UDP
3.4 Principles of
reliable data transfer

3.5 Connection-oriented
transport: TCP

segment structure
reliable data transfer
flow control
connection management

3.6 Principles of
congestion control
3.7 TCP congestion
control

3: Transport Layer 16Comp 361, Spring 2005

UDP: User Datagram Protocol [RFC 768]

“no frills,” “bare bones”
Internet transport
protocol
“best effort” service, UDP
segments may be:

lost
delivered out of order
to app

connectionless:
no handshaking between
UDP sender, receiver
each UDP segment
handled independently
of others

Why is there a UDP?
no connection
establishment (which can
add delay)
simple: no connection state
at sender, receiver
small segment header (8
Bytes)
no congestion control: UDP
can blast away as fast as
desired

3: Transport Layer 17Comp 361, Spring 2005

UDP: more
often used for streaming
multimedia apps

loss tolerant
rate sensitive

other UDP uses
(why?):

DNS: small delay
SNMP: stressful cond.

reliable transfer over UDP:
add reliability at
application layer

application-specific
error recover!

source port # dest port #

32 bits

Application
data

(message)

length checksum
Length, in

bytes of UDP
segment,
including

header

UDP segment format

3: Transport Layer 18Comp 361, Spring 2005

UDP checksum
Goal: detect “errors” (e.g.,flipped bits) in transmitted

segment

Receiver:
compute checksum of
received segment
check if computed checksum
equals checksum field value:

NO - error detected
YES - no error detected.
But maybe errors
nonetheless? More later ..

Receiver may choose to
discard segment or send a
warning to app in case error

Sender:
treat segment contents
as sequence of 16-bit
integers
checksum: addition (1’ s
complement sum) of
segment contents
sender puts checksum
value into UDP checksum
field

3: Transport Layer 19Comp 361, Spring 2005

Chapter 3 outline

3.1 Transport-layer
services
3.2 Multiplexing and
demultiplexing
3.3 Connectionless
transport: UDP
3.4 Principles of
reliable data transfer

3.5 Connection-oriented
transport: TCP

segment structure
reliable data transfer
flow control
connection management

3.6 Principles of
congestion control
3.7 TCP congestion
control

3: Transport Layer 20Comp 361, Spring 2005

Principles of Reliable data transfer
important in app., transport, link layers
top-10 list of important networking topics!

characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

3: Transport Layer 21Comp 361, Spring 2005

Reliable data transfer: getting started

send
side

receive
side

rdt_send(): called from above,
(e.g., by app.). Passed data to

deliver to receiver upper layer

udt_send(): called by rdt,
to transfer packet over

unreliable channel to receiver

rdt_rcv(): called when packet
arrives on rcv-side of channel

deliver_data(): called by
rdt to deliver data to upper

3: Transport Layer 22Comp 361, Spring 2005

Reliable data transfer: getting started
We’ll:

incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)
consider only unidirectional data transfer

but control info will flow on both directions!
use finite state machines (FSM) to specify
sender, receiver

state
1

state
2

event causing state transition
actions taken on state transition

state: when in this
“state” next state

uniquely determined
by next event

event
actions

3: Transport Layer 23Comp 361, Spring 2005

Incremental Improvements

rdt1.0: assumes every packet sent arrives,
and no errors introduced in transmission

rdt2.0: assumes every packet sent arrives, but
some errors (bit flips) can occur within a
packet. Introduces concept of ACK and NAK

rdt2.1: deals with corrupted ACKS/NAKS

rdt2.2: like rdt2.1 but does not need NAKs

Rdt3.0: Allows packets to be lost

Rdt1.0: reliable transfer over a reliable channel

underlying channel perfectly reliable
no bit errors
no loss of packets

separate FSMs for sender, receiver:
sender sends data into underlying channel
receiver read data from underlying channel

Wait for
call from
above packet = make_pkt(data)

udt_send(packet)

rdt_send(data)
extract (packet,data)
deliver_data(data)

Wait for
call from

below

rdt_rcv(packet)

sender receiver

3: Transport Layer 24Comp 361, Spring 2005

3: Transport Layer 25Comp 361, Spring 2005

Rdt2.0: channel with bit errors

underlying channel may flip bits in packet
recall: UDP checksum to detect bit errors

the question: how to recover from errors:
acknowledgements (ACKs): receiver explicitly tells sender
that pkt received OK
negative acknowledgements (NAKs): receiver explicitly
tells sender that pkt had errors
sender retransmits pkt on receipt of NAK
human scenarios using ACKs, NAKs?

new mechanisms in rdt2.0 (beyond rdt1.0):
error detection
receiver feedback: control msgs (ACK,NAK) rcvr->sender

3: Transport Layer 26Comp 361, Spring 2005

rdt2.0: FSM specification

Wait for
call from
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

Wait for
ACK or

NAK

rdt_send(data)

receiver

Wait for
call from

below

Λ

sender

3: Transport Layer 27Comp 361, Spring 2005

rdt2.0: operation with no errors

Wait for
call from
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

Wait for
ACK or

NAK

Wait for
call from

below

rdt_send(data)

Λ

3: Transport Layer 28Comp 361, Spring 2005

rdt2.0: error scenario

Wait for
call from
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

Wait for
ACK or

NAK

Wait for
call from

below

rdt_send(data)

Λ

3: Transport Layer 29Comp 361, Spring 2005

rdt2.0 has a fatal flaw!
What happens if ACK/NAK

corrupted?
sender doesn’t know what
happened at receiver!
can’t just retransmit: possible
duplicate.
But receiver waiting!

What to do?
sender ACKs/NAKs receiver’s
ACK/NAK? What if sender
ACK/NAK corrupted?
retransmit, but this might
cause retransmission of
correctly received pkt!
Receiver won’t know about
duplication!

Handling duplicates:
sender adds sequence number
(0/1) to each pkt
sender retransmits current
pkt if ACK/NAK garbled
receiver discards (doesn’t
deliver up) duplicate pkt
Duplicate packet is one with
same sequence # as previous
packet

Sender sends one packet,
then waits for receiver
response

stop and wait

3: Transport Layer 30Comp 361, Spring 2005

Sender: whenever sender receives control message it
sends a packet to receiver.

A valid ACK: Sends next packet (if exists) with new sequence #
A NAK or corrupt response: resends old packet

Receiver: sends ACK/NAK to sender
If received packet is corrupt: send NAK
If received packet is valid and has different sequence # as prev
packet: send ACK and deliver new data up.
If received packet is valid and has same sequence # as prev
packet, i.e., is a retransmission of duplicate: send ACK

Note: ACK/NAK do not contain sequence #.

3: Transport Layer 31Comp 361, Spring 2005

rdt2.1: sender, handles garbled ACK/NAKs

Wait for
call 0 from

above

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_send(data)

Wait for
ACK or
NAK 0 udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isNAK(rcvpkt))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isNAK(rcvpkt))

Wait for
call 1 from

above

Wait for
ACK or
NAK 1

Λ
Λ

3: Transport Layer 32Comp 361, Spring 2005

rdt2.1: receiver, handles garbled ACK/NAKs
rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

&& has_seq0(rcvpkt)

Wait for
0 from
below

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has_seq0(rcvpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq1(rcvpkt)

Wait for
1 from
below

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has_seq1(rcvpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

3: Transport Layer 33Comp 361, Spring 2005

rdt2.1: discussion

Sender:
seq # added to pkt
two seq. #’s (0,1) will
suffice. Why?
must check if received
ACK/NAK corrupted
twice as many states

state must “remember”
whether “current” pkt
has 0 or 1 seq. #

Receiver:
must check if received
packet is duplicate

state indicates whether
0 or 1 is expected pkt
seq #

note: receiver can not
know if its last
ACK/NAK received OK
at sender

3: Transport Layer 34Comp 361, Spring 2005

rdt2.2: a NAK-free protocol

same functionality as rdt2.1, using ACKs only
instead of NAK, receiver sends ACK for last pkt
received OK

receiver must explicitly include seq # of pkt being ACKed
(in 2.1 seq #s included in data packets but not in ACKs/NAKs)

duplicate ACK at sender results in same action as
NAK: retransmit current pkt

3: Transport Layer 35Comp 361, Spring 2005

rdt2.2: sender, receiver fragments

Wait for
call 0 from

above

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||

isACK(rcvpkt,1))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

Wait for
ACK

0
sender FSM

fragment

Wait for
0 from
below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK,1, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||

has_seq1(rcvpkt))

udt_send(sndpkt)
receiver FSM

fragment

Λ

3: Transport Layer 36Comp 361, Spring 2005

rdt3.0: channels with errors and loss

New assumption:
underlying channel can
also lose packets (data
or ACKs)

checksum, seq. #, ACKs,
retransmissions will be
of help, but not enough

Q: how to deal with loss?
sender waits until
certain data or ACK
lost, then retransmits
yuck: drawbacks?

Approach: sender waits
“reasonable” amount of
time for ACK
retransmits if no ACK
received in this time
(Retransmissions only
triggered by timeouts)
if pkt (or ACK) just delayed
(not lost):

retransmission will be
duplicate, but use of seq.
#’s already handles this
receiver must specify seq
of pkt being ACKed

requires countdown timer

3: Transport Layer 37Comp 361, Spring 2005

rdt3.0 sender
sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

Wait
for

ACK0

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isACK(rcvpkt,1))

Wait for
call 1 from

above

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isACK(rcvpkt,0))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,1)

stop_timer
stop_timer

udt_send(sndpkt)
start_timer

timeout

udt_send(sndpkt)
start_timer

timeout

rdt_rcv(rcvpkt)

Wait for
call 0from

above

Wait
for

ACK1

Λ
rdt_rcv(rcvpkt)

Λ
Λ

Λ

3: Transport Layer 38Comp 361, Spring 2005

rdt3.0 in action

3: Transport Layer 39Comp 361, Spring 2005

rdt3.0 in action

3: Transport Layer 40Comp 361, Spring 2005

Performance of rdt3.0

rdt3.0 works, but performance stinks
example: 1 Gbps link, 15 ms e-e prop. delay, 1KB packet:

L (packet length in bits)
R (transmission rate, bps)

8kb/pkt
10**9 b/sec

Ttransmit = = = 8 microsec

U
sender =

.008
30.008

= 0.00027 L / R
RTT + L / R

=

U sender: utilization – fraction of time sender busy sending
1KB pkt every 30 msec -> 33kB/sec thruput over 1 Gbps link
network protocol limits use of physical resources!

rdt3.0: stop-and-wait operation

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send
ACK

ACK arrives, send next
packet, t = RTT + L / R

U
sender =

.008
30.008

= 0.00027 L / R
RTT + L / R

=

3: Transport Layer 41Comp 361, Spring 2005

3: Transport Layer 42Comp 361, Spring 2005

Pipelined protocols
Pipelining: sender allows multiple, “in-flight”, yet-to-be-acknowledged pkts

range of sequence numbers must be increased
buffering at sender and/or receiver

3: Transport Layer 43Comp 361, Spring 2005

Pipelined protocols

Advantage: much better bandwidth
utilization than stop-and-wait

Disadvantage: More complicated to deal
with reliability issues, e.g., corrupted, lost,
out of order data.

Two generic approaches to solving this
• go-Back-N protocols
• selective repeat protocols

Note: TCP is not exactly either

Pipelining: increased utilization

first packet bit transmitted, t = 0

sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

U
sender =

.024
30.008

= 0.0008 3 * L / R
RTT + L / R

=

Increase utilization
by a factor of 3!

3: Transport Layer 44Comp 361, Spring 2005

3: Transport Layer 45Comp 361, Spring 2005

Go-Back-N
Sender:

k-bit seq # in pkt header
“window” of up to N, consecutive unack’ed pkts allowed

ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK”
may receive duplicate ACKs (see receiver)

Only one timer: for oldest unacknowledged pkt
timeout(n): retransmit pkt n and all higher seq # pkts in window
Called a sliding-window protocol

3: Transport Layer 46Comp 361, Spring 2005

GBN: Sender

rdt_Send() called: checks to see if window is full.
No: send out packet
Yes: return data to application level

Receipt of ACK(n): cumulative acknowledgement
that all packets up to and including n have been
received. Updates window accordingly and
restarts timer

Timeout: resends ALL packets that have been sent
but not yet acknowledged.

This is only event that triggers resend.

3: Transport Layer 47Comp 361, Spring 2005

GBN: sender extended FSM
rdt_send(data)

Wait start_timer
udt_send(sndpkt[base])
udt_send(sndpkt[base+1])
…
udt_send(sndpkt[nextseqnum-1])

timeout

if (nextseqnum < base+N) {
sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)
udt_send(sndpkt[nextseqnum])
if (base == nextseqnum)

start_timer
nextseqnum++
}

else
refuse_data(data)

base = getacknum(rcvpkt)+1
If (base == nextseqnum)

stop_timer
else

start_timer

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

base=1
nextseqnum=1

rdt_rcv(rcvpkt)
&& corrupt(rcvpkt)

Λ

3: Transport Layer 48Comp 361, Spring 2005

GBN: receiver extended FSM

Wait

udt_send(sndpkt)
default

rdt_rcv(rcvpkt)
&& notcurrupt(rcvpkt)
&& hasseqnum(rcvpkt,expectedseqnum)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedseqnum++

expectedseqnum=1
sndpkt =

make_pkt(0,ACK,chksum)

Λ

If expected packet received:
Send ACK and deliver packet upstairs

If out-of-order packet received:
discard (don’t buffer) -> no receiver buffering!
Re-ACK pkt with highest in-order seq #
may generate duplicate ACKs

3: Transport Layer 49Comp 361, Spring 2005

More on receiver

The receiver always sends ACK for last
correctly received packet with highest in-
order seq #
Receiver only sends ACKS (no NAKs)
Can generate duplicate ACKs
need only remember expectedseqnum

3: Transport Layer 50Comp 361, Spring 2005

GBN in
action

GBN is easy to code but might have performance
problems.

In particular, if many packets are in pipeline at
one time (bandwidth-delay product large) then
one error can force retransmission of huge
amounts of data!

Selective Repeat protocol allows receiver to
buffer data and only forces retransmission of
required packets.

3: Transport Layer 51Comp 361, Spring 2005

3: Transport Layer 52Comp 361, Spring 2005

Selective Repeat

receiver individually acknowledges all correctly
received pkts

buffers pkts, as needed, for eventual in-order delivery
to upper layer

sender only resends pkts for which ACK not
received

sender timer for each unACKed pkt
Compare to GBN which only had timer for base packet

sender window
N consecutive seq #’s
again limits seq #s of sent, unACKed pkts
Important: Window size < seq # range

3: Transport Layer 53Comp 361, Spring 2005

Selective repeat: sender, receiver windows

3: Transport Layer 54Comp 361, Spring 2005

Selective repeat

pkt n in [rcvbase, rcvbase+N-1]

send ACK(n)
out-of-order: buffer
in-order: deliver (also
deliver buffered, in-order
pkts), advance window to
next not-yet-received pkt

pkt n in [rcvbase-N,rcvbase-1]

ACK(n) (note this is a reACK)

otherwise:
ignore

receiver
data from above :

if next available seq # in
window, send pkt

timeout(n):
resend pkt n, restart timer

ACK(n) in [sendbase,sendbase+N]:

mark pkt n as received
if n smallest unACKed pkt,
advance window base to
next unACKed seq #

sender

3: Transport Layer 55Comp 361, Spring 2005

Selective repeat in action

3: Transport Layer 56Comp 361, Spring 2005

Selective repeat:
dilemma

Example:
seq #’s: 0, 1, 2, 3
window size=3

receiver sees no
difference in two
scenarios!
incorrectly passes
duplicate data as new
in (a)

Q: what is relationship
between seq # size
and window size?

3: Transport Layer 57Comp 361, Spring 2005

Chapter 3 outline

3.1 Transport-layer
services
3.2 Multiplexing and
demultiplexing
3.3 Connectionless
transport: UDP
3.4 Principles of
reliable data transfer

3.5 Connection-oriented
transport: TCP

segment structure
reliable data transfer
flow control
connection management

3.6 Principles of
congestion control
3.7 TCP congestion
control

3: Transport Layer 58Comp 361, Spring 2005

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

full duplex data:
bi-directional data flow
in same connection
MSS: maximum segment
size

connection-oriented:
handshaking (exchange
of control msgs) init’s
sender, receiver state
before data exchange

flow controlled:
sender will not
overwhelm receiver

point-to-point:
one sender, one receiver

reliable, in-order byte
steam:

no “message boundaries”
pipelined:

TCP congestion and flow
control set window size

send & receive buffers

socket
door

TCP
send buffer

TCP
receive buffer

socket
door

segment

application
writes data

application
reads data

3: Transport Layer 59Comp 361, Spring 2005

More TCP Details
Maximum Segment Size (MSS)

Depends upon implementation (can often be set)
The Max amount of application-layer data in
segment

Application Data + TCP Header = TCP Segment

Three way Handshake
Client sends special TCP segment to server requesting
connection. No payload (Application data) in this segment.
Server responds with second special TCP segment

(again no payload)
Client responds with third special segment

This can contain payload

3: Transport Layer 60Comp 361, Spring 2005

Even More TCP Details

A TCP connection between client and
server creates, in both client and server

(i) buffers
(ii) variables and

(iii) a socket connection to process.

TCP only exists in the two end machines.
No buffers and variables allocated to the connection in

any of the network elements between the host and
server.

3: Transport Layer 61Comp 361, Spring 2005

TCP segment structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number
acknowledgement number

Receive window
Urg data pnterchecksum

FSRPAUhead
len

not
used

Options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

Internet
checksum

(as in UDP)

counting
by bytes
of data
(not segments!)

3: Transport Layer 62Comp 361, Spring 2005

TCP seq. #’s and ACKs
Seq. #’s:

byte stream
“number” of first
byte in segment’s
data

ACKs:
seq # of next byte
expected from
other side
cumulative ACK

Q: how receiver handles
out-of-order segments

A: TCP spec doesn’t
say, - up to
implementer

Host BHost A

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

User
types

‘C’
host ACKs
receipt of
‘C’, echoes

back ‘C’

host ACKs
receipt

of echoed
‘C’

time
simple telnet scenario

3: Transport Layer 63Comp 361, Spring 2005

TCP Round Trip Time and Timeout

Q: how to estimate RTT?
SampleRTT: measured time from
segment transmission until ACK
receipt

ignore retransmissions
SampleRTT will vary, want
estimated RTT “smoother”

average several recent
measurements, not just
current SampleRTT

Q: how to set TCP
timeout value?
longer than RTT

but RTT varies
too short: premature
timeout

unnecessary
retransmissions

too long: slow reaction
to segment loss

3: Transport Layer 64Comp 361, Spring 2005

TCP Round Trip Time and Timeout

EstimatedRTT = (1- α)*EstimatedRTT + α*SampleRTT

Exponential weighted moving average
influence of past sample decreases exponentially fast
typical value: α = 0.125

3: Transport Layer 65Comp 361, Spring 2005

Example RTT estimation:
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

RT
T

(m
ill

ise
co

nd
s)

SampleRTT Estimated RTT

3: Transport Layer 66Comp 361, Spring 2005

TCP Round Trip Time and Timeout

Setting the timeout
EstimtedRTT plus “safety margin”

large variation in EstimatedRTT -> larger safety margin
first estimate of how much SampleRTT deviates from
EstimatedRTT:

DevRTT = (1-β)*DevRTT +
β*|SampleRTT-EstimatedRTT|

(typically, β = 0.25)

Then set timeout interval:

TimeoutInterval = EstimatedRTT + 4*DevRTT

3: Transport Layer 67Comp 361, Spring 2005

Chapter 3 outline

3.1 Transport-layer
services
3.2 Multiplexing and
demultiplexing
3.3 Connectionless
transport: UDP
3.4 Principles of
reliable data transfer

3.5 Connection-oriented
transport: TCP

segment structure
reliable data transfer
flow control
connection management

3.6 Principles of
congestion control
3.7 TCP congestion
control

3: Transport Layer 68Comp 361, Spring 2005

TCP reliable data transfer

TCP creates rdt
service on top of IP’s
unreliable service
Pipelined segments
Cumulative acks
TCP uses single
retransmission timer

Retransmissions are
triggered by:

timeout events
duplicate acks

Initially consider
simplified TCP sender:

ignore duplicate acks
ignore flow control,
congestion control

3: Transport Layer 69Comp 361, Spring 2005

TCP sender events:
data rcvd from app:

Create segment with
seq #
seq # is byte-stream
number of first data
byte in segment
start timer if not
already running (think
of timer as for oldest
unacked segment)
expiration interval:
TimeOutInterval

timeout:
retransmit segment
that caused timeout
restart timer

Ack rcvd:
If acknowledges
previously unacked
segments

update what is known to
be acked
start timer if there are
outstanding segments

TCP
sender
(simplified)

NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum

loop (forever) {
switch(event)

event: data received from application above
create TCP segment with sequence number NextSeqNum
if (timer currently not running)

start timer
pass segment to IP
NextSeqNum = NextSeqNum + length(data)

event: timer timeout
retransmit not-yet-acknowledged segment with

smallest sequence number
start timer

event: ACK received, with ACK field value of y
if (y > SendBase) {

SendBase = y
if (there are currently not-yet-acknowledged segments)

start timer
}

} /* end of loop forever */

Comment:
• SendBase-1: last
cumulatively
ack’ed byte
Example:
• SendBase-1 = 71;
y= 73, so the rcvr
wants 73+ ;
y > SendBase, so
that new data is
acked

3: Transport Layer 70Comp 361, Spring 2005

3: Transport Layer 71Comp 361, Spring 2005

TCP: retransmission scenarios
Host A

Seq=100, 20 bytes data

ACK=100

time
premature timeout

Host B

Seq=92, 8 bytes data

ACK=120

Seq=92, 8 bytes data

Se
q=

92
 t

im
eo

ut

ACK=120

Host A

Seq=92, 8 bytes data

ACK=100

loss

ti
m

eo
ut

lost ACK scenario

Host B

X

Seq=92, 8 bytes data

ACK=100

time

SendBase
= 120

SendBase
= 120

Sendbase
= 100

Se
q=

92
 t

im
eo

ut
SendBase

= 100

3: Transport Layer 72Comp 361, Spring 2005

TCP retransmission scenarios (more)
Host A

Seq=92, 8 bytes data

ACK=100

loss

ti
m

eo
ut

Cumulative ACK scenario

Host B

X

Seq=100, 20 bytes data

ACK=120

time

SendBase
= 120

3: Transport Layer 73Comp 361, Spring 2005

TCP ACK generation [RFC 1122, RFC 2581]

Event at Receiver

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Arrival of in-order segment with
expected seq #. One other
segment has ACK pending

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Arrival of segment that
partially or completely fills gap

TCP Receiver action

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Immediately send single cumulative
ACK, ACKing both in-order segments

Immediately send duplicate ACK,
indicating seq. # of next expected byte

Immediate send ACK, provided that
segment starts at lower end of gap

3: Transport Layer 74Comp 361, Spring 2005

More on Sender Policies

Doubling the Timeout Interval
Used by most TCP implementations
If timeout occurs then, after retransmisison,
Timeout Interval is doubled
Intervals grow exponentially with each
consecutive timeout
When Timer restarted because of (i) new data
from above or (ii) ACK received, then Timeout
Interval is reset as described previously using
Estimated RTT and DevRTT.
Limited form of Congestion Control

3: Transport Layer 75Comp 361, Spring 2005

Fast Retransmit

Time-out period often
relatively long:

long delay before
resending lost packet

Detect lost segments
via duplicate ACKs.

Sender often sends
many segments back-to-
back
If segment is lost,
there will likely be many
duplicate ACKs.

If sender receives 3
ACKs for the same
data, it supposes that
segment after ACKed
data was lost:

fast retransmit: resend
segment before timer
expires

3: Transport Layer 76Comp 361, Spring 2005

Fast retransmit algorithm:

event: ACK received, with ACK field value of y
if (y > SendBase) {

SendBase = y
if (there are currently not-yet-acknowledged segments)

start timer
}

else {
increment count of dup ACKs received for y
if (count of dup ACKs received for y = 3) {

resend segment with sequence number y
}

a duplicate ACK for
already ACKed segment

fast retransmit

3: Transport Layer 77Comp 361, Spring 2005

TCP: GBN or Selective Repeat?

Basic TCP looks a lot like GBN

Many TCP implementations will buffer
received out-of-order segments and then
ACK them all after filling in the range

This looks a lot like Selective Repeat

TCP is a hybrid

3: Transport Layer 78Comp 361, Spring 2005

Chapter 3 outline

3.1 Transport-layer
services
3.2 Multiplexing and
demultiplexing
3.3 Connectionless
transport: UDP
3.4 Principles of
reliable data transfer

3.5 Connection-oriented
transport: TCP

segment structure
reliable data transfer
flow control
connection management

3.6 Principles of
congestion control
3.7 TCP congestion
control

3: Transport Layer 79Comp 361, Spring 2005

TCP Flow Control

Sender should not overwhelm receiver’s
capacity to receive data
If necessary, sender should slow down
transmission rate to accommodate
receiver’s rate.
Different from Congestion Control whose
purpose was to handle congestion in
network. (But both congestion control and flow control
work by slowing down data transmission)

3: Transport Layer 80Comp 361, Spring 2005

TCP Flow Control
sender won’t overflow
receiver’s buffer by

transmitting too much,
too fast

flow control
receive side of TCP
connection has a
receive buffer:

speed-matching
service: matching the
send rate to the
receiving app’s drain
rate

app process may be
slow at reading from
buffer

3: Transport Layer 81Comp 361, Spring 2005

TCP segment structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number
acknowledgement number

Receive window
Urg data pnterchecksum

FSRPAUhead
len

not
used

Options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

Internet
checksum

(as in UDP)

counting
by bytes
of data
(not segments!)

3: Transport Layer 82Comp 361, Spring 2005

TCP Flow control: how it works

(Suppose TCP receiver
discards out-of-order
segments)
spare room in buffer

= RcvWindow
= RcvBuffer-[LastByteRcvd -

LastByteRead]

Rcvr advertises spare
room by including value
of RcvWindow in
segments
Sender limits unACKed
data to RcvWindow

guarantees receive
buffer doesn’t overflow

3: Transport Layer 83Comp 361, Spring 2005

Technical Issue

Suppose RcvWindow=0 and that receiver has
already ACK’d ALL packets in buffer
Sender does not transmit new packets until it
hears RcvWindow>0.
Receiver never sends RcvWindow>0 since it has no
new ACKS to send to Sender
DEADLOCK

Solution: TCP specs require sender to continue
sending packets with one data byte while
RcvWindow=0, just to keep receiving ACKS from
B. At some point the receiver’s buffer will empty
and RcvWindow>0 will be transmitted back to
sender.

3: Transport Layer 84Comp 361, Spring 2005

Note on UDP

UDP has no flow control!

UDP appends packets to receiving socket’s
buffer. If buffer is full then packets are
lost!

3: Transport Layer 85Comp 361, Spring 2005

Chapter 3 outline

3.1 Transport-layer
services
3.2 Multiplexing and
demultiplexing
3.3 Connectionless
transport: UDP
3.4 Principles of
reliable data transfer

3.5 Connection-oriented
transport: TCP

segment structure
reliable data transfer
flow control
connection management

3.6 Principles of
congestion control
3.7 TCP congestion
control

3: Transport Layer 86Comp 361, Spring 2005

TCP Connection Management

Three way handshake:
Step 1: client end system sends

TCP SYN control segment to
server

specifies client_isn, the
initial seq #
No application data

Step 2: server end system
receives SYN, replies with
SYNACK control segment

ACKs received SYN
allocates buffers
Replies with client_isn+1 in
ACK field to signal
synchronization
Specifies server_isn
No application data

Recall: TCP sender, receiver
establish “connection”
before exchanging data
segments
initialize TCP variables:

seq. #s
buffers, flow control
info (e.g. RcvWindow)

client: connection initiator
Socket clientSocket = new
Socket("hostname","port
number");

server: contacted by client
Socket connectionSocket =
welcomeSocket.accept();

3: Transport Layer 87Comp 361, Spring 2005

TCP Connection Management (cont.)

Step 3: client end system
receives SYNACK, replies
with SYN=0 and
server_isn+1

Allocate buffers
Allocates buffers
Can include application
data

SYN=0 signals that
connection established
server_isn+1 signals that #
is synchronized

client
Connection request (SYN=1 seq=client_isn)

server

Connection granted (SYN=1, server_isn,

ACK (SYN=0, seq=client_isn+1)

ack=client_isn+1)

ack=server_isn+1

3: Transport Layer 88Comp 361, Spring 2005

TCP Connection Management (cont.)

Closing a connection:

client closes socket:
clientSocket.close();

Step 1: client end system
sends TCP FIN control
segment to server

Step 2: server receives
FIN, replies with ACK.
Closes connection, sends
FIN.

client

FIN

server

ACK

ACK

FIN

close

close

closed

ti
m

ed
 w

ai
t

3: Transport Layer 89Comp 361, Spring 2005

TCP Connection Management (cont.)

Step 3: client receives FIN,
replies with ACK.

Enters “timed wait” –
during which will respond
with ACK to received
FINs (that might arrive
if ACK gets lost).

Closes down after timed-
wait

Step 4: server, receives ACK.
Connection closed.

Note: with small modification,
can handle simultaneous FINs.

client

FIN

server

ACK

ACK

FIN

closing

closing

closed

ti
m

ed
 w

ai
t

closed

3: Transport Layer 90Comp 361, Spring 2005

TCP Connection Management (cont)

ExampleTCP server
lifecycle

Example TCP client
lifecycle

3: Transport Layer 91Comp 361, Spring 2005

A few special cases

Have not discussed what happens if both
client and server decide to close down
connection at same time.

It is possible that first ACK (from server)
and second FIN (also from server) are sent
in same segment

3: Transport Layer 92Comp 361, Spring 2005

Chapter 3 outline

3.1 Transport-layer
services
3.2 Multiplexing and
demultiplexing
3.3 Connectionless
transport: UDP
3.4 Principles of
reliable data transfer

3.5 Connection-oriented
transport: TCP

segment structure
reliable data transfer
flow control
connection management

3.6 Principles of
congestion control
3.7 TCP congestion
control

3: Transport Layer 93Comp 361, Spring 2005

Principles of Congestion Control

Congestion:
informally: “too many sources sending too much
data too fast for network to handle”
different from flow control!
manifestations:

lost packets (buffer overflow at routers)
long delays (queuing in router buffers)

a top-10 problem!

3: Transport Layer 94Comp 361, Spring 2005

Causes/costs of congestion: scenario 1
two senders, two
receivers
one router,
infinite buffers
no retransmission
Send rate 0-C/2

large delays
when congested
maximum
achievable
throughput

3: Transport Layer 95Comp 361, Spring 2005

Causes/costs of congestion: scenario 2

one router, finite buffers
sender retransmission of lost packet

3: Transport Layer 96Comp 361, Spring 2005

(a) (b) & (c): always (goodput)
(a) Magic transmission; only send when there’s space in buffer
(b) “perfect” retransmission only when loss:

(c) retransmission of delayed (not lost) packet makes larger (than
perfect case) for same

λin λout=

λin λout>
λ

inλout

“costs” of congestion:
(b) and (c) more work (retrans) for given “goodput”
(c) unneeded retransmissions: link carries multiple copies of pkt

(c)(a) (b)

3: Transport Layer 97Comp 361, Spring 2005

Causes/costs of congestion: scenario 3
four senders
multihop paths
timeout/retransmit

λ
in

Q: what happens as
and increase ?λ

in

3: Transport Layer 98Comp 361, Spring 2005

Causes/costs of congestion: scenario 3

Another “cost” of congestion:
when packet dropped, any “upstream transmission
capacity used for that packet was wasted!

3: Transport Layer 99Comp 361, Spring 2005

Approaches towards congestion control

Two broad approaches towards congestion control:

End-end congestion
control:
no explicit feedback from
network
congestion inferred from
end-system observed loss,
delay
approach taken by TCP

Network-assisted
congestion control:
routers provide feedback
to end systems

single bit indicating
congestion (SNA,
DECbit, TCP/IP ECN,
ATM)
explicit rate sender
should send at

3: Transport Layer 100Comp 361, Spring 2005

Case study: ATM ABR congestion control

RM (resource management)
cells:
sent by sender, interspersed
with data cells
bits in RM cell set by switches
(“network-assisted”)

NI bit: no increase in rate
(mild congestion)
CI bit: severe congestion
indicator

RM cells returned to sender by
receiver, with bits intact

small exception – see next page

ABR: available bit rate:
“elastic service”
if sender’s path
“underloaded”:

sender should use
available bandwidth

if sender’s path congested:
sender throttled to
minimum guaranteed rate

3: Transport Layer 101Comp 361, Spring 2005

Case study: ATM ABR congestion control

two-byte ER (explicit rate) field in RM cell
congested switch may lower ER value in cell
sender’s send rate thus minimum supportable rate on path

EFCI bit in data cells: set to 1 by congested switch
Signals congestion
if data cell preceding RM cell has EFCI=1, destination sets
CI bit=1 before returning RM cell to source.

3: Transport Layer 102Comp 361, Spring 2005

Chapter 3 outline

3.1 Transport-layer
services
3.2 Multiplexing and
demultiplexing
3.3 Connectionless
transport: UDP
3.4 Principles of
reliable data transfer

3.5 Connection-oriented
transport: TCP

segment structure
reliable data transfer
flow control
connection management

3.6 Principles of
congestion control
3.7 TCP congestion
control

3: Transport Layer 103Comp 361, Spring 2005

TCP Congestion Control
end-end control (no network assistance)
transmission rate limited by congestion window size, Congwin,
over segments. Congwin dynamically modified to reflect perceived congestion.

Congwin

w segments, each with MSS bytes sent in one RTT:

throughput = w * MSS
RTT Bytes/sec

3: Transport Layer 104Comp 361, Spring 2005

To simplify presentation we assume that RcvBuffer
is large enough that it will not overflow

Tools are “similar” to flow control.
sender limits transmission using:

LastByteSent-LastByteAcked ≤ CongWin

How does sender perceive congestion?
loss event = timeout or 3 duplicate acks
TCP sender reduces rate (CongWin) after loss event

three mechanisms:
AIMD = Additive Increase Multiplicative Decrease
slow start = CongWin set to 1 and then grows exponentially
conservative after timeout events

3: Transport Layer 105Comp 361, Spring 2005

TCP AIMD
multiplicative decrease: additive increase: increase

CongWin by 1 MSS every
RTT in the absence of loss
events: probing also known as
congestion avoidance

cut CongWin in half
after loss event

8 Kbytes

16 Kbytes

24 Kbytes

time

congestion
window

Long-lived TCP connection

3: Transport Layer 106Comp 361, Spring 2005

TCP Slow Start

When connection begins,
CongWin = 1 MSS

Example: MSS = 500
bytes & RTT = 200 msec
initial rate = 20 kbps

available bandwidth may
be >> MSS/RTT

desirable to quickly ramp
up to respectable rate

When connection begins,
increase rate
exponentially fast until
first loss event

3: Transport Layer 107Comp 361, Spring 2005

TCP Slow Start (more)

When connection
begins, increase rate
exponentially until
first loss event:

double CongWin every
RTT
done by incrementing
CongWin for every ACK
received

Summary: initial rate
is slow but ramps up
exponentially fast

Host A

one segment

RT
T

Host B

time

two segments

four segments

3: Transport Layer 108Comp 361, Spring 2005

So Far
Slow-Start: ramps up exponentially
Followed by AIMD: sawtooth pattern

Reality (TCP Reno)
Introduce new variable threshold
threshold initially very large
Slow-Start exponential growth stops when
reaches threshold and then switches to AIMD
Two different types of loss events

• 3 dup ACKS: cut CongWin in half and set
threshold=CongWin (now in standard AIMD)

• Timeout: set threshold=CongWin/2, CongWin=1
and switch to Slow-Start

3: Transport Layer 109Comp 361, Spring 2005

Reason for treating 3 dup ACKS differently than timeout
is that 3 dup ACKs indicates network capable of
delivering some segments while timeout before 3 dup
ACKs is “more alarming”.

Note that older protocol, TCP Tahoe, treated both types
of loss events the same and always goes to slowstart with
Congwin=1 after a loss event.

TCP Reno’s skipping of the slow start for a 3-DUP-ACK
loss event is known as fast-recovery.

3: Transport Layer 110Comp 361, Spring 2005

Summary: TCP Congestion Control

When CongWin is below Threshold, sender in
slow-start phase, window grows exponentially.

When CongWin is above Threshold, sender is in
congestion-avoidance phase, window grows linearly.

When a triple duplicate ACK occurs, Threshold
set to CongWin/2 and CongWin set to
Threshold. (only in TCP Reno)

When timeout occurs, Threshold set to
CongWin/2 and CongWin is set to 1 MSS.
(TCP Tahoe does this for 3 Dup Acks as well)

3: Transport Layer 111Comp 361, Spring 2005

The Big Picture

3: Transport Layer 112Comp 361, Spring 2005

TCP sender congestion control
Event State TCP Sender Action Commentary

ACK receipt
for previously
unacked
data

Slow Start
(SS)

CongWin = CongWin + MSS,
If (CongWin > Threshold)

set state to “Congestion
Avoidance”

Resulting in a doubling of
CongWin every RTT

ACK receipt
for previously
unacked
data

Congestion
Avoidance
(CA)

CongWin = CongWin+MSS *
(MSS/CongWin)

Additive increase, resulting
in increase of CongWin by
1 MSS every RTT

Loss event
detected by
triple
duplicate
ACK

SS or CA Threshold = CongWin/2,
CongWin = Threshold,
Set state to “Congestion
Avoidance”

Fast recovery,
implementing multiplicative
decrease. CongWin will not
drop below 1 MSS.

Timeout SS or CA Threshold = CongWin/2,
CongWin = 1 MSS,
Set state to “Slow Start”

Enter slow start

Duplicate
ACK

SS or CA Increment duplicate ACK count
for segment being acked

CongWin and Threshold not
changed

3: Transport Layer 113Comp 361, Spring 2005

TCP throughput

What’s the average throughput of TCP as a
function of window size and RTT?

Ignore slow start
Let W be the window size when loss occurs.
When window is W, throughput is W/RTT
Just after loss, window drops to W/2,
throughput to W/2RTT.
Average throughout: .75 W/RTT

3: Transport Layer 114Comp 361, Spring 2005

TCP Futures

Example: 1500 byte segments, 100ms RTT, want 10
Gbps throughput
Requires window size W = 83,333 in-flight
segments
Throughput in terms of loss rate:

➜ L = 2·10-10 Wow
New versions of TCP for high-speed needed!

LRTT
MSS⋅22.1

3: Transport Layer 115Comp 361, Spring 2005

TCP Fairness
Fairness goal: if K TCP sessions share same

bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

bottleneck
router

capacity R

TCP
connection 2

3: Transport Layer 116Comp 361, Spring 2005

Why is TCP fair?
Two competing sessions:

Additive increase gives slope of 1, as throughout increases
multiplicative decrease decreases throughput proportionally

R

R

equal bandwidth share

Connection 1 throughput

Co
nn

ec
ti

on
 2

 t
hr

ou
gh

p u
t

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

3: Transport Layer 117Comp 361, Spring 2005

Fairness (more)
Fairness and UDP

Multimedia apps often do
not use TCP

do not want rate throttled
by congestion control

Instead use UDP:
pump audio/video at
constant rate, tolerate
packet loss

Current Research area:
How to keep UDP from
congesting the internet.

Fairness and parallel TCP
connections
nothing prevents app from
opening parallel cnctions
between 2 hosts.
Web browsers do this
Example: link of rate R
supporting 9 cnctions;

new app asks for 1 TCP, gets
rate R/10
new app asks for 11 TCPs, gets
R/2 !

3: Transport Layer 118Comp 361, Spring 2005

TCP Latency Modeling
Notation, assumptions:

Assume one link between
client and server of rate R
S: MSS (bits)
O: object size (bits)
no retransmissions (no loss,
no corruption)

Window size:
First assume: fixed
congestion window, W
segments
Then dynamic window,

modeling slow start

Q: How long does it take to
completely receive an
object from a Web server
after sending a request?
This is known as the latency of the
(request for the) object.

Ignoring congestion, delay is
influenced by:
TCP connection establishment
data transmission delay
slow start

3: Transport Layer 119Comp 361, Spring 2005

Fixed Congestion Window (W)
Two cases

1. WS/R > RTT + S/R:
ACK for first segment in window returns before

window’s worth of data sent
Latency = 2RTT + O/R

2. WS/R < RTT + S/R:
ACK for first segment in window returns after

window’s worth of data sent
Latency = 2RTT + O/R + (K-1)[S/R + RTT - WS/R]

3: Transport Layer 120Comp 361, Spring 2005

Fixed congestion window (1)

First case:
WS/R > RTT + S/R: ACK for

first segment in window
returns before window’s
worth of data sent

latency = 2RTT + O/R

3: Transport Layer 121Comp 361, Spring 2005

Fixed congestion window (2)

Second case:
WS/R < RTT + S/R: wait
for ACK after sending
window’s worth of data
sent

latency = 2RTT + O/R
+ (K-1)[S/R + RTT - WS/R]

3: Transport Layer 122Comp 361, Spring 2005

TCP Latency Modeling: Slow Start (1)

Now suppose window grows according to slow start
(with no threshold and no loss events)

Will show that the delay for one object is:

R
S

R
SRTTP

R
ORTTLatency P)12(2 −−⎥⎦

⎤
⎢⎣
⎡ +++=

where P is the number of times TCP idles at server:
}1,{min −= KQP

- where Q is the number of times the server idles
if the object were of infinite size.

- and K is the number of windows that cover the object.

3: Transport Layer 123Comp 361, Spring 2005

TCP Latency Modeling: Slow Start (2)

RTT

initiate TCP
connection

request
object

first window
= S/R

second window
= 2S/R

third window
= 4S/R

fourth window
= 8S/R

complete
transmissionobject

delivered

time at
client

time at
server

Example:
• O/S = 15 segments
• K = 4 windows
• Q = 2
• P = min{K-1,Q} = 2

Server idles P=2 times

Delay components:
• 2 RTT for connection
estab and request
• O/R to transmit
object
• time server idles due
to slow start

Server idles:
P = min{K-1,Q} times

3: Transport Layer 124Comp 361, Spring 2005

TCP Latency Modeling (3)

ementacknowledg receivesserver until

segment send tostartsserver whenfrom time=+ RTT
R
S

R
S

R
SRTTPRTT

R
O

R
SRTT

R
SRTT

R
O

idleTimeRTT
R
O

P

k
P

k

P

p
p

)12(][2

]2[2

2delay

1

1

1

−−+++=

−+++=

++=

−

=

=

∑

∑

th window after the timeidle 2 1 k
R
SRTT

R
S k =⎥⎦

⎤
⎢⎣
⎡ −+

+
−

 window kth the transmit totime2 1 =−

R
Sk

RTT

initiate TCP
connection

request
object

first window
= S/R

second window
= 2S/R

third window
= 4S/R

fourth window
= 8S/R

complete
transmissionobject

delivered

time at
client

time at
server

3: Transport Layer 125Comp 361, Spring 2005

TCP Latency Modeling (4)
Recall K = number of windows that cover object

How do we calculate K ?

⎥⎥
⎤

⎢⎢
⎡ +=

+≥=

≥−=

≥+++=

≥+++=
−

−

)1(log

)}1(log:{min

}12:{min

}/222:{min
}222:{min

2

2

110

110

S
O

S
Okk

S
Ok

SOk
OSSSkK

k

k

k

L

L

Calculation of Q, number of idles for infinite-size object,
is similar.

3: Transport Layer 126Comp 361, Spring 2005

HTTP Modeling
Assume Web page consists of:

1 base HTML page (of size O bits)
M images (each of size O bits)

Non-persistent HTTP:
M+1 TCP connections in series
Response time = (M+1)O/R + (M+1)2RTT + sum of idle times

Persistent HTTP:
2 RTT to request and receive base HTML file
1 RTT to request and receive M images
Response time = (M+1)O/R + 3RTT + sum of idle times

Non-persistent HTTP with X parallel connections
Suppose M/X integer.
1 TCP connection for base file
M/X sets of parallel connections for images.
Response time = (M+1)O/R + (M/X + 1)2RTT + sum of idle times

3: Transport Layer 127Comp 361, Spring 2005

HTTP Response time (in seconds)
RTT = 100 msec, O = 5 Kbytes, M=10 and X=5

0
2
4
6
8

10
12
14
16
18
20

28
Kbps

100
Kbps

1 Mbps 10
Mbps

non-persistent

persistent

parallel non-
persistent

For low bandwidth, connection & response time dominated by
transmission time.
Persistent connections only give minor improvement over parallel
connections.

3: Transport Layer 128Comp 361, Spring 2005

HTTP Response time (in seconds)

0

10

20

30

40

50

60

70

28
Kbps

100
Kbps

1 Mbps 10
Mbps

non-persistent

persistent

parallel non-
persistent

RTT =1 sec, O = 5 Kbytes, M=10 and X=5

For larger RTT, response time dominated by TCP establishment
& slow start delays. Persistent connections now give important
improvement: particularly in high delay•bandwidth networks.

3: Transport Layer 129Comp 361, Spring 2005

Chapter 3: Summary
principles behind transport
layer services:

multiplexing,
demultiplexing
reliable data transfer
flow control
congestion control

instantiation and
implementation in the
Internet

UDP
TCP

Next:
leaving the network
“edge” (application,
transport layers)
into the network
“core”

	Chapter 3: Transport Layer last revised 16/03/05
	Chapter 3 outline
	Transport services and protocols
	Transport vs. network layer
	Transport-layer protocols
	Chapter 3 outline
	Multiplexing/demultiplexing
	Multiplexing/demultiplexing
	How demultiplexing works
	Connectionless demultiplexing
	Connectionless demux (cont)
	Connection-oriented demux
	Connection-oriented demux (cont)
	Connection-oriented demux: Threaded Web Server
	Chapter 3 outline
	UDP: User Datagram Protocol [RFC 768]
	UDP: more
	UDP checksum
	Chapter 3 outline
	Principles of Reliable data transfer
	Reliable data transfer: getting started
	Reliable data transfer: getting started
	Incremental Improvements
	Rdt1.0: reliable transfer over a reliable channel
	Rdt2.0: channel with bit errors
	rdt2.0: FSM specification
	rdt2.0: operation with no errors
	rdt2.0: error scenario
	rdt2.0 has a fatal flaw!
	
	rdt2.1: sender, handles garbled ACK/NAKs
	rdt2.1: receiver, handles garbled ACK/NAKs
	rdt2.1: discussion
	rdt2.2: a NAK-free protocol
	rdt2.2: sender, receiver fragments
	rdt3.0: channels with errors and loss
	rdt3.0 sender
	rdt3.0 in action
	rdt3.0 in action
	Performance of rdt3.0
	rdt3.0: stop-and-wait operation
	Pipelined protocols
	Pipelined protocols
	Pipelining: increased utilization
	Go-Back-N
	GBN: Sender
	GBN: sender extended FSM
	GBN: receiver extended FSM
	More on receiver
	GBN inaction
	
	Selective Repeat
	Selective repeat: sender, receiver windows
	Selective repeat
	Selective repeat in action
	Selective repeat: dilemma
	Chapter 3 outline
	TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581
	More TCP Details
	Even More TCP Details
	TCP segment structure
	TCP seq. #’s and ACKs
	TCP Round Trip Time and Timeout
	TCP Round Trip Time and Timeout
	Example RTT estimation:
	TCP Round Trip Time and Timeout
	Chapter 3 outline
	TCP reliable data transfer
	TCP sender events:
	TCP sender(simplified)
	TCP: retransmission scenarios
	TCP retransmission scenarios (more)
	TCP ACK generation [RFC 1122, RFC 2581]
	More on Sender Policies
	Fast Retransmit
	Fast retransmit algorithm:
	TCP: GBN or Selective Repeat?
	Chapter 3 outline
	TCP Flow Control
	TCP Flow Control
	TCP segment structure
	TCP Flow control: how it works
	Technical Issue
	Chapter 3 outline
	TCP Connection Management
	TCP Connection Management (cont.)
	TCP Connection Management (cont.)
	TCP Connection Management (cont.)
	TCP Connection Management (cont)
	A few special cases
	Chapter 3 outline
	Principles of Congestion Control
	Causes/costs of congestion: scenario 1
	Causes/costs of congestion: scenario 2
	Causes/costs of congestion: scenario 3
	Causes/costs of congestion: scenario 3
	Approaches towards congestion control
	Case study: ATM ABR congestion control
	Case study: ATM ABR congestion control
	Chapter 3 outline
	TCP Congestion Control
	
	TCP AIMD
	TCP Slow Start
	TCP Slow Start (more)
	
	
	Summary: TCP Congestion Control
	The Big Picture
	TCP sender congestion control
	TCP throughput
	TCP Futures
	TCP Fairness
	Why is TCP fair?
	Fairness (more)
	TCP Latency Modeling
	Fixed Congestion Window (W)
	Fixed congestion window (1)
	Fixed congestion window (2)
	TCP Latency Modeling: Slow Start (1)
	TCP Latency Modeling: Slow Start (2)
	TCP Latency Modeling (3)
	TCP Latency Modeling (4)
	HTTP Modeling
	Chapter 3: Summary

