New Results on Binary Comparison Search Trees

Marek Chrobak, Neal Young UC Riverside

Mordecai Golin HKUST Ian Munro U Waterloo

Early version of paper at arxiv.org

Optimal search trees with 2-way comparisons

Marek Chrobak, Mordecai Golin, J. Ian Munro, Neal E. Young arXiv:1505.00357

Main Result

Constructing Min-Cost Binary Comparison Search Trees

Main Result

Constructing Min-Cost Binary Comparison Search Trees

Wasn't this completely understood 45 years ago??!!

Main Result

Constructing Min-Cost Binary Comparison Search Trees

Wasn't this completely understood 45 years ago??!!

Yes and No ...

Outline

- History
 - Binary Search Trees
 - Hu-Tucker Trees
 - AKKL Trees
- Optimal Binary Comparison Search Trees with Failures
 - Problem Models
 - List of New Results
- New Results
 - The Main Lemma
 - Structural Properties of OBCSTs
 - Dynamic Programming for OBCSTs
 - Proof of The Main Lemma (Sketch)
- Extensions and Open Problems

 Knuth [1971] gave algorithm for constructing Optimal Binary Search Trees

- Knuth [1971] gave algorithm for constructing Optimal Binary Search Trees
- Known: n keys K₁, K₂,, K_n.

- Knuth [1971] gave algorithm for constructing Optimal Binary Search Trees
- Known: n keys K₁, K₂,, K_n.
- Preprocess keys to create binary tree. Tree query compares query value Q to keys. and returns appropriate response from
 - i such that Q = K_i
 - i such that $K_i < Q < K_{i+1}$
 - $Q < K_1$ or $K_n < Q$

- Knuth [1971] gave algorithm for constructing Optimal Binary Search Trees
- Known: n keys K₁, K₂,, K_n.
- Preprocess keys to create binary tree. Tree query compares query value Q to keys. and returns appropriate response from
 - i such that Q = K_i
 - i such that $K_i < Q < K_{i+1}$
 - $Q < K_1$ or $K_n < Q$
- Input: probability of successful and unsuccessful searches

$$\beta_1, \beta_2, \dots, \beta_n$$
 and $\alpha_0, \alpha_1, \dots, \alpha_n$
 $\beta_i = \Pr(Q = K_i)$ $\alpha_i = \Pr(K_i < Q < K_{i+1})$

$$\beta_1, \beta_2, \dots, \beta_n$$
 and $\alpha_0, \alpha_1, \dots, \alpha_n$
$$\beta_i = \Pr(Q = K_i) \qquad \alpha_i = \Pr(K_i < Q < K_{i+1})$$

• Knuth [1971] gave algorithm for constructing Optimal Binary Search Trees

- Knuth [1971] gave algorithm for constructing Optimal Binary Search Trees
- Input was probability of successful and unsuccessful searches

$$\beta_1, \beta_2, \dots, \beta_n$$
 and $\alpha_0, \alpha_1, \dots, \alpha_n$

- Knuth [1971] gave algorithm for constructing Optimal Binary Search Trees
- Input was probability of successful and unsuccessful searches

$$\beta_1, \beta_2, \dots, \beta_n$$
 and $\alpha_0, \alpha_1, \dots, \alpha_n$
 $\beta_i = \Pr(Q = K_i)$ $\alpha_i = \Pr(K_i < Q < K_{i+1})$

- Knuth [1971] gave algorithm for constructing Optimal Binary Search Trees
- Input was probability of successful and unsuccessful searches

$$\beta_1, \beta_2, \dots, \beta_n$$
 and $\alpha_0, \alpha_1, \dots, \alpha_n$
 $\beta_i = \Pr(Q = K_i)$ $\alpha_i = \Pr(K_i < Q < K_{i+1})$

Cost of tree was average path length

- Knuth [1971] gave algorithm for constructing Optimal Binary Search Trees
- Input was probability of successful and unsuccessful searches

$$\beta_1, \beta_2, \dots, \beta_n$$
 and $\alpha_0, \alpha_1, \dots, \alpha_n$
 $\beta_i = \Pr(Q = K_i)$ $\alpha_i = \Pr(K_i < Q < K_{i+1})$

Cost of tree was average path length

$$\sum_{i=1}^{n} \beta_i \operatorname{depth}(\beta_i) + \sum_{i=0}^{n} \alpha_i \operatorname{depth}(\alpha_i)$$

- Knuth [1971] gave algorithm for constructing Optimal Binary Search Trees
- Input was probability of successful and unsuccessful searches

$$\beta_1, \beta_2, \dots, \beta_n$$
 and $\alpha_0, \alpha_1, \dots, \alpha_n$
 $\beta_i = \Pr(Q = K_i)$ $\alpha_i = \Pr(K_i < Q < K_{i+1})$

Cost of tree was average path length

$$\sum_{i=1}^{n} \beta_i \operatorname{depth}(\beta_i) + \sum_{i=0}^{n} \alpha_i \operatorname{depth}(\alpha_i)$$

- Dynamic Programming Algorithm
 - Constructed O(n^2) DP table
 - Knuth reduced O(n^3) running time to O(n^2)
 - Technique later generalized as Quadrangle Inequality method by F. Yao

$$(\alpha_0 + \beta_3) + 2(\beta_2 + \alpha_3) + 3(\alpha_1 + \alpha_2)$$
 $(\beta_1 + \beta_3) + 2(\alpha_0 + \alpha_1 + \alpha_2 + \alpha_3)$

$$(\beta_1 + \beta_3) + 2(\alpha_0 + \alpha_1 + \alpha_2 + \alpha_3)$$

$$(\alpha_0 + \beta_3) + 2(\beta_2 + \alpha_3) + 3(\alpha_1 + \alpha_2)$$

$$(\beta_1 + \beta_3) + 2(\alpha_0 + \alpha_1 + \alpha_2 + \alpha_3)$$

$$(\beta_1, \beta_2, \beta_3) = (.5, .1, .2)$$
$$\alpha_i \equiv .05$$

$$Cost = 0.85$$

$$Cost = 1.10$$

$$(\alpha_0 + \beta_3) + 2(\beta_2 + \alpha_3) + 3(\alpha_1 + \alpha_2)$$

$$(\beta_1 + \beta_3) + 2(\alpha_0 + \alpha_1 + \alpha_2 + \alpha_3)$$

$$(\beta_1, \beta_2, \beta_3) = (.5, .1, .2)$$
$$\alpha_i \equiv .05$$

$$Cost = 0.85$$

$$Cost = 1.10$$

$$(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = (0.7, 0.1, 0.1, 0.1)$$

$$Cost = 1.05$$

$$Cost = 0.80$$

 Knuth constructed optimal binary search trees

- Knuth constructed optimal binary search trees
- Trees structure was binary but nodes used ternary comparisons. Each node needed two binary comparisons to implement the search

- Knuth constructed optimal binary search trees
- Trees structure was binary but nodes used ternary comparisons. Each node needed two binary comparisons to implement the search
- In a binary comparison search tree, each internal node performs only one comparison. Searches all terminate at leaves.
- First such trees constructed by Hu-Tucker, also in 1971. O(n log n)

- Hu Tucker (1971) & Garsia-Wachs (1977)
- Assumes all searches are successful;
 no failures allowed.
 Input is only β₁, β₂, ..., β_n, with no α_i s.

- Hu Tucker (1971) & Garsia-Wachs (1977)
- Assumes all searches are successful;
 no failures allowed.
 Input is only β₁, β₂, ..., β_n, with no α_i s.
- Internal nodes are < comparisons.
 Searches all terminate at leaves

- Hu Tucker (1971) & Garsia-Wachs (1977)
- Assumes all searches are successful;
 no failures allowed.
 Input is only β₁, β₂, ..., β_n, with no α_i s.
- Internal nodes are < comparisons.
 Searches all terminate at leaves
- Problem is to find tree with minimum weighted (average) external path length

- Hu Tucker (1971) & Garsia-Wachs (1977)
- Assumes all searches are successful;
 no failures allowed.
 Input is only β₁, β₂, ..., β_n, with no α_i s.
- Internal nodes are < comparisons.
 Searches all terminate at leaves
- Problem is to find tree with minimum weighted (average) external path length
- O(n log n) algorithm

Outline

- History
 - Binary Search Trees
 - Hu-Tucker Trees
 - AKKL Trees
- Optimal Binary Comparison Search Trees with Failures
 - Problem Models
 - List of New Results
- New Results
 - The Main Lemma
 - Structural Properties of OBCSTs
 - Dynamic Programming for OBCSTs
 - Proof of The Main Lemma (Sketch)
- Extensions and Open Problems

The Knuth trees use three-way comparisons at each node.

These are implemented in modern machines using two two-way comparisons (one < and one =).

Hu-Tucker trees use only one two-way comparison (a <) at each node.

The Knuth trees use three-way comparisons at each node.

These are implemented in modern machines using two two-way comparisons (one < and one =).

Hu-Tucker trees use only one two-way comparison (a <) at each node.

... machines that cannot make three-way comparisons at once... will have to make two comparisons... it may well be best to have a binary tree whose internal nodes specify either an equality test or a less-than test but not both.

The Knuth trees use three-way comparisons at each node.

These are implemented in modern machines using two two-way comparisons (one < and one =).

Hu-Tucker trees use only one two-way comparison (a <) at each node.

... machines that cannot make three-way comparisons at once... will have to make two comparisons... it may well be best to have a binary tree whose internal nodes specify either an equality test or a less-than test but not both.

D. E. Knuth. *The Art of Computer Programming, Volume 3: Sorting and Searching*. Addison-Wesley, 2nd edition, 1998. [§6.2.2 ex. 33],

Hu-Tucker Tree

AKKL Tree

AKKL trees are min cost trees with more power.
 instead of being restricted to be <, comparisons can be = OR <

Hu-Tucker Tree

AKKL Tree

- AKKL trees are min cost trees with more power.
 instead of being restricted to be <, comparisons can be = OR <
- AKKL trees include HT Trees

Hu-Tucker Tree

AKKL Tree

- AKKL trees are min cost trees with more power.
 instead of being restricted to be <, comparisons can be = OR <
- AKKL trees include HT Trees
- AKKL trees can be cheaper than HT Trees if some β_i much larger than others

Hu-Tucker Tree

AKKL Tree

- AKKL trees are min cost trees with more power.
 instead of being restricted to be <, comparisons can be = OR <
- AKKL trees include HT Trees
- AKKL trees can be cheaper than HT Trees if some β_i much larger than others
- AKKL trees more difficult to construct

Anderson, Kannan, Karloff, Ladner [2002] extended Hu-Tucker by allowing
 comparisons. AKKL find min-cost tree when the *n-1* internal node comparisons are allowed to be in {=,<}.

- Anderson, Kannan, Karloff, Ladner [2002] extended Hu-Tucker by allowing
 comparisons. AKKL find min-cost tree when the *n-1* internal node comparisons are allowed to be in {=,<}.
- Useful when some β_i are very large (relatively)

- Anderson, Kannan, Karloff, Ladner [2002] extended Hu-Tucker by allowing
 comparisons. AKKL find min-cost tree when the *n-1* internal node comparisons are allowed to be in {=,<}.
- Useful when some β_i are very large (relatively)
- AKKL algorithm runs in O(n⁴) time.

- Anderson, Kannan, Karloff, Ladner [2002] extended Hu-Tucker by allowing
 comparisons. AKKL find min-cost tree when the *n-1* internal node comparisons are allowed to be in {=,<}.
- Useful when some β_i are very large (relatively)
- AKKL algorithm runs in O(n⁴) time.
 - AKKL note this improves running time of O(n⁵) claimed by Spuler [1994] in his thesis

- Anderson, Kannan, Karloff, Ladner [2002] extended Hu-Tucker by allowing
 comparisons. AKKL find min-cost tree when the *n-1* internal node comparisons are allowed to be in {=,<}.
- Useful when some β_i are very large (relatively)
- AKKL algorithm runs in O(n⁴) time.
 - AKKL note this improves running time of O(n⁵) claimed by Spuler [1994] in his thesis
 - Spuler only states O(n⁵) algorithm but doesn't prove that it produces optimal tree, so AKKL is really first polynomial time algorithm

- Anderson, Kannan, Karloff, Ladner [2002] extended Hu-Tucker by allowing
 comparisons. AKKL find min-cost tree when the *n-1* internal node comparisons are allowed to be in {=,<}.
- Useful when some β_i are very large (relatively)
- AKKL algorithm runs in O(n⁴) time.
 - AKKL note this improves running time of O(n⁵) claimed by Spuler [1994] in his thesis
 - Spuler only states O(n⁵) algorithm but doesn't prove that it produces optimal tree, so AKKL is really first polynomial time algorithm
- Reason problem is difficult is that equality nodes can create holes in ranges. This could dramatically (exponentially?) increase search space, destroying DP approach

- Anderson, Kannan, Karloff, Ladner [2002] extended Hu-Tucker by allowing
 comparisons. AKKL find min-cost tree when the *n-1* internal node comparisons are allowed to be in {=,<}.
- Useful when some β_i are very large (relatively)
- AKKL algorithm runs in O(n⁴) time.
 - AKKL note this improves running time of O(n⁵) claimed by Spuler [1994] in his thesis
 - Spuler only states O(n⁵) algorithm but doesn't prove that it produces optimal tree, so AKKL is really first polynomial time algorithm
- Reason problem is difficult is that equality nodes can create holes in ranges. This could dramatically (exponentially?) increase search space, destroying DP approach
 - AKKL show that if equality comparison exists, then it is always largest probability in range. Allows recovering DP approach with ranges of description size O(n³) (compared to Knuth's O(n²))

Hu-Tucker Tree

AKKL Tree

- Comment 1: Other problem in AKKL is how to deal with repeated weights This was hardest part.
- Comment 2: Both Hu-Tucker and AKKL only work when failures don't occur. I.e., only β_i are allowed and not α_i .

So Far + Obvious Open Problem

So Far + Obvious Open Problem

- Optimal Binary Search Trees
 - Input: $\beta_i = \Pr(Q = K_i); \ \alpha_i = \Pr(K_{i-1} < Q < K_i)$
 - $O(n^2)$ Knuth
- Optimal Binary Comparison Search Trees
 - Input: $\beta_i = \Pr(Q = K_i)$; failures not allowed
 - $C = \{<\}$: O(n log n) Hu-Tucker & Garsia-Wachs
 - $C = \{=,<\}: O(n^4)$ AKKL

<u>So Far + Obvious Open Problem</u>

- Optimal Binary Search Trees
 - Input: $\beta_i = \Pr(Q = K_i); \ \alpha_i = \Pr(K_{i-1} < Q < K_i)$
 - *O*(*n*²) Knuth
- Optimal Binary Comparison Search Trees
 - Input: $\beta_i = \Pr(Q = K_i)$; failures not allowed
 - $C = \{<\}$: O(n log n) Hu-Tucker & Garsia-Wachs
 - $C = \{=,<\}: O(n^4)$ AKKL
 - Obvious Questions
 - Can we build OBCSTs that allow failures?
 - If yes, for which sets of comparisons?
 - Answer is yes, (for all sets of comparisons) but first need to define problem models

Outline

- History
 - Binary Search Trees
 - Hu-Tucker Trees
 - AKKL Trees
- Optimal Binary Comparison Search Trees with Failures
 - Problem Models
 - List of New Results
- New Results
 - The Main Lemma
 - Structural Properties of OBCSTs
 - Dynamic Programming for OBCSTs
 - Proof of The Main Lemma (Sketch)
- Extensions and Open Problems

- Allows Failures (β_i and α_i).
 - Call this complete input. HT has restricted input.

- Allows Failures (β_i and α_i).
 - Call this complete input. HT has restricted input.
- Tree for n keys has 2n+1 leaves

- Allows Failures (β_i and α_i).
 - Call this complete input. HT has restricted input.
- Tree for n keys has 2n+1 leaves
- Distinguishing between $Q = = K_i$ and $K_i < Q < K_{i+1}$ always requires querying $(Q = K_i)$

Using Different Types of Comparisons

<u>Using Different Types of Comparisons</u>

- Left Tree uses {<,=}. Right Tree uses {<, ≤, =}
 - Minimum cost BCST is minimum taken over all trees using given set of comparisons C, e.g., C={<,=} or C={<, ≤, =}

<u>Using Different Types of Comparisons</u>

- Left Tree uses {<,=}. Right Tree uses {<, ≤, =}
 - Minimum cost BCST is minimum taken over all trees using given set of comparisons *C*, *e.g.*, C={<,=} or C={<, ≤, =}
- C is input to the problem.
 - Algorithm is different for different Cs.

How Much Information is Needed for Failure?

 α_1

How Much Information is Needed for Failure?

- Tree on left shows Explicit Failure
 - every failure leaf reports unique failure interval, $K_i < Q < K_{i+1}$.

How Much Information is Needed for Failure?

- Tree on left shows Explicit Failure
 - every failure leaf reports unique failure interval, $K_i < Q < K_{i+1}$.
- Tree on right shows Non-Explicit Failure:
 - Failure leaves only report failure. Don't need to specify exact interval. Leaf can be concatenation of successive failure intervals.

New Algorithms: OBCSTs with Failures

Permitted Comparisons	Failure Type	Time	Comments
$\mathcal{C} = \{=\}$	Explicit		Can not occur
	Non-Explicit	$O(n \log n)$	Trivial. Similar to Linked List
$\mathcal{C} = \{<, \leq\}$	Explicit	$O(n \log n)$	O(n) Reduction to Hu-Tucker
	Non-Explicit		Can not occur
$C = \{=, <\}, C = \{=, \le\}$	Explicit	$O(n^4)$	Follows from Main Lemma
	Non-Explicit	$O(n^4)$	"
$\mathcal{C} = \{=, <, \leq\}$	Explicit	$O(n^4)$	"
	Non-Explicit	$O(n^4)$	"

- DP Algorithms for last 4 cases are very similar
- Differ slightly in
 - Design of Recurrence Relations
 - {=,<} and {=,<, ≤) yield slightly different recurrences
 - Initial conditions
 - Explicit and Non-Explicit Failures force different I.C.s

Outline

- History
 - Binary Search Trees
 - Hu-Tucker Trees
 - AKKL Trees
- Optimal Binary Comparison Search Trees with Failures
 - Problem Models
 - List of New Results
- New Results
 - The Main Lemma
 - Structural Properties of OBCSTs
 - Dynamic Programming for OBCSTs
 - Proof of The Main Lemma (Sketch)
- Extensions and Open Problems

Main Lemma:

Lemma

Let T be a Optimal BCST. If $(Q=K_k)$ is a Descendant of $(Q=K_i)$ Then $\beta_k \leq \beta_i$

Main Lemma:

Lemma

Let T be a Optimal BCST. If $(Q=K_k)$ is a Descendant of $(Q=K_i)$ Then $\beta_k \leq \beta_i$

Note: This is true regardless of which inequality comparisons are used and which model BCST is used

Main Lemma:

Lemma

Let T be a Optimal BCST. If $(Q=K_k)$ is a Descendant of $(Q=K_i)$ Then $\beta_k \leq \beta_i$

Note: This is true regardless of which inequality comparisons are used and which model BCST is used

Corollary: If T is an OBCST and $(Q=K_k)$ an internal node in T, then $\beta_k \leq \beta_j$ for all $(Q=K_j)$ on the path from the root to $(Q=K_k)$, i.e., equality weights decrease walking down the tree

Outline

- History
 - Binary Search Trees
 - Hu-Tucker Trees
 - AKKL Trees
- Optimal Binary Comparison Search Trees with Failures
 - Problem Models
 - List of New Results
- New Results
 - The Main Lemma
 - Structural Properties of OBCSTs
 - Dynamic Programming for OBCSTs
 - Proof of The Main Lemma (Sketch)
- Extensions and Open Problems

Henceforth assume distinct key weights, i.e., all of the $\beta_1, \beta_2, ..., \beta_n$ are different Also assume $C=\{<,=\}$

Henceforth assume distinct key weights, i.e., all of the $\beta_1, \beta_2, ..., \beta_n$ are different Also assume $C=\{<,=\}$

Henceforth assume distinct key weights, i.e., all of the $\beta_1, \beta_2, ..., \beta_n$ are different Also assume $C=\{<,=\}$

Every tree node *N* corresponds to search range of subtree rooted at *N*

 Root of BSCT is search range [K₀,K_{n+1}) (where K₀=-∞ and K_{n+1}=∞)

Henceforth assume distinct key weights, i.e., all of the $\beta_1, \beta_2, ..., \beta_n$ are different Also assume $C=\{<,=\}$

- Root of BSCT is search range [K₀,K_{n+1}) (where K₀=-∞ and K_{n+1}=∞)
- Comparisons cuts ranges
 - A (Q<K_i) splits [K_i,K_j) into [K_i,K_k) and [K_k,K_i)
 - A (Q=K_i) removing K_i from range,

Henceforth assume distinct key weights, i.e., all of the $\beta_1, \beta_2, ..., \beta_n$ are different Also assume $C=\{<,=\}$

- Root of BSCT is search range $[K_0, K_{n+1})$ (where $K_0=-\infty$ and $K_{n+1}=\infty$)
- Comparisons cuts ranges
 - A (Q<K_i) splits [K_i,K_j) into [K_i,K_k) and [K_k,K_i)
 - A (Q=K_i) removing K_i from range,
- Range of subtree rooted at N is some [K_i,K_j) with some keys removed

Henceforth assume distinct key weights, i.e., all of the $\beta_1, \beta_2, ..., \beta_n$ are different Also assume $C=\{<,=\}$

- Root of BSCT is search range $[K_0, K_{n+1})$ (where $K_0=-\infty$ and $K_{n+1}=\infty$)
- Comparisons cuts ranges
 - A (Q<K_i) splits [K_i,K_j) into [K_i,K_k) and [K_k,K_i)
 - A (Q=K_i) removing K_i from range,
- Range of subtree rooted at N is some [K_i,K_j) with some keys removed
- Keys removed (holes) are K_k s.t. (Q= K_k) is on the path from N to the root of T.

Henceforth assume distinct key weights, i.e., all of the $\beta_1, \beta_2, ..., \beta_n$ are different Also assume $C=\{<,=\}$

- Root of BSCT is search range [K₀,K_{n+1}) (where K₀=-∞ and K_{n+1}=∞)
- Comparisons cuts ranges
 - A (Q<K_i) splits [K_i,K_j) into [K_i,K_k) and [K_k,K_i)
 - A (Q=K_i) removing K_i from range,
- Range of subtree rooted at N is some [K_i,K_j) with some keys removed
- Keys removed (holes) are K_k s.t. (Q= K_k) is on the path from N to the root of T.

Henceforth assume distinct key weights, i.e., all of the $\beta_1, \beta_2, ..., \beta_n$ are different Also assume $C=\{<,=\}$

- Root of BSCT is search range [K₀,K_{n+1}) (where K₀=-∞ and K_{n+1}=∞)
- Comparisons cuts ranges
 - A (Q<K_i) splits [K_i,K_j) into [K_i,K_k) and [K_k,K_i)
 - A (Q=K_i) removing K_i from range,
- Range of subtree rooted at N is some [K_i,K_j) with some keys removed
- Keys removed (holes) are K_k s.t. (Q= K_k) is on the path from N to the root of T.

Henceforth assume distinct key weights, i.e., all of the $\beta_1, \beta_2, ..., \beta_n$ are different Also assume $C=\{<,=\}$

- Root of BSCT is search range [K₀,K_{n+1}) (where K₀=-∞ and K_{n+1}=∞)
- Comparisons cuts ranges
 - A (Q<K_i) splits [K_i,K_j) into [K_i,K_k) and [K_k,K_i)
 - A (Q=K_i) removing K_i from range,
- Range of subtree rooted at N is some [K_i,K_j) with some keys removed
- Keys removed (holes) are K_k s.t. (Q= K_k) is on the path from N to the root of T.

Henceforth assume distinct key weights, i.e., all of the $\beta_1, \beta_2, ..., \beta_n$ are different Also assume $C=\{<,=\}$

- Root of BSCT is search range [K₀,K_{n+1}) (where K₀=-∞ and K_{n+1}=∞)
- Comparisons cuts ranges
 - A (Q<K_i) splits [K_i,K_j) into [K_i,K_k) and [K_k,K_i)
 - A (Q=K_i) removing K_i from range,
- Range of subtree rooted at N is some [K_i,K_j) with some keys removed
- Keys removed (holes) are K_k s.t. (Q= K_k) is on the path from N to the root of T.

Henceforth assume distinct key weights, i.e., all of the $\beta_1, \beta_2, ..., \beta_n$ are different Also assume $C=\{<,=\}$

- Root of BSCT is search range [K₀,K_{n+1}) (where K₀=-∞ and K_{n+1}=∞)
- Comparisons cuts ranges
 - A (Q<K_i) splits [K_i,K_j) into [K_i,K_k) and [K_k,K_i)
 - A (Q=K_i) removing K_i from range,
- Range of subtree rooted at N is some [K_i,K_j) with some keys removed
- Keys removed (holes) are K_k s.t. (Q= K_k) is on the path from N to the root of T.

Henceforth assume distinct key weights, i.e., all of the $\beta_1, \beta_2, ..., \beta_n$ are different Also assume $C=\{<,=\}$

- Root of BSCT is search range [K₀,K_{n+1}) (where K₀=-∞ and K_{n+1}=∞)
- Comparisons cuts ranges
 - A (Q<K_i) splits [K_i,K_j) into [K_i,K_k) and [K_k,K_i)
 - A (Q=K_i) removing K_i from range,
- Range of subtree rooted at N is some [K_i,K_j) with some keys removed
- Keys removed (holes) are K_k s.t. (Q= K_k) is on the path from N to the root of T.

- Range associated with Node N is [K_i,K_j) with some (h) keys K_k removed.
- K_k removed are s.t. $(Q=K_k)$ are equality nodes on path from N to root (that fall within $[K_i, K_i)$)

- Range associated with Node N is [K_i,K_i) with some (h) keys K_k removed.
- K_k removed are s.t. $(Q=K_k)$ are equality nodes on path from N to root (that fall within $[K_i, K_i)$)
- From previous Lemma, if T is an OBCST, β_i of nodes path to N are larger than β_i of all equality nodes in T'.
- ∀k, (Q=K_k) appears somewhere in T.
 Immediately implies that the h missing keys must be the largest weighted keys in [K_i,K_i)

- Range associated with Node N is [K_i,K_i) with some (h) keys K_k removed.
- K_k removed are s.t. $(Q=K_k)$ are equality nodes on path from N to root (that fall within $[K_i, K_i)$)
- From previous Lemma, if T is an OBCST, β_i of nodes path to N are larger than β_i of all equality nodes in T'.
- ∀k, (Q=K_k) appears somewhere in T.
 Immediately implies that the h missing keys must be the largest weighted keys in [K_i,K_j)
- Define punctured range [i,j: h) to be range $[K_i, K_j]$ with the h highest weighted keys in $[K_i, K_j]$ removed

- Range associated with Node N is [K_i,K_i) with some (h) keys K_k removed.
- K_k removed are s.t. $(Q=K_k)$ are equality nodes on path from N to root (that fall within $[K_i, K_i)$)
- From previous Lemma, if T is an OBCST, β_i of nodes path to N are larger than β_i of all equality nodes in T'.
- ∀k, (Q=K_k) appears somewhere in T.
 Immediately implies that the h missing keys must be the largest weighted keys in [K_i,K_j)
- Define punctured range [i,j: h) to be range $[K_i, K_j]$ with the h highest weighted keys in $[K_i, K_j]$ removed
- => every range associated with an internal node of an OBCST is a punctured range

- **[i,j: h)** is range $[K_i, K_j]$ with the h highest weighted keys in $[K_i, K_j]$ removed
- Range associated with an internal node of an OBCST is some [i,j: h)

- **[i,j: h)** is range $[K_i, K_j]$ with the h highest weighted keys in $[K_i, K_j]$ removed
- Range associated with an internal node of an OBCST is some [i,j: h)
- Define OPT(i,j: h) to be the cost of an optimal BCST for range [i,j: h)
- Goal is to find OPT(0,n+1:0) and associated tree
- Will use Dynamic programming to fill in table. Table has size O(n³)
 We will (recursively) evaluate OPT(i,j: h) in O(j-i) time, yielding a O(n⁴) algorithm.

Outline

- History
 - Binary Search Trees
 - Hu-Tucker Trees
 - AKKL Trees
- Optimal Binary Comparison Search Trees with Failures
 - Problem Models
 - List of New Results
- New Results
 - The Main Lemma
 - Structural Properties of OBCSTs
 - Dynamic Programming for OBCSTs
 - Proof of The Main Lemma (Sketch)
- Extensions and Open Problems

- Let T be an OBCST for [i,j: h)
- T Has two possible structures

- Let T be an OBCST for [i,j: h)
- T Has two possible structures

- Let T be an OBCST for [i,j: h)
- T Has two possible structures

1. Root is a $(Q=K_k)$

2. Root is a $(Q < K_k)$

1. Root of OPT(i,j: h) is a $(Q=K_k)$

1. Root of OPT(i,j: h) is a $(Q=K_k)$

- K_k must be largest key weight in [i,j: h)
 which is (h+1)st largest key weight in [i,j)
- Right subtree missing h+1 largest weights in [i,j) so right subtree is OPT(i,j: h+1)

1. Root of OPT(i,j: h) is a $(Q=K_k)$

- K_k must be largest key weight in [i,j: h)
 which is (h+1)st largest key weight in [i,j)
- Right subtree missing h+1 largest weights in [i,j) so right subtree is OPT(i,j: h+1)

- cost of left subtree
- cost of right subtree OPT(i,j: h+1)
- Total weight of left + right subtree $W_{i,j:h}$ where $W_{i,j:h}$ = sum of all β_i, α_i in (i,j:h]

1. Root of OPT(i,j: h) is a $(Q=K_k)$

- K_k must be largest key weight in [i,j: h)
 which is (h+1)st largest key weight in [i,j)
- Right subtree missing h+1 largest weights in [i,j) so right subtree is OPT(i,j: h+1)

Cost of full tree is sum of

- cost of left subtree
- cost of right subtree OPT(i,j: h+1)
- Total weight of left + right subtree $W_{i,j:h}$ where $W_{i,j:h}$ = sum of all β_i, α_i in (i,j:h]

$$EQ(i,j:h) = W_{i,j:h} + OPT(i,j:h+1)$$

2. Root of OPT(i,j: h) is a $(Q < K_k)$

2. Root of OPT(i,j: h) is a $(Q < K_k)$

- Range is split into <k and ≥k
- h holes (largest keys) in [i,j) are split, with h₁(k) on left and h₂(k) =h-h₁(k) on right

2. Root of OPT(i,j: h) is a $(Q < K_k)$

- Range is split into <k and ≥k
- h holes (largest keys) in [i,j) are split, with h₁(k) on left and h₂(k) =h-h₁(k) on right
- h₁(k) keys must be heaviest in [i,k)
 h₂(k) keys must be heaviest in [k,j)
- So left and right subtrees are OBCSTs for [i,k: h₁(k)) and [k,j: h₂(k))

2. Root of OPT(i,j: h) is a $(Q < K_k)$

- Range is split into <k and ≥k
- h holes (largest keys) in [i,j) are split, with h₁(k) on left and h₂(k) =h-h₁(k) on right
- h₁(k) keys must be heaviest in [i,k)
 h₂(k) keys must be heaviest in [k,j)
- So left and right subtrees are OBCSTs for [i,k: h₁(k)) and [k,j: h₂(k))
- Cost of tree is W_{i,j:h} + OPT(i,k: h₁(k)+ OPT(k,j: h₂(k))

2. Root of OPT(i,j: h) is a $(Q < K_k)$

- Range is split into <k and ≥k
- h holes (largest keys) in [i,j) are split, with h₁(k) on left and h₂(k) =h-h₁(k) on right
- h₁(k) keys must be heaviest in [i,k)
 h₂(k) keys must be heaviest in [k,j)
- So left and right subtrees are OBCSTs for [i,k: h₁(k)) and [k,j: h₂(k))
- Cost of tree is W_{i,j:h} + OPT(i,k: h₁(k)+ OPT(k,j: h₂(k))

Don't know what k is, so minimize over all possible k

$$SPLIT(i,j:h) = \min_{i < k < j} \{ W_{i,j:h} + OPT(i,k:h_1(k)) + OPT(k,j:h_2(k)) \}$$

OPT(i,j: h) has two possible structures

OPT(i,j: h) has two possible structures

1. Root is a $(Q=K_k)$

2. Root is a $(Q < K_k)$

OPT(i,j: h) has two possible structures

1. Root is a $(Q=K_k)$

$$EQ(i, j : h) = W_{i,j:h} + OPT(i, j : h + 1)$$

2. Root is a $(Q < K_k)$

$$SPLIT(i, j:h) = \min_{i < k < j} \{ W_{i,j:h} + OPT(i, k:h_1(k)) + OPT(k, j:h_2(k)) \}$$

OPT(i,j: h) has two possible structures

1. Root is a $(Q=K_k)$

$$EQ(i, j : h) = W_{i,j:h} + OPT(i, j : h + 1)$$

2. Root is a $(Q < K_k)$

$$SPLIT(i,j:h) = \min_{i < k < j} \{ W_{i,j:h} + OPT(i,k:h_1(k)) + OPT(k,j:h_2(k)) \}$$

This immediately implies

$$OPT(i, j:h) \ge \min(EQ(i, j:h), SPLIT(i, j:h))$$

OPT(i,j: h) has two possible structures

1. Root is a $(Q=K_k)$

$$EQ(i, j : h) = W_{i,j:h} + OPT(i, j : h + 1)$$

2. Root is a $(Q < K_k)$

$$SPLIT(i, j : h) = \min_{i < k < j} \{ W_{i,j:h} + OPT(i, k : h_1(k)) + OPT(k, j : h_2(k)) \}$$

This immediately implies

$$OPT(i, j:h) \ge \min(EQ(i, j:h), SPLIT(i, j:h))$$

But every case seen can construct a BCST with that cost, so

$$OPT(i, j:h) = \min (EQ(i, j:h), SPLIT(i, j:h))$$

```
OPT(i, j : h) = \min (EQ(i, j : h), SPLIT(i, j : h))
EQ(i, j : h) = W_{i,j:h} + OPT(i, j : h + 1)
SPLIT(i, j : h) = \min_{i < k < j} \{W_{i,j:h} + OPT(i, k : h_1(k)) + OPT(k, j : h_2(k))\}
```

```
OPT(i, j : h) = \min (EQ(i, j : h), SPLIT(i, j : h))
EQ(i, j : h) = W_{i,j:h} + OPT(i, j : h + 1)
SPLIT(i, j : h) = \min_{i < k < j} \{W_{i,j:h} + OPT(i, k : h_1(k)) + OPT(k, j : h_2(k))\}
```

Set initial conditions for ranges OPT(i,i+1,*)

$$OPT(i, j : h) = \min (EQ(i, j : h), SPLIT(i, j : h))$$

$$EQ(i, j : h) = W_{i,j:h} + OPT(i, j : h + 1)$$

$$SPLIT(i, j : h) = \min_{i < k < j} \{W_{i,j:h} + OPT(i, k : h_1(k)) + OPT(k, j : h_2(k))\}$$

Set initial conditions for ranges OPT(i,i+1,*)

$$OPT(i,i+1,1)=0 \qquad \qquad \underset{\kappa_{i} < \mathcal{Q} < K_{i+1}}{\underbrace{K_{i} < \mathcal{Q} < K_{i+1}}} \quad \alpha_{i} \qquad OPT(i,i+1,0)=\beta_{i} + \alpha_{i} \qquad \underset{\beta_{i}}{\underbrace{K_{i} = \mathcal{Q}}} \quad \underset{K_{i} < \mathcal{Q} < K_{i+1}}{\underbrace{K_{i} < \mathcal{Q} < K_{i+1}}} \quad \alpha_{i} \qquad \underset{\alpha_{i}}{\underbrace{K_{i} = \mathcal{Q}}} \quad \underset{K_{i} < \mathcal{Q} < K_{i+1}}{\underbrace{K_{i} < \mathcal{Q} < K_{i+1}}} \quad \alpha_{i} \qquad \underset{\alpha_{i} < \mathcal{Q} < K_{i+1}}{\underbrace{K_{i} < \mathcal{Q} < K_{i+1}}} \quad \alpha_{i} \qquad \underset{\alpha_{i} < \mathcal{Q} < K_{i+1}}{\underbrace{K_{i} < \mathcal{Q} < K_{i+1}}} \quad \alpha_{i} \qquad \underset{\alpha_{i} < \mathcal{Q} < K_{i+1}}{\underbrace{K_{i} < \mathcal{Q} < K_{i+1}}} \quad \alpha_{i} \qquad \underset{\alpha_{i} < \mathcal{Q} < K_{i+1}}{\underbrace{K_{i} < \mathcal{Q} < K_{i+1}}} \quad \alpha_{i} \qquad \underset{\alpha_{i} < \mathcal{Q} < K_{i+1}}{\underbrace{K_{i} < \mathcal{Q} < K_{i+1}}} \quad \alpha_{i} \qquad \underset{\alpha_{i} < \mathcal{Q} < K_{i+1}}{\underbrace{K_{i} < \mathcal{Q} < K_{i+1}}} \quad \alpha_{i} \qquad \underset{\alpha_{i} < \mathcal{Q} < K_{i+1}}{\underbrace{K_{i} < \mathcal{Q} < K_{i+1}}} \quad \alpha_{i} \qquad \underset{\alpha_{i} < \mathcal{Q} < K_{i+1}}{\underbrace{K_{i} < \mathcal{Q} < K_{i+1}}} \quad \alpha_{i} \qquad \underset{\alpha_{i} < \mathcal{Q} < K_{i+1}}{\underbrace{K_{i} < \mathcal{Q} < K_{i+1}}} \quad \alpha_{i} \qquad \underset{\alpha_{i} < \mathcal{Q} < K_{i+1}}{\underbrace{K_{i} < \mathcal{Q} < K_{i+1}}} \quad \alpha_{i} \qquad \underset{\alpha_{i} < \mathcal{Q} < K_{i+1}}{\underbrace{K_{i} < \mathcal{Q} < K_{i+1}}} \quad \alpha_{i} \qquad \underset{\alpha_{i} < \mathcal{Q} < K_{i+1}}{\underbrace{K_{i} < \mathcal{Q} < K_{i+1}}} \quad \alpha_{i} \qquad \underset{\alpha_{i} < \mathcal{Q} < K_{i+1}}{\underbrace{K_{i} < \mathcal{Q} < K_{i+1}}} \quad \alpha_{i} \qquad \underset{\alpha_{i} < \mathcal{Q} < K_{i+1}}{\underbrace{K_{i} < \mathcal{Q} < K_{i+1}}} \quad \alpha_{i} \qquad \underset{\alpha_{i} < \mathcal{Q} < K_{i+1}}{\underbrace{K_{i} < \mathcal{Q} < K_{i+1}}} \quad \alpha_{i} \qquad \underset{\alpha_{i} < \mathcal{Q} < K_{i+1}}{\underbrace{K_{i} < \mathcal{Q} < K_{i+1}}} \quad \alpha_{i} \qquad \underset{\alpha_{i} < \mathcal{Q} < K_{i+1}}{\underbrace{K_{i} < \mathcal{Q} < K_{i+1}}} \quad \alpha_{i} \qquad \underset{\alpha_{i} < \mathcal{Q} < K_{i+1}}{\underbrace{K_{i} < \mathcal{Q} < K_{i+1}}} \quad \alpha_{i} \qquad \underset{\alpha_{i} < \mathcal{Q} < K_{i+1}}{\underbrace{K_{i} < \mathcal{Q} < K_{i+1}}} \quad \alpha_{i} \qquad \underset{\alpha_{i} < \mathcal{Q} < K_{i+1}}{\underbrace{K_{i} < \mathcal{Q} < K_{i+1}}} \quad \alpha_{i} \qquad \underset{\alpha_{i} < \mathcal{Q} < K_{i+1}}{\underbrace{K_{i} < \mathcal{Q} < K_{i+1}}} \quad \alpha_{i} \qquad \underset{\alpha_{i} < \mathcal{Q} < K_{i+1}}{\underbrace{K_{i} < \mathcal{Q} < K_{i+1}}} \quad \alpha_{i} \qquad \underset{\alpha_{i} < \mathcal{Q} < K_{i+1}}{\underbrace{K_{i} < \mathcal{Q} < K_{i+1}}} \quad \alpha_{i} \qquad \underset{\alpha_{i} < \mathcal{Q} < K_{i+1}}{\underbrace{K_{i} < \mathcal{Q} < K_{i+1}}} \quad \alpha_{i} \qquad \underset{\alpha_{i} < \mathcal{Q} < K_{i+1}}{\underbrace{K_{i} < \mathcal{Q} < K_{i+1}}} \quad \alpha_{i} \qquad \underset{\alpha_{i} < \mathcal{Q} < K_{i+1}}{\underbrace{K_{i} < \mathcal{Q} < K_{i+1}}} \quad \alpha_{i} \qquad \underset{\alpha_{i} < \mathcal{Q} < K_{i+1}}{\underbrace{K_{i} < \mathcal{Q} < K_{i+1}}}} \quad \alpha_{i} \qquad \underset{\alpha_{i} < \mathcal{Q} < K_{i+1}}{\underbrace{K_{i} < \mathcal{Q} < K_{i+1$$

$$OPT(i, j : h) = \min (EQ(i, j : h), SPLIT(i, j : h))$$

$$EQ(i, j : h) = W_{i,j:h} + OPT(i, j : h + 1)$$

$$SPLIT(i, j : h) = \min_{i < k < j} \{W_{i,j:h} + OPT(i, k : h_1(k)) + OPT(k, j : h_2(k))\}$$

Set initial conditions for ranges OPT(i,i+1,*)

$$OPT(i,i+1,1)=0 \qquad \qquad \underset{\kappa_{i} < \mathcal{Q} < K_{i+1}}{\underbrace{K_{i} < \mathcal{Q} < K_{i+1}}} \quad \alpha_{i} \qquad OPT(i,i+1,0)=\beta_{i} + \alpha_{i} \qquad \underset{\kappa_{i} < \mathcal{Q} < K_{i+1}}{\underbrace{K_{i} < \mathcal{Q} < K_{i+1}}} \quad \alpha_{i} \qquad \alpha_{i} \qquad OPT(i,i+1,0)=\beta_{i} + \alpha_{i} \qquad \alpha$$

$$OPT(i, j : h) = \min (EQ(i, j : h), SPLIT(i, j : h))$$

$$EQ(i, j : h) = W_{i,j:h} + OPT(i, j : h + 1)$$

$$SPLIT(i, j : h) = \min_{i < k < j} \{W_{i,j:h} + OPT(i, k : h_1(k)) + OPT(k, j : h_2(k))\}$$

Set initial conditions for ranges OPT(i,i+1,*)

$$OPT(i,i+1,1)=0 \qquad \qquad \bigcap_{K_i < Q < K_{i+1}} \alpha_i \qquad OPT(i,i+1,0)=\beta_i + \alpha_i \qquad \bigcap_{\beta_i = K_i = Q} \bigcap_{K_i < Q < K_{i+1} = \alpha_i} \alpha_i \qquad OPT(i,i+1,0)=\beta_i + \alpha_i \qquad \bigcap_{\beta_i = K_i = Q} \bigcap_{K_i < Q < K_{i+1} = \alpha_i} \alpha_i \qquad OPT(i,i+1,0)=\beta_i + \alpha_i \qquad \bigcap_{\beta_i = K_i = Q} \bigcap_{K_i < Q < K_{i+1} = \alpha_i} \alpha_i \qquad OPT(i,i+1,0)=\beta_i + \alpha_i \qquad \bigcap_{\beta_i = K_i = Q} \bigcap_{K_i < Q < K_{i+1} = \alpha_i} \alpha_i \qquad OPT(i,i+1,0)=\beta_i + \alpha_i \qquad \bigcap_{\beta_i = K_i = Q} \bigcap_{K_i < Q < K_{i+1} = \alpha_i} \alpha_i \qquad OPT(i,i+1,0)=\beta_i + \alpha_i \qquad \bigcap_{\beta_i = K_i < Q < K_{i+1} = \alpha_i} \alpha_i \qquad OPT(i,i+1,0)=\beta_i + \alpha_i \qquad \bigcap_{\beta_i = K_i < Q < K_{i+1} = \alpha_i} \alpha_i \qquad OPT(i,i+1,0)=\beta_i + \alpha_i \qquad \bigcap_{\beta_i = K_i < Q < K_{i+1} = \alpha_i} \alpha_i \qquad OPT(i,i+1,0)=\beta_i + \alpha_i \qquad \bigcap_{\beta_i = K_i < Q < K_{i+1} = \alpha_i} \alpha_i \qquad OPT(i,i+1,0)=\beta_i + \alpha_i \qquad \bigcap_{\beta_i = K_i < Q < K_{i+1} = \alpha_i} \alpha_i \qquad OPT(i,i+1,0)=\beta_i + \alpha_i \qquad \bigcap_{\beta_i = K_i < Q < K_{i+1} = \alpha_i} \alpha_i \qquad \bigcap_{\beta_i = K_i < Q < K_{i+1} = \alpha_i} \alpha_i \qquad \bigcap_{\beta_i = K_i < Q < K_{i+1} = \alpha_i} \alpha_i \qquad \bigcap_{\beta_i = K_i < Q < K_{i+1} = \alpha_i} \alpha_i \qquad \bigcap_{\beta_i = K_i < Q < K_{i+1} = \alpha_i} \alpha_i \qquad \bigcap_{\beta_i = K_i < Q < K_{i+1} = \alpha_i} \alpha_i \qquad \bigcap_{\beta_i = K_i < Q < K_{i+1} = \alpha_i} \alpha_i \qquad \bigcap_{\beta_i = K_i < Q < K_{i+1} = \alpha_i} \alpha_i \qquad \bigcap_{\beta_i = K_i < Q < K_{i+1} = \alpha_i} \alpha_i \qquad \bigcap_{\beta_i = K_i < Q < K_{i+1} = \alpha_i} \alpha_i \qquad \bigcap_{\beta_i = K_i < Q < K_{i+1} = \alpha_i} \alpha_i \qquad \bigcap_{\beta_i = K_i < Q < K_{i+1} = \alpha_i} \alpha_i \qquad \bigcap_{\beta_i = K_i < Q < K_{i+1} = \alpha_i} \alpha_i \qquad \bigcap_{\beta_i = K_i < Q < K_{i+1} = \alpha_i} \alpha_i \qquad \bigcap_{\beta_i = K_i < Q < K_{i+1} = \alpha_i} \alpha_i \qquad \bigcap_{\beta_i = K_i < Q < K_{i+1} = \alpha_i} \alpha_i \qquad \bigcap_{\beta_i = K_i < Q < K_i < Q < K_{i+1} = \alpha_i} \alpha_i \qquad \bigcap_{\beta_i = K_i < Q < K_i < Q < K_{i+1} = \alpha_i} \alpha_i \qquad \bigcap_{\beta_i = K_i < Q < K_i < Q < K_{i+1} = \alpha_i} \alpha_i \qquad \bigcap_{\beta_i = K_i < Q < K_i < Q < K_i < Q < K_i} \alpha_i \qquad \bigcap_{\beta_i = K_i < Q < K_i < Q < K_i} \alpha_i \qquad \bigcap_{\beta_i = K_i < Q < K_i < Q < K_i} \alpha_i \qquad \bigcap_{\beta_i = K_i < Q < K_i < Q < K_i} \alpha_i \qquad \bigcap_{\beta_i = K_i < Q < K_i < Q < K_i} \alpha_i \qquad \bigcap_{\beta_i = K_i < Q < K_i} \alpha_i \qquad \bigcap_{\beta_i = K_i < Q < K_i} \alpha_i \qquad \bigcap_{\beta_i = K_i < Q < K_i} \alpha_i \qquad \bigcap_{\beta_i = K_i < Q < K_i} \alpha_i \qquad \bigcap_{\beta_i = K_i < Q < K_i} \alpha_i \qquad \bigcap_{\beta_i = K_i < Q < K_i} \alpha_i \qquad \bigcap_{\beta_i = K_i < Q < K_i} \alpha_i \qquad \bigcap_{\beta_i = K_i < Q < K_i} \alpha_i \qquad \bigcap_{\beta_i = K_i < Q < K_i$$

Comments

Must restrict h ≤ j-i (can't have more holes than keys in interval)

$$OPT(i, j : h) = \min (EQ(i, j : h), SPLIT(i, j : h))$$

$$EQ(i, j : h) = W_{i,j:h} + OPT(i, j : h + 1)$$

$$SPLIT(i, j : h) = \min_{i < k < j} \{W_{i,j:h} + OPT(i, k : h_1(k)) + OPT(k, j : h_2(k))\}$$

Set initial conditions for ranges OPT(i,i+1,*)

$$OPT(i,i+1,1)=0 \qquad \qquad \underset{\kappa_{i}< Q< \kappa_{i+1}}{\underbrace{\kappa_{i}< Q< \kappa_{i+1}}} \quad \alpha_{i} \qquad OPT(i,i+1,0)=\beta_{i}+\alpha_{i} \qquad \underset{\beta_{i}}{\underbrace{\kappa_{i}=Q}} \quad \underset{\kappa_{i}< Q< \kappa_{i+1}}{\underbrace{\kappa_{i}< Q< \kappa_{i+1}}} \quad \alpha_{i} \qquad OPT(i,i+1,0)=\beta_{i}+\alpha_{i} \qquad \alpha_{i}$$

- Must restrict h ≤ j-i (can't have more holes than keys in interval)
- Need to fill in table in proper order, e.g.,

(a)
$$d = 0$$
 to n, (b) $i = 0$ to n-d, $j = i + d + 1$, (c) $h = (j-i)$ downto 0

$$OPT(i, j : h) = \min (EQ(i, j : h), SPLIT(i, j : h))$$

$$EQ(i, j : h) = W_{i,j:h} + OPT(i, j : h + 1)$$

$$SPLIT(i, j : h) = \min_{i < k < j} \{W_{i,j:h} + OPT(i, k : h_1(k)) + OPT(k, j : h_2(k))\}$$

Set initial conditions for ranges OPT(i,i+1,*)

- Must restrict h ≤ j-i (can't have more holes than keys in interval)
- Need to fill in table in proper order, e.g.,
 (a) d= 0 to n,
 (b) i=0 to n-d, j=i+d+1,
 (c) h =(j-i) downto 0
- Need O(1) method for computing h_i(k)
 - => O(j-i) to calculate OPT(i,j: h)
 - => $O(n^4)$ to fill in complete table

$$OPT(i, j : h) = \min (EQ(i, j : h), SPLIT(i, j : h))$$

$$EQ(i, j : h) = W_{i,j:h} + OPT(i, j : h + 1)$$

$$SPLIT(i, j : h) = \min_{i < k < j} \{W_{i,j:h} + OPT(i, k : h_1(k)) + OPT(k, j : h_2(k))\}$$

Set initial conditions for ranges OPT(i,i+1,*)

$$OPT(i,i+1,1)=0 \qquad \qquad \sum_{K_i < Q < K_{i+1}} \alpha_i \qquad OPT(i,i+1,0)=\beta_i + \alpha_i \qquad \qquad \beta_i \qquad \sum_{K_i < Q < K_{i+1}} \alpha_i \qquad \qquad \alpha_i \qquad OPT(i,i+1,0)=\beta_i + \alpha_i \qquad \qquad \beta_i \qquad \sum_{K_i < Q < K_{i+1}} \alpha_i \qquad \qquad \alpha_i \qquad OPT(i,i+1,0)=\beta_i + \alpha_i \qquad \qquad \beta_i \qquad \sum_{K_i < Q < K_{i+1}} \alpha_i \qquad \qquad \alpha_i \qquad OPT(i,i+1,0)=\beta_i + \alpha_i \qquad \qquad \beta_i \qquad \sum_{K_i < Q < K_{i+1}} \alpha_i \qquad \alpha_i \qquad OPT(i,i+1,0)=\beta_i + \alpha_i \qquad \qquad \beta_i \qquad \sum_{K_i < Q < K_{i+1}} \alpha_i \qquad \qquad \alpha_i \qquad OPT(i,i+1,0)=\beta_i + \alpha_i \qquad \alpha_i + \alpha$$

- Must restrict h ≤ j-i (can't have more holes than keys in interval)
- Need to fill in table in proper order, e.g.,
 (a) d= 0 to n,
 (b) i=0 to n-d, j=i+d+1,
 (c) h =(j-i) downto 0
- Need O(1) method for computing h_i(k)
 - => O(j-i) to calculate OPT(i,j: h)
 - => $O(n^4)$ to fill in complete table
- OPT(0,n+1:0) is optimal cost. Use standard DP backtracking to construct corresponding optimal tree

- Strongly used assumption β_i are all distinct to find `weightiest' keys
 - Assumption can be removed using perturbation argument

- Strongly used assumption β_i are all distinct to find `weightiest' keys
 - Assumption can be removed using perturbation argument
- All values constructed/compared in algorithm are subtree costs
 - in form $\sum a_i a_i + \sum b_i \beta_i$ where $0 \le a_i, b_i \le 2n$ are integral node depths

- Strongly used assumption β_i are all distinct to find `weightiest' keys
 - Assumption can be removed using perturbation argument
- All values constructed/compared in algorithm are subtree costs
 - in form $\sum a_i a_i + \sum b_i \beta_i$ where $0 \le a_i, b_i \le 2n$ are integral node depths
- Perturb input by setting $a'_{i}=a_{i}$, $\beta'_{i}=\beta_{i}+i\epsilon$ where ϵ is very small
 - => β'_i are all distinct

- Strongly used assumption β_i are all distinct to find `weightiest' keys
 - Assumption can be removed using perturbation argument
- All values constructed/compared in algorithm are subtree costs
 - in form $\sum a_i \alpha_i + \sum b_i \beta_i$ where $0 \le a_i, b_i \le 2n$ are integral node depths
- Perturb input by setting $a'_{i}=a_{i}$, $\beta'_{i}=\beta_{i}+i\epsilon$ where ϵ is very small
 - => β'_i are all distinct
- Since β'_i are all distinct, algorithm gives correct result for α'_i,β'_i
 - Easy to prove that optimum tree for α'_i,β'_i is optimum for α_i,β_i
 - => resulting tree is optimum for original α'_i, β'_i

- Strongly used assumption β_i are all distinct to find `weightiest' keys
 - Assumption can be removed using perturbation argument
- All values constructed/compared in algorithm are subtree costs
 - in form $\sum a_i \alpha_i + \sum b_i \beta_i$ where $0 \le a_i, b_i \le 2n$ are integral node depths
- Perturb input by setting $a'_{i}=a_{i}$, $\beta'_{i}=\beta_{i}+i\epsilon$ where ϵ is very small
 - => β'_i are all distinct
- Since β'_i are all distinct, algorithm gives correct result for α'_i,β'_i
 - Easy to prove that optimum tree for α'_i,β'_i is optimum for α_i,β_i
 - => resulting tree is optimum for original α'_i,β'_i
- In fact don't actually need to know value of ϵ

- Perturb input: $\alpha'_i = \alpha_i$, $\beta'_i = \beta_i + i\epsilon$ where ϵ is very small
 - Need to find optimum tree for α'_i,β'_i (which is also optimum for α'_i,β'_i)

- Perturb input: $\alpha'_{i}=\alpha_{i}$, $\beta'_{i}=\beta_{i}+i\epsilon$ where ϵ is very small
 - Need to find optimum tree for α'_{i} , β'_{i} (which is also optimum for α'_{i} , β'_{i})
- Recall that algorithm only performs additions/comparisons
 - All values are subtree costs $\sum a_i \alpha_i + \sum b_i \beta_i$ where $0 \le a_i, b_i \le 2n$ are integral

- Perturb input: $\alpha'_i = \alpha_i$, $\beta'_i = \beta_i + i\epsilon$ where ϵ is very small
 - Need to find optimum tree for α'_{i} , β'_{i} (which is also optimum for α'_{i} , β'_{i})
- Recall that algorithm only performs additions/comparisons
 - All values are subtree costs $\sum a_i \alpha_i + \sum b_i \beta_i$ where $0 \le a_i, b_i \le 2n$ are integral
- Don't actually need to know or store value of ϵ

- Perturb input: $\alpha'_i = \alpha_i$, $\beta'_i = \beta_i + i\epsilon$ where ϵ is very small
 - Need to find optimum tree for α'_i, β'_i (which is also optimum for α'_i, β'_i)
- Recall that algorithm only performs additions/comparisons
 - All values are subtree costs $\sum a_i \alpha_i + \sum b_i \beta_i$ where $0 \le a_i, b_i \le 2n$ are integral
- Don't actually need to know or store value of ϵ
- Every value in algorithm is in form $x = x_1 + x_2 \epsilon$, where $x_2 = O(n^3)$ is an integer
 - Forget ϵ . Store pair (x_1,x_2)

- Perturb input: $\alpha'_i = \alpha_i$, $\beta'_i = \beta_i + i\epsilon$ where ϵ is very small
 - Need to find optimum tree for α'_i, β'_i (which is also optimum for α'_i, β'_i)
- Recall that algorithm only performs additions/comparisons
 - All values are subtree costs $\sum a_i \alpha_i + \sum b_i \beta_i$ where $0 \le a_i, b_i \le 2n$ are integral
- Don't actually need to know or store value of ϵ
- Every value in algorithm is in form $x = x_1 + x_2 \epsilon$, where $x_2 = O(n^3)$ is an integer
 - Forget ϵ . Store pair (x_1,x_2)
- (A) Addition is pairwise-addition
 - $(x_1,x_2) + (y_1,y_2) = (x_1+y_1,x_2+y_2)$
- (C) Comparison is lexicographic-comparison
 - $(x_{1},x_{2}) < (y_{1},y_{2})$ iff $x_{1} < y_{1}$ or $x_{1} = y_{1}$ and $x_{2} = < y_{2}$

- Perturb input: $\alpha'_{i}=\alpha_{i}$, $\beta'_{i}=\beta_{i}+i\epsilon$ where ϵ is very small
 - Need to find optimum tree for α'_{i} , β'_{i} (which is also optimum for α'_{i} , β'_{i})
- Recall that algorithm only performs additions/comparisons
 - All values are subtree costs $\sum a_i \alpha_i + \sum b_i \beta_i$ where $0 \le a_i, b_i \le 2n$ are integral
- Don't actually need to know or store value of ϵ
- Every value in algorithm is in form $x = x_1 + x_2 \epsilon$, where $x_2 = O(n^3)$ is an integer
 - Forget ϵ . Store pair (x_1,x_2)
- (A) Addition is pairwise-addition
 - $(x_1,x_2) + (y_1,y_2) = (x_1+y_1,x_2+y_2)$
- (C) Comparison is lexicographic-comparison
 - $(x_{1},x_{2}) < (y_{1},y_{2})$ iff $x_{1} < y_{1}$ or $x_{1} = y_{1}$ and $x_{2} = < y_{2}$
- Both (A) and (C) can be implemented in O(1) time without knowing ϵ
- Perturbed algorithm has same asymptotic running time as regular one

 Designed O(n⁴) algorithm for constructing OBCSTs when C={<,=} and need to report Exact Failures

- Designed O(n⁴) algorithm for constructing OBCSTs when C={<,=} and need to report Exact Failures
- Strongly used assumption β_i are all distinct
 - Assumption can be removed using perturbation argument

- Designed O(n⁴) algorithm for constructing OBCSTs when C={<,=} and need to report Exact Failures
- Strongly used assumption β_i are all distinct
 - Assumption can be removed using perturbation argument
- To solve problem C={<,=} with Non-Exact failures
 - only need to modify initial conditions

- Designed O(n⁴) algorithm for constructing OBCSTs when C={<,=} and need to report Exact Failures
- Strongly used assumption β_i are all distinct
 - Assumption can be removed using perturbation argument
- To solve problem C={<,=} with Non-Exact failures
 - only need to modify initial conditions
- Symmetry argument gives algorithms for C={≤, =}

- Designed O(n⁴) algorithm for constructing OBCSTs when C={<,=} and need to report Exact Failures
- Strongly used assumption β_i are all distinct
 - Assumption can be removed using perturbation argument
- To solve problem C={<,=} with Non-Exact failures
 - only need to modify initial conditions
- Symmetry argument gives algorithms for C={≤, =}
- Algorithms for $C=\{<, \le, =\}$ requires only slight modifications of SPLIT(i,j: h)

- Designed O(n⁴) algorithm for constructing OBCSTs when C={<,=} and need to report Exact Failures
- Strongly used assumption β_i are all distinct
 - Assumption can be removed using perturbation argument
- To solve problem C={<,=} with Non-Exact failures
 - only need to modify initial conditions
- Symmetry argument gives algorithms for C={≤, =}
- Algorithms for $C=\{<, \le, =\}$ requires only slight modifications of SPLIT(i,j: h)
- If C={<, ≤}, ranges have no holes and problem can be solved in O(n log n) similar to Hu-Tucker

Outline

- History
 - Binary Search Trees
 - Hu-Tucker Trees
 - AKKL Trees
- Optimal Binary Comparison Search Trees with Failures
 - Problem Models
 - List of New Results
- New Results
 - The Main Lemma
 - Structural Properties of OBCSTs
 - Dynamic Programming for OBCSTs
 - Proof of The Main Lemma (Sketch)
- Extensions and Open Problems

Let T be an OBCST. Assume

y<x (x>y is symmetric)

- y<x (x>y is symmetric)
- (Q=x) is above (Q=y)

- y<x (x>y is symmetric)
- (Q=x) is above (Q=y)
- => $\beta_x < \beta_y$ will show contradiction

- y<x (x>y is symmetric)
- (Q=x) is above (Q=y)
- => $\beta_x < \beta_y$ will show contradiction
- · => β_x ≥ β_y and Thm correct

- y<x (x>y is symmetric)
- (Q=x) is above (Q=y)
- => $\beta_x < \beta_y$ will show contradiction
- => $\beta_x \ge \beta_y$ and Thm correct
- All comparisons between
 (Q=x) and (Q=y) are inequalities
 - otherwise \exists (Q=w) on path with either $\beta_x < \beta_w$ or $\beta_w < \beta_y$ and can show contradiction with (x,w) or (w,y)

- y<x (x>y is symmetric)
- (Q=x) is above (Q=y)
- => $\beta_x < \beta_y$ will show contradiction
- · => β_x ≥ β_y and Thm correct
- All comparisons between
 (Q=x) and (Q=y) are inequalities
 - otherwise \exists (Q=w) on path with either $\beta_x < \beta_w$ or $\beta_w < \beta_y$ and can show contradiction with (x,w) or (w,y)
- x,y ∈ Range((Q=x)) by definition
 If x,y ∈ Range((Q=y))
 then could swap (Q=X) and (Q=y)
 to get cheaper tree.

- y<x (x>y is symmetric)
- (Q=x) is above (Q=y)
- => $\beta_x < \beta_y$ will show contradiction
- All comparisons between
 (Q=x) and (Q=y) are inequalities

- y<x (x>y is symmetric)
- (Q=x) is above (Q=y)
- => $\beta_x < \beta_y$ will show contradiction
- All comparisons between
 (Q=x) and (Q=y) are inequalities
- Since x∉ Range((Q=y)
 => Path (Q=x) to (Q=y) contains (Q<z)
 s.t z's children's ranges are [i,z,h'), [z,j,h")
 where y∈ [i,z) and x ∈[z,j).
 z is called splitter.
- P' is (red) path from (Q=x) to (Q=y)

- P is path in T from (Q=x) to (Q=y). y < x. z is x-y splitter on P
- P' is path from (Q=x) to (Q=z)

- P is path in T from (Q=x) to (Q=y). y< x. z is x-y splitter on P
- P' is path from (Q=x) to (Q=z)
- Proof will be case analysis of structure of P'
- For every P', will show can build cheaper OBCST T' contradicting optimality of T

- P is path in T from (Q=x) to (Q=y). y< x. z is x-y splitter on P
- P' is path from (Q=x) to (Q=z)
- Proof will be case analysis of structure of P'
- For every P', will show can build cheaper OBCST T' contradicting optimality of T

Case 1: P' is one edge

- P is path in T from (Q=x) to (Q=y). y< x. z is x-y splitter on P
- P' is path from (Q=x) to (Q=z)
- Proof will be case analysis of structure of P'
- For every P', will show can build cheaper OBCST T' contradicting optimality of T

Case 1: P' is one edge

- P is path in T from (Q=x) to (Q=y). y< x. z is x-y splitter on P
- P' is path from (Q=x) to (Q=z)
- Proof will be case analysis of structure of P'
- For every P', will show can build cheaper OBCST T' contradicting optimality of T

Case 1: P' is one edge

$$y \in A =$$
 Weight(A) $\geq \beta_y > \beta_x$

- P is path in T from (Q=x) to (Q=y). y< x. z is x-y splitter on P
- P' is path from (Q=x) to (Q=z)
- Proof will be case analysis of structure of P'
- For every P', will show can build cheaper OBCST T' contradicting optimality of T

Case 1: P' is one edge

 $y \in A =$ Weight(A) $\geq \beta_y > \beta_x$

=> replacing left subtree by right subtree in T yields new BCST T' with lower cost than T, contradicting T being OBCST

- P is path in T from (Q=x) to (Q=y). y<x. z is x-y splitter on P
- P' is path from (Q=x) to (Q=z)

Case 2: P' is two edges ≠<

- P is path in T from (Q=x) to (Q=y). y<x. z is x-y splitter on P
- P' is path from (Q=x) to (Q=z)

Case 2: P' is two edges ≠<

$$y \in A =$$
 Weight(A) $\geq \beta_y > \beta_x$

- P is path in T from (Q=x) to (Q=y). y<x. z is x-y splitter on P
- P' is path from (Q=x) to (Q=z)

Case 2: P' is two edges ≠<

$$y \in A =$$
 Weight(A) $\geq \beta_y > \beta_x$

=> again replacing left tree by right tree in T yields new BCST T' with lower cost than T, contradicting T being OBCST

- P is path in T from (Q=x) to (Q=y). y<x. z is x-y splitter on P
- P' is path from (Q=x) to (Q=z)
- Proof will be case analysis of structure of P'

- P is path in T from (Q=x) to (Q=y). y<x. z is x-y splitter on P
- P' is path from (Q=x) to (Q=z)
- Proof will be case analysis of structure of P'
- Already saw first two cases of P'
 - Showed for each that assumptions allow replacing subtree rooted at (Q=x) with cheaper subtree for some range.
 Replacement leads to cheaper BCST, contradicting optimality of T

- P is path in T from (Q=x) to (Q=y). y<x. z is x-y splitter on P
- P' is path from (Q=x) to (Q=z)
- Proof will be case analysis of structure of P'
- Already saw first two cases of P'
 - Showed for each that assumptions allow replacing subtree rooted at (Q=x) with cheaper subtree for some range.
 Replacement leads to cheaper BCST, contradicting optimality of T
- The full proof splits P' into 7 cases.
 - For each, can show replacement with cheaper subtree, contradicting optimality of T.

Outline

- History
 - Binary Search Trees
 - Hu-Tucker Trees
 - AKKL Trees
- Optimal Binary Comparison Search Trees with Failures
 - Problem Models
 - List of New Results
- Our Results
 - The Main Lemma
 - Structural Properties of OBCSTs
 - Dynamic Programming for OBCSTs
 - Proof of The Main Lemma
- Extensions and Open Problems

Extensions & Open Problems

- If the β_i,α_i are probabilities (sum to 1) can show an O(n) algorithm that constructs BCST within additive error 3 of optimal for Exact Failure Case
 - Modification of similar algorithm for Hu-Tucker case.
- O(n⁴) is quite high for worst case.
 - Can we do better?