
New Results on
Binary Comparison

Search Trees

1

Marek Chrobak, Neal Young
UC Riverside

Ian Munro
U Waterloo

Mordecai Golin
HKUST

Early version of paper at arxiv.org

Optimal search trees with 2-way comparisons  
Marek Chrobak, Mordecai Golin, J. Ian Munro, Neal E. Young  
arXiv:1505.00357

2

3

Main Result
Constructing Min-Cost Binary Comparison Search Trees

3

Main Result
Constructing Min-Cost Binary Comparison Search Trees

Wasn’t this completely understood 45 years ago??!!

3

Main Result
Constructing Min-Cost Binary Comparison Search Trees

Wasn’t this completely understood 45 years ago??!!

Yes and No …

Outline
• History

• Binary Search Trees
• Hu-Tucker Trees
• AKKL Trees

• Optimal Binary Comparison Search Trees with Failures
• Problem Models
• List of New Results

• New Results
• The Main Lemma
• Structural Properties of OBCSTs
• Dynamic Programming for OBCSTs
• Proof of The Main Lemma (Sketch)

• Extensions and Open Problems

4

Knuth’s Optimal BSTs

5

Knuth’s Optimal BSTs
• Knuth [1971] gave algorithm for constructing Optimal Binary

Search Trees

5

Knuth’s Optimal BSTs
• Knuth [1971] gave algorithm for constructing Optimal Binary

Search Trees

• Known: n keys K1, K2, …., Kn.

5

Knuth’s Optimal BSTs
• Knuth [1971] gave algorithm for constructing Optimal Binary

Search Trees

• Known: n keys K1, K2, …., Kn.

• Preprocess keys to create binary tree. Tree query compares query
value Q to keys. and returns appropriate response from

• i such that Q = Ki

• i such that Ki < Q < Ki+1

• Q < K1 or Kn < Q

5

Knuth’s Optimal BSTs
• Knuth [1971] gave algorithm for constructing Optimal Binary

Search Trees

• Known: n keys K1, K2, …., Kn.

• Preprocess keys to create binary tree. Tree query compares query
value Q to keys. and returns appropriate response from

• i such that Q = Ki

• i such that Ki < Q < Ki+1

• Q < K1 or Kn < Q

• Input: probability of successful and unsuccessful searches

5

�1,�2, . . . ,�n and ↵0,↵1, . . . ,↵n

�i = Pr(Q = Ki) ↵i = Pr(Ki < Q < Ki+1)

6

Knuth’s Optimal BSTs

6

Knuth’s Optimal BSTs

Q=A?

Q=C?Q<A

Q=B? C<Q

B<Q<CA<Q<B

α0

α1 α2

α3

β1

β3

β2

Q=B?

Q=C?Q=A?

C<QA<Q<BQ<A B<Q<C

β1

β2

β3

α0 α1 α2 α3

6

Knuth’s Optimal BSTs

Q=A?

Q=C?Q<A

Q=B? C<Q

B<Q<CA<Q<B

α0

α1 α2

α3

β1

β3

β2

Q=B?

Q=C?Q=A?

C<QA<Q<BQ<A B<Q<C

β1

β2

β3

α0 α1 α2 α3

�1,�2, . . . ,�n and ↵0,↵1, . . . ,↵n

�i = Pr(Q = Ki) ↵i = Pr(Ki < Q < Ki+1)

Knuth’s Optimal BSTs

7

Knuth’s Optimal BSTs
• Knuth [1971] gave algorithm for constructing Optimal Binary Search Trees

7

Knuth’s Optimal BSTs
• Knuth [1971] gave algorithm for constructing Optimal Binary Search Trees

• Input was probability of successful and unsuccessful searches 

�1,�2, . . . ,�n and ↵0,↵1, . . . ,↵n

7

Knuth’s Optimal BSTs
• Knuth [1971] gave algorithm for constructing Optimal Binary Search Trees

• Input was probability of successful and unsuccessful searches 

�i = Pr(Q = Ki)

�1,�2, . . . ,�n and ↵0,↵1, . . . ,↵n

↵i = Pr(Ki < Q < Ki+1)

7

Knuth’s Optimal BSTs
• Knuth [1971] gave algorithm for constructing Optimal Binary Search Trees

• Input was probability of successful and unsuccessful searches 

• Cost of tree was average path length

�i = Pr(Q = Ki)

�1,�2, . . . ,�n and ↵0,↵1, . . . ,↵n

↵i = Pr(Ki < Q < Ki+1)

7

Knuth’s Optimal BSTs
• Knuth [1971] gave algorithm for constructing Optimal Binary Search Trees

• Input was probability of successful and unsuccessful searches 

• Cost of tree was average path length

�i = Pr(Q = Ki)

�1,�2, . . . ,�n and ↵0,↵1, . . . ,↵n

↵i = Pr(Ki < Q < Ki+1)

7

nX

i=1

�i depth(�i) +
nX

i=0

↵i depth(↵i)

Knuth’s Optimal BSTs
• Knuth [1971] gave algorithm for constructing Optimal Binary Search Trees

• Input was probability of successful and unsuccessful searches 

• Cost of tree was average path length

• Dynamic Programming Algorithm

• Constructed O(n^2) DP table

• Knuth reduced O(n^3) running time to O(n^2)

• Technique later generalized as Quadrangle Inequality method by F. Yao

�i = Pr(Q = Ki)

�1,�2, . . . ,�n and ↵0,↵1, . . . ,↵n

↵i = Pr(Ki < Q < Ki+1)

7

nX

i=1

�i depth(�i) +
nX

i=0

↵i depth(↵i)

Knuth’s Optimal BSTs

8

Knuth’s Optimal BSTs

Q=A?

Q=C?Q<A

Q=B? C<Q

B<Q<CA<Q<B

α0

α1 α2

α3

β1

β3

β2

Q=B?

Q=C?Q=A?

C<QA<Q<BQ<A B<Q<C

β1

β2

β3

α0 α1 α2 α3

8

Knuth’s Optimal BSTs

Q=A?

Q=C?Q<A

Q=B? C<Q

B<Q<CA<Q<B

α0

α1 α2

α3

β1

β3

β2

Q=B?

Q=C?Q=A?

C<QA<Q<BQ<A B<Q<C

β1

β2

β3

α0 α1 α2 α3

(�1 + �3) + 2(↵0 + ↵1 + ↵2 + ↵3)(↵0 + �3) + 2(�2 + ↵3) + 3(↵1 + ↵2)

8

Knuth’s Optimal BSTs

Q=A?

Q=C?Q<A

Q=B? C<Q

B<Q<CA<Q<B

α0

α1 α2

α3

β1

β3

β2

Q=B?

Q=C?Q=A?

C<QA<Q<BQ<A B<Q<C

β1

β2

β3

α0 α1 α2 α3

(�1 + �3) + 2(↵0 + ↵1 + ↵2 + ↵3)(↵0 + �3) + 2(�2 + ↵3) + 3(↵1 + ↵2)

(�1,�2,�3) = (.5, .1, .2)

↵i ⌘ .05 Cost = 0.85 Cost = 1.10

8

Knuth’s Optimal BSTs

Q=A?

Q=C?Q<A

Q=B? C<Q

B<Q<CA<Q<B

α0

α1 α2

α3

β1

β3

β2

Q=B?

Q=C?Q=A?

C<QA<Q<BQ<A B<Q<C

β1

β2

β3

α0 α1 α2 α3

(�1 + �3) + 2(↵0 + ↵1 + ↵2 + ↵3)(↵0 + �3) + 2(�2 + ↵3) + 3(↵1 + ↵2)

(�1,�2,�3) = (.5, .1, .2)

↵i ⌘ .05

(↵1,↵2,↵3,↵4) = (0.7, 0.1, 0.1, 0.1)

(�1,�2,�3) = (.3, .3, .3)

Cost = 0.85

Cost = 1.05

Cost = 1.10

Cost = 0.80

8

Hu-Tucker Binary Comparison Search Trees

9

Hu-Tucker Binary Comparison Search Trees

• Knuth constructed  
optimal binary search trees

9

Q=B

Q<B B<Q

Hu-Tucker Binary Comparison Search Trees

• Knuth constructed  
optimal binary search trees

9

Q=B

Q<B B<Q

Q<B
Q=B

Q<B B<Q

B

• Trees structure was binary but nodes
used ternary comparisons. Each node
needed two binary comparisons to
implement the search

Hu-Tucker Binary Comparison Search Trees

• Knuth constructed  
optimal binary search trees

9

Q=B

Q<B B<Q

Q<B
Q=B

Q<B B<Q

B

• Trees structure was binary but nodes
used ternary comparisons. Each node
needed two binary comparisons to
implement the search

• In a binary comparison search tree,
each internal node performs only
one comparison. Searches all
terminate at leaves.

• First such trees constructed by  
Hu-Tucker, also in 1971. O(n log n)

Hu-Tucker Binary Comparison Search Trees

10

Hu-Tucker Binary Comparison Search Trees

10

Q<C

Q<DQ<B

DBA Cβ1 β2 β3 β4

Q<D

Q<C

Q<B

D

B

A

C

β1

β2 β3

β4

Hu-Tucker Binary Comparison Search Trees

10

• Hu Tucker (1971) & Garsia-Wachs (1977)
• Assumes all searches are successful;

no failures allowed.  
Input is only β1, β2, …, βn, with no αi s.

Q<C

Q<DQ<B

DBA Cβ1 β2 β3 β4

Q<D

Q<C

Q<B

D

B

A

C

β1

β2 β3

β4

Hu-Tucker Binary Comparison Search Trees

10

• Hu Tucker (1971) & Garsia-Wachs (1977)
• Assumes all searches are successful;

no failures allowed.  
Input is only β1, β2, …, βn, with no αi s.

• Internal nodes are < comparisons.  
Searches all terminate at leaves

Q<C

Q<DQ<B

DBA Cβ1 β2 β3 β4

Q<D

Q<C

Q<B

D

B

A

C

β1

β2 β3

β4

Hu-Tucker Binary Comparison Search Trees

10

• Hu Tucker (1971) & Garsia-Wachs (1977)
• Assumes all searches are successful;

no failures allowed.  
Input is only β1, β2, …, βn, with no αi s.

• Internal nodes are < comparisons.  
Searches all terminate at leaves

• Problem is to find tree with  
minimum weighted (average) external
path length

Q<C

Q<DQ<B

DBA Cβ1 β2 β3 β4

Q<D

Q<C

Q<B

D

B

A

C

β1

β2 β3

β4

Hu-Tucker Binary Comparison Search Trees

10

• Hu Tucker (1971) & Garsia-Wachs (1977)
• Assumes all searches are successful;

no failures allowed.  
Input is only β1, β2, …, βn, with no αi s.

• Internal nodes are < comparisons.  
Searches all terminate at leaves

• Problem is to find tree with  
minimum weighted (average) external
path length

• O(n log n) algorithm

Q<C

Q<DQ<B

DBA Cβ1 β2 β3 β4

Q<D

Q<C

Q<B

D

B

A

C

β1

β2 β3

β4

Outline
• History

• Binary Search Trees
• Hu-Tucker Trees
• AKKL Trees

• Optimal Binary Comparison Search Trees with Failures
• Problem Models
• List of New Results

• New Results
• The Main Lemma
• Structural Properties of OBCSTs
• Dynamic Programming for OBCSTs
• Proof of The Main Lemma (Sketch)

• Extensions and Open Problems

11

12

Adding Equality Comparisons

12

Adding Equality Comparisons
The Knuth trees use three-way comparisons at each node.
These are implemented in modern machines using two two-way
comparisons (one < and one =).
Hu-Tucker trees use only one two-way comparison (a <) at each
node.

12

Adding Equality Comparisons

. . . machines that cannot make three-way comparisons
at once. . . will have to make two comparisons. . . it may
well be best to have a binary tree whose internal nodes
specify either an equality test or a less-than test but not
both.

The Knuth trees use three-way comparisons at each node.
These are implemented in modern machines using two two-way
comparisons (one < and one =).
Hu-Tucker trees use only one two-way comparison (a <) at each
node.

12

Adding Equality Comparisons

D. E. Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching.
Addison-Wesley, 2nd edition, 1998. [§6.2.2 ex. 33],

. . . machines that cannot make three-way comparisons
at once. . . will have to make two comparisons. . . it may
well be best to have a binary tree whose internal nodes
specify either an equality test or a less-than test but not
both.

The Knuth trees use three-way comparisons at each node.
These are implemented in modern machines using two two-way
comparisons (one < and one =).
Hu-Tucker trees use only one two-way comparison (a <) at each
node.

13

Adding Equality Comparisons: AKKL[2001]

13

Adding Equality Comparisons: AKKL[2001]

Q<D

Q<C

Q<B

D

B

A

C

β1

β2 β3

β4

Q<D

Q<C

Q=B

D

A

B

C

y n

n

n

y

y

β1

β2 β3

β4

Hu-Tucker Tree AKKL Tree

• AKKL trees are min cost trees with more power. 
 instead of being restricted to be <, comparisons can be = OR <

13

Adding Equality Comparisons: AKKL[2001]

Q<D

Q<C

Q<B

D

B

A

C

β1

β2 β3

β4

Q<D

Q<C

Q=B

D

A

B

C

y n

n

n

y

y

β1

β2 β3

β4

Hu-Tucker Tree AKKL Tree

• AKKL trees are min cost trees with more power. 
 instead of being restricted to be <, comparisons can be = OR <

• AKKL trees include HT Trees

13

Adding Equality Comparisons: AKKL[2001]

Q<D

Q<C

Q<B

D

B

A

C

β1

β2 β3

β4

Q<D

Q<C

Q=B

D

A

B

C

y n

n

n

y

y

β1

β2 β3

β4

Hu-Tucker Tree AKKL Tree

• AKKL trees are min cost trees with more power. 
 instead of being restricted to be <, comparisons can be = OR <

• AKKL trees include HT Trees
• AKKL trees can be cheaper than HT Trees if some βi much larger  

than others

13

Adding Equality Comparisons: AKKL[2001]

Q<D

Q<C

Q<B

D

B

A

C

β1

β2 β3

β4

Q<D

Q<C

Q=B

D

A

B

C

y n

n

n

y

y

β1

β2 β3

β4

Hu-Tucker Tree AKKL Tree

• AKKL trees are min cost trees with more power. 
 instead of being restricted to be <, comparisons can be = OR <

• AKKL trees include HT Trees
• AKKL trees can be cheaper than HT Trees if some βi much larger  

than others
• AKKL trees more difficult to construct

14

Adding Equality Comparisons: AKKL[2001]

• Anderson, Kannan, Karloff, Ladner [2002] extended Hu-Tucker by allowing  
= comparisons. AKKL find min-cost tree when the n-1 internal node
comparisons are allowed to be in {=,<}.

14

Adding Equality Comparisons: AKKL[2001]

• Anderson, Kannan, Karloff, Ladner [2002] extended Hu-Tucker by allowing  
= comparisons. AKKL find min-cost tree when the n-1 internal node
comparisons are allowed to be in {=,<}.

• Useful when some βi are very large (relatively)

14

Adding Equality Comparisons: AKKL[2001]

• Anderson, Kannan, Karloff, Ladner [2002] extended Hu-Tucker by allowing  
= comparisons. AKKL find min-cost tree when the n-1 internal node
comparisons are allowed to be in {=,<}.

• Useful when some βi are very large (relatively)

• AKKL algorithm runs in O(n4) time.

14

Adding Equality Comparisons: AKKL[2001]

• Anderson, Kannan, Karloff, Ladner [2002] extended Hu-Tucker by allowing  
= comparisons. AKKL find min-cost tree when the n-1 internal node
comparisons are allowed to be in {=,<}.

• Useful when some βi are very large (relatively)

• AKKL algorithm runs in O(n4) time.
• AKKL note this improves running time of O(n5) claimed by Spuler [1994]

in his thesis

14

Adding Equality Comparisons: AKKL[2001]

• Anderson, Kannan, Karloff, Ladner [2002] extended Hu-Tucker by allowing  
= comparisons. AKKL find min-cost tree when the n-1 internal node
comparisons are allowed to be in {=,<}.

• Useful when some βi are very large (relatively)

• AKKL algorithm runs in O(n4) time.
• AKKL note this improves running time of O(n5) claimed by Spuler [1994]

in his thesis
• Spuler only states O(n5) algorithm but doesn’t prove that it produces

optimal tree, so AKKL is really first polynomial time algorithm

14

Adding Equality Comparisons: AKKL[2001]

• Anderson, Kannan, Karloff, Ladner [2002] extended Hu-Tucker by allowing  
= comparisons. AKKL find min-cost tree when the n-1 internal node
comparisons are allowed to be in {=,<}.

• Useful when some βi are very large (relatively)

• AKKL algorithm runs in O(n4) time.
• AKKL note this improves running time of O(n5) claimed by Spuler [1994]

in his thesis
• Spuler only states O(n5) algorithm but doesn’t prove that it produces

optimal tree, so AKKL is really first polynomial time algorithm

• Reason problem is difficult is that equality nodes can create holes in
ranges. This could dramatically (exponentially?) increase search space,
destroying DP approach

14

Adding Equality Comparisons: AKKL[2001]

• Anderson, Kannan, Karloff, Ladner [2002] extended Hu-Tucker by allowing  
= comparisons. AKKL find min-cost tree when the n-1 internal node
comparisons are allowed to be in {=,<}.

• Useful when some βi are very large (relatively)

• AKKL algorithm runs in O(n4) time.
• AKKL note this improves running time of O(n5) claimed by Spuler [1994]

in his thesis
• Spuler only states O(n5) algorithm but doesn’t prove that it produces

optimal tree, so AKKL is really first polynomial time algorithm

• Reason problem is difficult is that equality nodes can create holes in
ranges. This could dramatically (exponentially?) increase search space,
destroying DP approach
• AKKL show that if equality comparison exists, then it is always largest

probability in range. Allows recovering DP approach with ranges of
description size O(n3) (compared to Knuth’s O(n2))

14

Adding Equality Comparisons: AKKL[2001]

15

Adding Equality Comparisons: AKKL[2001]

Q<D

Q<C

Q<B

D

B

A

C

β1

β2 β3

β4

Q<D

Q<C

Q=B

D

A

B

C

y n

n

n

y

y

β1

β2 β3

β4

Hu-Tucker Tree AKKL Tree

• Comment 1 : Other problem in AKKL is how to deal with repeated weights
 This was hardest part.

• Comment 2: Both Hu-Tucker and AKKL only work when failures don’t occur. 
I.e., only βi are allowed and not αi.

16

So Far + Obvious Open Problem

16

So Far + Obvious Open Problem
• Optimal Binary Search Trees

• Input:
• O(n2) Knuth

• Optimal Binary Comparison Search Trees
• Input:
• C = {<}: O(n logn) Hu-Tucker & Garsia-Wachs
• C = {=,<}: O(n4) AKKL

�i = Pr(Q = Ki); ↵i = Pr(Ki�1 < Q < Ki)

�i = Pr(Q = Ki); failures not allowed

16

So Far + Obvious Open Problem
• Optimal Binary Search Trees

• Input:
• O(n2) Knuth

• Optimal Binary Comparison Search Trees
• Input:
• C = {<}: O(n logn) Hu-Tucker & Garsia-Wachs
• C = {=,<}: O(n4) AKKL

�i = Pr(Q = Ki); ↵i = Pr(Ki�1 < Q < Ki)

�i = Pr(Q = Ki); failures not allowed

• Obvious Questions
• Can we build OBCSTs that allow failures?

• If yes, for which sets of comparisons?
• Answer is yes, (for all sets of comparisons)  

but first need to define problem models

Outline
• History

• Binary Search Trees
• Hu-Tucker Trees
• AKKL Trees

• Optimal Binary Comparison Search Trees with Failures
• Problem Models
• List of New Results

• New Results
• The Main Lemma
• Structural Properties of OBCSTs
• Dynamic Programming for OBCSTs
• Proof of The Main Lemma (Sketch)

• Extensions and Open Problems

17

18

BCSTs with Failure Probabilities

Q=DQ=C

Q<D

D<QDC<Q<DC

y n

nn yy

Q=BQ<A

Q<B

B<Q<CBA<Q<BQ<A

y n

nn yy

Q=A

Q<C

A

y

y

n

n

α0 α1 α2

α3 α4

β1

β2

β3 β4

Q=DQ=C

Q<D

D<QDC<Q<DC

y n

nn yy

Q<A

Q<B

Q=A

B<Q<C

A

A<Q<B

Q<A

y n

n

n

y

y

Q=B

Q<C

B

y

y

n

n

α0

α1 α2

α3 α4

β2

β1 β3 β4

18

BCSTs with Failure Probabilities

Q=DQ=C

Q<D

D<QDC<Q<DC

y n

nn yy

Q=BQ<A

Q<B

B<Q<CBA<Q<BQ<A

y n

nn yy

Q=A

Q<C

A

y

y

n

n

α0 α1 α2

α3 α4

β1

β2

β3 β4

Q=DQ=C

Q<D

D<QDC<Q<DC

y n

nn yy

Q<A

Q<B

Q=A

B<Q<C

A

A<Q<B

Q<A

y n

n

n

y

y

Q=B

Q<C

B

y

y

n

n

α0

α1 α2

α3 α4

β2

β1 β3 β4

• Allows Failures (βi and αi).
• Call this complete input. HT has restricted input.

18

BCSTs with Failure Probabilities

Q=DQ=C

Q<D

D<QDC<Q<DC

y n

nn yy

Q=BQ<A

Q<B

B<Q<CBA<Q<BQ<A

y n

nn yy

Q=A

Q<C

A

y

y

n

n

α0 α1 α2

α3 α4

β1

β2

β3 β4

Q=DQ=C

Q<D

D<QDC<Q<DC

y n

nn yy

Q<A

Q<B

Q=A

B<Q<C

A

A<Q<B

Q<A

y n

n

n

y

y

Q=B

Q<C

B

y

y

n

n

α0

α1 α2

α3 α4

β2

β1 β3 β4

• Allows Failures (βi and αi).
• Call this complete input. HT has restricted input.

• Tree for n keys has 2n+1 leaves

18

BCSTs with Failure Probabilities

Q=DQ=C

Q<D

D<QDC<Q<DC

y n

nn yy

Q=BQ<A

Q<B

B<Q<CBA<Q<BQ<A

y n

nn yy

Q=A

Q<C

A

y

y

n

n

α0 α1 α2

α3 α4

β1

β2

β3 β4

Q=DQ=C

Q<D

D<QDC<Q<DC

y n

nn yy

Q<A

Q<B

Q=A

B<Q<C

A

A<Q<B

Q<A

y n

n

n

y

y

Q=B

Q<C

B

y

y

n

n

α0

α1 α2

α3 α4

β2

β1 β3 β4

• Allows Failures (βi and αi).
• Call this complete input. HT has restricted input.

• Tree for n keys has 2n+1 leaves
• Distinguishing between Q==Ki and Ki < Q < Ki+1  

 always requires querying (Q=Ki)

19

Using Different Types of Comparisons

Q=D

Q<D

D<QD

C<Q<D

y n

ny

Q<B

Q=A

A<Q<B

A

y n

n

n

y

y

Q=C

Q≤C

C

y

y

n

n

Q=BQ<A

Q<A B B<Q<C
α0 α1 α2

α3

α4β1

β2

β3

β4

y n

Q=DQ=C

Q<D

D<QDC<Q<DC

y n

nn yy

Q<A

Q<B

Q=A

B<Q<C

A

A<Q<B

Q<A

y n

n

n

y

y

Q=B

Q<C

B

y

y

n

n

α0

α1 α2

α3 α4

β2

β1 β3 β4

19

Using Different Types of Comparisons

• Left Tree uses {<,=}. Right Tree uses {<, ≤, =}
• Minimum cost BCST is minimum taken over all trees using

given set of comparisons C, e.g., C={<,=} or C={<, ≤, =}

Q=D

Q<D

D<QD

C<Q<D

y n

ny

Q<B

Q=A

A<Q<B

A

y n

n

n

y

y

Q=C

Q≤C

C

y

y

n

n

Q=BQ<A

Q<A B B<Q<C
α0 α1 α2

α3

α4β1

β2

β3

β4

y n

Q=DQ=C

Q<D

D<QDC<Q<DC

y n

nn yy

Q<A

Q<B

Q=A

B<Q<C

A

A<Q<B

Q<A

y n

n

n

y

y

Q=B

Q<C

B

y

y

n

n

α0

α1 α2

α3 α4

β2

β1 β3 β4

19

Using Different Types of Comparisons

• Left Tree uses {<,=}. Right Tree uses {<, ≤, =}
• Minimum cost BCST is minimum taken over all trees using

given set of comparisons C, e.g., C={<,=} or C={<, ≤, =}
• C is input to the problem.

• Algorithm is different for different Cs.

Q=D

Q<D

D<QD

C<Q<D

y n

ny

Q<B

Q=A

A<Q<B

A

y n

n

n

y

y

Q=C

Q≤C

C

y

y

n

n

Q=BQ<A

Q<A B B<Q<C
α0 α1 α2

α3

α4β1

β2

β3

β4

y n

Q=DQ=C

Q<D

D<QDC<Q<DC

y n

nn yy

Q<A

Q<B

Q=A

B<Q<C

A

A<Q<B

Q<A

y n

n

n

y

y

Q=B

Q<C

B

y

y

n

n

α0

α1 α2

α3 α4

β2

β1 β3 β4

20

How Much Information is Needed for Failure?

Q=DQ=C

Q<D

D<QDC<Q<DC

y n

nn yy

Q<A

Q<B

Q=A

B<Q<C

A

A<Q<B

Q<A

y n

n

n

y

y

Q=B

Q<C

B

y

y

n

n

α0

α1 α2

α3 α4

β2

β1 β3 β4

Q=DQ=C

Q<D

D<QDC<Q<DC

y n

nn yy

Q=A

A Q<A OR A<Q<B OR B<Q<C

y n

Q=B

Q<C

B

y

y

n

n

 α0 + α1+ α2 α3 α4

β2

β1 β3 β4

20

How Much Information is Needed for Failure?

Q=DQ=C

Q<D

D<QDC<Q<DC

y n

nn yy

Q<A

Q<B

Q=A

B<Q<C

A

A<Q<B

Q<A

y n

n

n

y

y

Q=B

Q<C

B

y

y

n

n

α0

α1 α2

α3 α4

β2

β1 β3 β4

• Tree on left shows Explicit Failure
• every failure leaf reports unique failure interval, Ki < Q < Ki+1.

Q=DQ=C

Q<D

D<QDC<Q<DC

y n

nn yy

Q=A

A Q<A OR A<Q<B OR B<Q<C

y n

Q=B

Q<C

B

y

y

n

n

 α0 + α1+ α2 α3 α4

β2

β1 β3 β4

20

How Much Information is Needed for Failure?

Q=DQ=C

Q<D

D<QDC<Q<DC

y n

nn yy

Q<A

Q<B

Q=A

B<Q<C

A

A<Q<B

Q<A

y n

n

n

y

y

Q=B

Q<C

B

y

y

n

n

α0

α1 α2

α3 α4

β2

β1 β3 β4

• Tree on left shows Explicit Failure
• every failure leaf reports unique failure interval, Ki < Q < Ki+1.

• Tree on right shows Non-Explicit Failure:
• Failure leaves only report failure. Don’t need to specify exact  

interval. Leaf can be concatenation of successive failure intervals .

Q=DQ=C

Q<D

D<QDC<Q<DC

y n

nn yy

Q=A

A Q<A OR A<Q<B OR B<Q<C

y n

Q=B

Q<C

B

y

y

n

n

 α0 + α1+ α2 α3 α4

β2

β1 β3 β4

21

Permitted Comparisons Failure Type Time Comments
C = {=} Explicit — Can not occur

Non-Explicit O(n log n) Trivial. Similar to Linked List
C = {<,} Explicit O(n log n) O(n) Reduction to Hu-Tucker

Non-Explicit — Can not occur
C = {=, <}, C = {=,} Explicit O(n4) Follows from Main Lemma

Non-Explicit O(n4) ”
C = {=, <,} Explicit O(n4) ”

Non-Explicit O(n4) ”

• DP Algorithms for last 4 cases are very similar
• Differ slightly in

• Design of Recurrence Relations
• {=,<} and {=,<, ≤) yield slightly different recurrences

• Initial conditions
• Explicit and Non-Explicit Failures force different I.C.s

New Algorithms: OBCSTs with Failures

Outline
• History

• Binary Search Trees
• Hu-Tucker Trees
• AKKL Trees

• Optimal Binary Comparison Search Trees with Failures
• Problem Models
• List of New Results

• New Results
• The Main Lemma
• Structural Properties of OBCSTs
• Dynamic Programming for OBCSTs
• Proof of The Main Lemma (Sketch)

• Extensions and Open Problems

22

23

Main Lemma:

Lemma
Let T be a Optimal BCST.
If (Q=Kk) is a Descendant of (Q=Ki)  
Then βk ≤βi

Q = Ki

Q = Kk

T3

Q < Kj

 T1

Ki

Kk

βi

βk

23

Main Lemma:

Lemma
Let T be a Optimal BCST.
If (Q=Kk) is a Descendant of (Q=Ki)  
Then βk ≤βi

Note: This is true regardless of which  
inequality comparisons are used and  
which model BCST is used

Q = Ki

Q = Kk

T3

Q < Kj

 T1

Ki

Kk

βi

βk

23

Main Lemma:

Lemma
Let T be a Optimal BCST.
If (Q=Kk) is a Descendant of (Q=Ki)  
Then βk ≤βi

Note: This is true regardless of which  
inequality comparisons are used and  
which model BCST is used

Corollary: If T is an OBCST and (Q=Kk) an internal node in T,
then βk ≤ βj for all (Q=Kj) on the path from the root to (Q=Kk), 
i.e., equality weights decrease walking down the tree

Q = Ki

Q = Kk

T3

Q < Kj

 T1

Ki

Kk

βi

βk

Outline
• History

• Binary Search Trees
• Hu-Tucker Trees
• AKKL Trees

• Optimal Binary Comparison Search Trees with Failures
• Problem Models
• List of New Results

• New Results
• The Main Lemma
• Structural Properties of OBCSTs
• Dynamic Programming for OBCSTs
• Proof of The Main Lemma (Sketch)

• Extensions and Open Problems

24

Q=DQ=C

Q<D

D<QDC<Q<DC

y n

nn yy

Q<A

Q<B

Q=A

B<Q<C

A

A<Q<B

Q<A

y n

n

n

y

y

Q=B

Q<C

B

y

y

n

n

α0

α1 α2

α3 α4

β2

β1 β3 β4

25

Structural Properties of BCSTs

Q=DQ=C

Q<D

D<QDC<Q<DC

y n

nn yy

Q<A

Q<B

Q=A

B<Q<C

A

A<Q<B

Q<A

y n

n

n

y

y

Q=B

Q<C

B

y

y

n

n

α0

α1 α2

α3 α4

β2

β1 β3 β4

25

Structural Properties of BCSTs
Henceforth assume distinct key weights,
 i.e., all of the β1, β2, …, βn are different 
Also assume C={<,=}

Q=DQ=C

Q<D

D<QDC<Q<DC

y n

nn yy

Q<A

Q<B

Q=A

B<Q<C

A

A<Q<B

Q<A

y n

n

n

y

y

Q=B

Q<C

B

y

y

n

n

α0

α1 α2

α3 α4

β2

β1 β3 β4

25

Structural Properties of BCSTs
Henceforth assume distinct key weights,
 i.e., all of the β1, β2, …, βn are different 
Also assume C={<,=}

Every tree node N corresponds to search range  
of subtree rooted at N

Q=DQ=C

Q<D

D<QDC<Q<DC

y n

nn yy

Q<A

Q<B

Q=A

B<Q<C

A

A<Q<B

Q<A

y n

n

n

y

y

Q=B

Q<C

B

y

y

n

n

α0

α1 α2

α3 α4

β2

β1 β3 β4

25

Structural Properties of BCSTs
Henceforth assume distinct key weights,
 i.e., all of the β1, β2, …, βn are different 
Also assume C={<,=}

Every tree node N corresponds to search range  
of subtree rooted at N
• Root of BSCT is search range [K0,Kn+1) 

(where K0=-∞ and Kn+1=∞)

Q=DQ=C

Q<D

D<QDC<Q<DC

y n

nn yy

Q<A

Q<B

Q=A

B<Q<C

A

A<Q<B

Q<A

y n

n

n

y

y

Q=B

Q<C

B

y

y

n

n

α0

α1 α2

α3 α4

β2

β1 β3 β4

25

Structural Properties of BCSTs
Henceforth assume distinct key weights,
 i.e., all of the β1, β2, …, βn are different 
Also assume C={<,=}

Every tree node N corresponds to search range  
of subtree rooted at N
• Root of BSCT is search range [K0,Kn+1) 

(where K0=-∞ and Kn+1=∞)
• Comparisons cuts ranges

• A (Q<Ki) splits [Ki,Kj) into [Ki,Kk) and [Kk,Ki)
• A (Q=Ki) removing Ki from range,

Q=DQ=C

Q<D

D<QDC<Q<DC

y n

nn yy

Q<A

Q<B

Q=A

B<Q<C

A

A<Q<B

Q<A

y n

n

n

y

y

Q=B

Q<C

B

y

y

n

n

α0

α1 α2

α3 α4

β2

β1 β3 β4

25

Structural Properties of BCSTs
Henceforth assume distinct key weights,
 i.e., all of the β1, β2, …, βn are different 
Also assume C={<,=}

Every tree node N corresponds to search range  
of subtree rooted at N
• Root of BSCT is search range [K0,Kn+1) 

(where K0=-∞ and Kn+1=∞)
• Comparisons cuts ranges

• A (Q<Ki) splits [Ki,Kj) into [Ki,Kk) and [Kk,Ki)
• A (Q=Ki) removing Ki from range,

• Range of subtree rooted at N is some [Ki,Kj)
with some keys removed

Q=DQ=C

Q<D

D<QDC<Q<DC

y n

nn yy

Q<A

Q<B

Q=A

B<Q<C

A

A<Q<B

Q<A

y n

n

n

y

y

Q=B

Q<C

B

y

y

n

n

α0

α1 α2

α3 α4

β2

β1 β3 β4

25

Structural Properties of BCSTs
Henceforth assume distinct key weights,
 i.e., all of the β1, β2, …, βn are different 
Also assume C={<,=}

Every tree node N corresponds to search range  
of subtree rooted at N
• Root of BSCT is search range [K0,Kn+1) 

(where K0=-∞ and Kn+1=∞)
• Comparisons cuts ranges

• A (Q<Ki) splits [Ki,Kj) into [Ki,Kk) and [Kk,Ki)
• A (Q=Ki) removing Ki from range,

• Range of subtree rooted at N is some [Ki,Kj)
with some keys removed

• Keys removed (holes) are Kk s.t. (Q=Kk) is on
the path from N to the root of T.

Q=DQ=C

Q<D

D<QDC<Q<DC

y n

nn yy

Q<A

Q<B

Q=A

B<Q<C

A

A<Q<B

Q<A

y n

n

n

y

y

Q=B

Q<C

B

y

y

n

n

α0

α1 α2

α3 α4

β2

β1 β3 β4

25

Structural Properties of BCSTs
Henceforth assume distinct key weights,
 i.e., all of the β1, β2, …, βn are different 
Also assume C={<,=}

Every tree node N corresponds to search range  
of subtree rooted at N
• Root of BSCT is search range [K0,Kn+1) 

(where K0=-∞ and Kn+1=∞)
• Comparisons cuts ranges

• A (Q<Ki) splits [Ki,Kj) into [Ki,Kk) and [Kk,Ki)
• A (Q=Ki) removing Ki from range,

• Range of subtree rooted at N is some [Ki,Kj)
with some keys removed

• Keys removed (holes) are Kk s.t. (Q=Kk) is on
the path from N to the root of T.

[-∞,∞)

Q=DQ=C

Q<D

D<QDC<Q<DC

y n

nn yy

Q<A

Q<B

Q=A

B<Q<C

A

A<Q<B

Q<A

y n

n

n

y

y

Q=B

Q<C

B

y

y

n

n

α0

α1 α2

α3 α4

β2

β1 β3 β4

25

Structural Properties of BCSTs
Henceforth assume distinct key weights,
 i.e., all of the β1, β2, …, βn are different 
Also assume C={<,=}

Every tree node N corresponds to search range  
of subtree rooted at N
• Root of BSCT is search range [K0,Kn+1) 

(where K0=-∞ and Kn+1=∞)
• Comparisons cuts ranges

• A (Q<Ki) splits [Ki,Kj) into [Ki,Kk) and [Kk,Ki)
• A (Q=Ki) removing Ki from range,

• Range of subtree rooted at N is some [Ki,Kj)
with some keys removed

• Keys removed (holes) are Kk s.t. (Q=Kk) is on
the path from N to the root of T.

[-∞,∞)

[-∞,C) [C,∞)

Q=DQ=C

Q<D

D<QDC<Q<DC

y n

nn yy

Q<A

Q<B

Q=A

B<Q<C

A

A<Q<B

Q<A

y n

n

n

y

y

Q=B

Q<C

B

y

y

n

n

α0

α1 α2

α3 α4

β2

β1 β3 β4

25

Structural Properties of BCSTs
Henceforth assume distinct key weights,
 i.e., all of the β1, β2, …, βn are different 
Also assume C={<,=}

Every tree node N corresponds to search range  
of subtree rooted at N
• Root of BSCT is search range [K0,Kn+1) 

(where K0=-∞ and Kn+1=∞)
• Comparisons cuts ranges

• A (Q<Ki) splits [Ki,Kj) into [Ki,Kk) and [Kk,Ki)
• A (Q=Ki) removing Ki from range,

• Range of subtree rooted at N is some [Ki,Kj)
with some keys removed

• Keys removed (holes) are Kk s.t. (Q=Kk) is on
the path from N to the root of T.

[-∞,∞)

[-∞,C) [C,∞)

[-∞,C)-{B}

Q=DQ=C

Q<D

D<QDC<Q<DC

y n

nn yy

Q<A

Q<B

Q=A

B<Q<C

A

A<Q<B

Q<A

y n

n

n

y

y

Q=B

Q<C

B

y

y

n

n

α0

α1 α2

α3 α4

β2

β1 β3 β4

25

Structural Properties of BCSTs
Henceforth assume distinct key weights,
 i.e., all of the β1, β2, …, βn are different 
Also assume C={<,=}

Every tree node N corresponds to search range  
of subtree rooted at N
• Root of BSCT is search range [K0,Kn+1) 

(where K0=-∞ and Kn+1=∞)
• Comparisons cuts ranges

• A (Q<Ki) splits [Ki,Kj) into [Ki,Kk) and [Kk,Ki)
• A (Q=Ki) removing Ki from range,

• Range of subtree rooted at N is some [Ki,Kj)
with some keys removed

• Keys removed (holes) are Kk s.t. (Q=Kk) is on
the path from N to the root of T.

[-∞,∞)

[-∞,C) [C,∞)

[-∞,C)-{B} [C,D) [D,∞)

Q=DQ=C

Q<D

D<QDC<Q<DC

y n

nn yy

Q<A

Q<B

Q=A

B<Q<C

A

A<Q<B

Q<A

y n

n

n

y

y

Q=B

Q<C

B

y

y

n

n

α0

α1 α2

α3 α4

β2

β1 β3 β4

25

Structural Properties of BCSTs
Henceforth assume distinct key weights,
 i.e., all of the β1, β2, …, βn are different 
Also assume C={<,=}

Every tree node N corresponds to search range  
of subtree rooted at N
• Root of BSCT is search range [K0,Kn+1) 

(where K0=-∞ and Kn+1=∞)
• Comparisons cuts ranges

• A (Q<Ki) splits [Ki,Kj) into [Ki,Kk) and [Kk,Ki)
• A (Q=Ki) removing Ki from range,

• Range of subtree rooted at N is some [Ki,Kj)
with some keys removed

• Keys removed (holes) are Kk s.t. (Q=Kk) is on
the path from N to the root of T.

[-∞,∞)

[-∞,C) [C,∞)

[-∞,C)-{B}

[-∞,C)-{A,B}

[C,D) [D,∞)

Q=DQ=C

Q<D

D<QDC<Q<DC

y n

nn yy

Q<A

Q<B

Q=A

B<Q<C

A

A<Q<B

Q<A

y n

n

n

y

y

Q=B

Q<C

B

y

y

n

n

α0

α1 α2

α3 α4

β2

β1 β3 β4

25

Structural Properties of BCSTs
Henceforth assume distinct key weights,
 i.e., all of the β1, β2, …, βn are different 
Also assume C={<,=}

Every tree node N corresponds to search range  
of subtree rooted at N
• Root of BSCT is search range [K0,Kn+1) 

(where K0=-∞ and Kn+1=∞)
• Comparisons cuts ranges

• A (Q<Ki) splits [Ki,Kj) into [Ki,Kk) and [Kk,Ki)
• A (Q=Ki) removing Ki from range,

• Range of subtree rooted at N is some [Ki,Kj)
with some keys removed

• Keys removed (holes) are Kk s.t. (Q=Kk) is on
the path from N to the root of T.

[-∞,∞)

[-∞,C) [C,∞)

[-∞,C)-{B}

[-∞,C)-{A,B}

[A,C)-{A,B}

[C,D) [D,∞)

26

Structural Properties of OBCSTs

T’

N

Root

Q = Kk

Q = Kk’

26

Structural Properties of OBCSTs
• Range associated with Node N is  

[Ki,Kj) with some (h) keys Kk removed.

• Kk removed are s.t. (Q=Kk) are equality nodes  
on path from N to root (that fall within [Ki,Kj))

T’

N

Root

Q = Kk

Q = Kk’

26

Structural Properties of OBCSTs
• Range associated with Node N is  

[Ki,Kj) with some (h) keys Kk removed.

• Kk removed are s.t. (Q=Kk) are equality nodes  
on path from N to root (that fall within [Ki,Kj))

• From previous Lemma, if T is an OBCST, βi of nodes
path to N are larger than βi of all equality nodes in T’.

• ∀k, (Q=Kk) appears somewhere in T.  
Immediately implies that the h missing keys must be
the largest weighted keys in [Ki,Kj)

T’

N

Root

Q = Kk

Q = Kk’

26

Structural Properties of OBCSTs
• Range associated with Node N is  

[Ki,Kj) with some (h) keys Kk removed.

• Kk removed are s.t. (Q=Kk) are equality nodes  
on path from N to root (that fall within [Ki,Kj))

• From previous Lemma, if T is an OBCST, βi of nodes
path to N are larger than βi of all equality nodes in T’.

• ∀k, (Q=Kk) appears somewhere in T.  
Immediately implies that the h missing keys must be
the largest weighted keys in [Ki,Kj)

• Define punctured range [i,j: h) to be range [Ki,Kj)
with the h highest weighted keys in [Ki,Kj) removed

T’

N

Root

Q = Kk

Q = Kk’

26

Structural Properties of OBCSTs
• Range associated with Node N is  

[Ki,Kj) with some (h) keys Kk removed.

• Kk removed are s.t. (Q=Kk) are equality nodes  
on path from N to root (that fall within [Ki,Kj))

• From previous Lemma, if T is an OBCST, βi of nodes
path to N are larger than βi of all equality nodes in T’.

• ∀k, (Q=Kk) appears somewhere in T.  
Immediately implies that the h missing keys must be
the largest weighted keys in [Ki,Kj)

• Define punctured range [i,j: h) to be range [Ki,Kj)
with the h highest weighted keys in [Ki,Kj) removed

• => every range associated with an internal node
of an OBCST is a punctured range

T’

N

Root

Q = Kk

Q = Kk’

27

Structural Properties of OBCSTs

T’

N

Root

Q = Kk

Q = Kk’

27

Structural Properties of OBCSTs
• [i,j: h) is range [Ki,Kj) with the h highest

weighted keys in [Ki,Kj) removed

• Range associated with an internal node of an
OBCST is some [i,j: h)

T’

N

Root

Q = Kk

Q = Kk’

27

Structural Properties of OBCSTs
• [i,j: h) is range [Ki,Kj) with the h highest

weighted keys in [Ki,Kj) removed

• Range associated with an internal node of an
OBCST is some [i,j: h)

• Define OPT(i,j: h) to be the cost of an
optimal BCST for range [i,j: h)

• Goal is to find OPT(0,n+1: 0)  
 and associated tree

• Will use Dynamic programming to fill in table. 
Table has size O(n3) 
We will (recursively) evaluate OPT(i,j: h) in
O(j-i) time, yielding a O(n4) algorithm.

T’

N

Root

Q = Kk

Q = Kk’

[i,j:h)

[0,n+1:0)

Outline
• History

• Binary Search Trees
• Hu-Tucker Trees
• AKKL Trees

• Optimal Binary Comparison Search Trees with Failures
• Problem Models
• List of New Results

• New Results
• The Main Lemma
• Structural Properties of OBCSTs
• Dynamic Programming for OBCSTs
• Proof of The Main Lemma (Sketch)

• Extensions and Open Problems

28

29

Dynamic programming for OBCSTs

29

Dynamic programming for OBCSTs

•Let T be an OBCST for [i,j: h)
•T Has two possible structures OPT(i,j:h)

29

Dynamic programming for OBCSTs

•Let T be an OBCST for [i,j: h)
•T Has two possible structures OPT(i,j:h)

OPT(i,j:h+1)

Q=Kk

Kk1. Root is a (Q=Kk)

29

Dynamic programming for OBCSTs

•Let T be an OBCST for [i,j: h)
•T Has two possible structures OPT(i,j:h)

OPT(i,j:h+1)

Q=Kk

Kk1. Root is a (Q=Kk)

2. Root is a (Q<Kk)
OPT(i,k:h1) OPT(k,j:h2)

Q<Kk

30

Dynamic programing for OBCSTs
1. Root of OPT(i,j: h) is a (Q=Kk)

OPT(i,j:h+1)

Q=Kk

Kk

30

Dynamic programing for OBCSTs
1. Root of OPT(i,j: h) is a (Q=Kk)

OPT(i,j:h+1)

Q=Kk

Kk• Kk must be largest key weight in [i,j: h)  
 which is (h+1)st largest key weight in [i,j)
• Right subtree missing h+1 largest weights  
 in [i,j) so right subtree is OPT(i,j: h+1)

30

Dynamic programing for OBCSTs
1. Root of OPT(i,j: h) is a (Q=Kk)

OPT(i,j:h+1)

Q=Kk

Kk• Kk must be largest key weight in [i,j: h)  
 which is (h+1)st largest key weight in [i,j)
• Right subtree missing h+1 largest weights  
 in [i,j) so right subtree is OPT(i,j: h+1)

Cost of full tree is sum of
• cost of left subtree 0
• cost of right subtree OPT(i,j: h+1)
• Total weight of left + right subtree Wi,j:h  

 where Wi,j:h = sum of all βi,αi in (i,j: h]

30

Dynamic programing for OBCSTs
1. Root of OPT(i,j: h) is a (Q=Kk)

OPT(i,j:h+1)

Q=Kk

Kk• Kk must be largest key weight in [i,j: h)  
 which is (h+1)st largest key weight in [i,j)
• Right subtree missing h+1 largest weights  
 in [i,j) so right subtree is OPT(i,j: h+1)

Cost of full tree is sum of
• cost of left subtree 0
• cost of right subtree OPT(i,j: h+1)
• Total weight of left + right subtree Wi,j:h  

 where Wi,j:h = sum of all βi,αi in (i,j: h]

EQ(i, j : h) = Wi,j:h +OPT (i, j : h+ 1)

31

Dynamic programing for OBCSTs

2. Root of OPT(i,j: h) is a (Q<Kk)

OPT(i,k:h1) OPT(k,j:h2)

Q<Kk

31

Dynamic programing for OBCSTs

• Range is split into <k and ≥k
• h holes (largest keys) in [i,j) are split, with  
 h1(k) on left and h2(k) =h-h1(k) on right

2. Root of OPT(i,j: h) is a (Q<Kk)

OPT(i,k:h1) OPT(k,j:h2)

Q<Kk

31

Dynamic programing for OBCSTs

• Range is split into <k and ≥k
• h holes (largest keys) in [i,j) are split, with  
 h1(k) on left and h2(k) =h-h1(k) on right
• h1(k) keys must be heaviest in [i,k) 
 h2(k) keys must be heaviest in [k,j)
• So left and right subtrees are OBCSTs for  
 [i,k: h1(k)) and [k,j: h2(k))

2. Root of OPT(i,j: h) is a (Q<Kk)

OPT(i,k:h1) OPT(k,j:h2)

Q<Kk

31

Dynamic programing for OBCSTs

• Range is split into <k and ≥k
• h holes (largest keys) in [i,j) are split, with  
 h1(k) on left and h2(k) =h-h1(k) on right
• h1(k) keys must be heaviest in [i,k) 
 h2(k) keys must be heaviest in [k,j)
• So left and right subtrees are OBCSTs for  
 [i,k: h1(k)) and [k,j: h2(k))
• Cost of tree is Wi,j:h + OPT(i,k: h1(k)+ OPT(k,j: h2(k))

2. Root of OPT(i,j: h) is a (Q<Kk)

OPT(i,k:h1) OPT(k,j:h2)

Q<Kk

31

Dynamic programing for OBCSTs

• Range is split into <k and ≥k
• h holes (largest keys) in [i,j) are split, with  
 h1(k) on left and h2(k) =h-h1(k) on right
• h1(k) keys must be heaviest in [i,k) 
 h2(k) keys must be heaviest in [k,j)
• So left and right subtrees are OBCSTs for  
 [i,k: h1(k)) and [k,j: h2(k))
• Cost of tree is Wi,j:h + OPT(i,k: h1(k)+ OPT(k,j: h2(k))

2. Root of OPT(i,j: h) is a (Q<Kk)

Don’t know what k is, so minimize over all possible k
SPLIT (i, j : h) = min

i<k<j

�
Wi,j:h +OPT (i, k : h1(k)) +OPT (k, j : h2(k))

OPT(i,k:h1) OPT(k,j:h2)

Q<Kk

32

Dynamic programing for OBCSTs

32

Dynamic programing for OBCSTs
OPT(i,j: h) has two possible structures

32

Dynamic programing for OBCSTs
OPT(i,j: h) has two possible structures

OPT(i,j:h+1)

Q=Kk

Kk

1. Root is a (Q=Kk)

2. Root is a (Q<Kk)

OPT(i,j:h1) OPT(i,j:h2)

Q<Kk

32

Dynamic programing for OBCSTs
OPT(i,j: h) has two possible structures

OPT(i,j:h+1)

Q=Kk

Kk

1. Root is a (Q=Kk)

2. Root is a (Q<Kk)

OPT(i,j:h1) OPT(i,j:h2)

Q<Kk

EQ(i, j : h) = Wi,j:h +OPT (i, j : h+ 1)

SPLIT (i, j : h) = min
i<k<j

�
Wi,j:h +OPT (i, k : h1(k)) +OPT (k, j : h2(k))

32

Dynamic programing for OBCSTs
OPT(i,j: h) has two possible structures

OPT(i,j:h+1)

Q=Kk

Kk

1. Root is a (Q=Kk)

2. Root is a (Q<Kk)

OPT(i,j:h1) OPT(i,j:h2)

Q<Kk

EQ(i, j : h) = Wi,j:h +OPT (i, j : h+ 1)

This immediately implies
OPT (i, j : h) � min (EQ(i, j : h), SPLIT (i, j : h))

SPLIT (i, j : h) = min
i<k<j

�
Wi,j:h +OPT (i, k : h1(k)) +OPT (k, j : h2(k))

32

Dynamic programing for OBCSTs
OPT(i,j: h) has two possible structures

OPT(i,j:h+1)

Q=Kk

Kk

1. Root is a (Q=Kk)

2. Root is a (Q<Kk)

OPT(i,j:h1) OPT(i,j:h2)

Q<Kk

EQ(i, j : h) = Wi,j:h +OPT (i, j : h+ 1)

This immediately implies
OPT (i, j : h) � min (EQ(i, j : h), SPLIT (i, j : h))

But every case seen can construct a BCST with that cost, so
OPT (i, j : h) = min (EQ(i, j : h), SPLIT (i, j : h))

SPLIT (i, j : h) = min
i<k<j

�
Wi,j:h +OPT (i, k : h1(k)) +OPT (k, j : h2(k))

33

Dynamic programing for OBCSTs
OPT (i, j : h) = min (EQ(i, j : h), SPLIT (i, j : h))

EQ(i, j : h) = Wi,j:h +OPT (i, j : h+ 1)

SPLIT (i, j : h) = min
i<k<j

�
Wi,j:h +OPT (i, k : h1(k)) +OPT (k, j : h2(k))

33

Dynamic programing for OBCSTs
OPT (i, j : h) = min (EQ(i, j : h), SPLIT (i, j : h))

EQ(i, j : h) = Wi,j:h +OPT (i, j : h+ 1)

SPLIT (i, j : h) = min
i<k<j

�
Wi,j:h +OPT (i, k : h1(k)) +OPT (k, j : h2(k))

Set initial conditions for ranges OPT(i,i+1,*)

33

Dynamic programing for OBCSTs
OPT (i, j : h) = min (EQ(i, j : h), SPLIT (i, j : h))

EQ(i, j : h) = Wi,j:h +OPT (i, j : h+ 1)

SPLIT (i, j : h) = min
i<k<j

�
Wi,j:h +OPT (i, k : h1(k)) +OPT (k, j : h2(k))

Set initial conditions for ranges OPT(i,i+1,*)
OPT(i,i+1,1)=0 Ki<Q<Ki+1 αi

Ki<Q<Ki+1 αiKi=Qβi

Q=KiOPT(i,i+1,0)= βi + αi

33

Dynamic programing for OBCSTs
OPT (i, j : h) = min (EQ(i, j : h), SPLIT (i, j : h))

EQ(i, j : h) = Wi,j:h +OPT (i, j : h+ 1)

SPLIT (i, j : h) = min
i<k<j

�
Wi,j:h +OPT (i, k : h1(k)) +OPT (k, j : h2(k))

Set initial conditions for ranges OPT(i,i+1,*)
OPT(i,i+1,1)=0 Ki<Q<Ki+1 αi

Ki<Q<Ki+1 αiKi=Qβi

Q=KiOPT(i,i+1,0)= βi + αi

Comments

33

Dynamic programing for OBCSTs
OPT (i, j : h) = min (EQ(i, j : h), SPLIT (i, j : h))

EQ(i, j : h) = Wi,j:h +OPT (i, j : h+ 1)

SPLIT (i, j : h) = min
i<k<j

�
Wi,j:h +OPT (i, k : h1(k)) +OPT (k, j : h2(k))

Set initial conditions for ranges OPT(i,i+1,*)
OPT(i,i+1,1)=0 Ki<Q<Ki+1 αi

Ki<Q<Ki+1 αiKi=Qβi

Q=KiOPT(i,i+1,0)= βi + αi

Comments
• Must restrict h ≤ j-i (can’t have more holes than keys in interval)

33

Dynamic programing for OBCSTs
OPT (i, j : h) = min (EQ(i, j : h), SPLIT (i, j : h))

EQ(i, j : h) = Wi,j:h +OPT (i, j : h+ 1)

SPLIT (i, j : h) = min
i<k<j

�
Wi,j:h +OPT (i, k : h1(k)) +OPT (k, j : h2(k))

Set initial conditions for ranges OPT(i,i+1,*)
OPT(i,i+1,1)=0 Ki<Q<Ki+1 αi

Ki<Q<Ki+1 αiKi=Qβi

Q=KiOPT(i,i+1,0)= βi + αi

Comments
• Must restrict h ≤ j-i (can’t have more holes than keys in interval)
• Need to fill in table in proper order, e.g.,  

 (a) d= 0 to n, (b) i=0 to n-d, j=i+d+1, (c) h =(j-i) downto 0

33

Dynamic programing for OBCSTs
OPT (i, j : h) = min (EQ(i, j : h), SPLIT (i, j : h))

EQ(i, j : h) = Wi,j:h +OPT (i, j : h+ 1)

SPLIT (i, j : h) = min
i<k<j

�
Wi,j:h +OPT (i, k : h1(k)) +OPT (k, j : h2(k))

Set initial conditions for ranges OPT(i,i+1,*)
OPT(i,i+1,1)=0 Ki<Q<Ki+1 αi

Ki<Q<Ki+1 αiKi=Qβi

Q=KiOPT(i,i+1,0)= βi + αi

Comments
• Must restrict h ≤ j-i (can’t have more holes than keys in interval)
• Need to fill in table in proper order, e.g.,  

 (a) d= 0 to n, (b) i=0 to n-d, j=i+d+1, (c) h =(j-i) downto 0
• Need O(1) method for computing hi(k)

• => O(j-i) to calculate OPT(i,j: h)
• => O(n^4) to fill in complete table

33

Dynamic programing for OBCSTs
OPT (i, j : h) = min (EQ(i, j : h), SPLIT (i, j : h))

EQ(i, j : h) = Wi,j:h +OPT (i, j : h+ 1)

SPLIT (i, j : h) = min
i<k<j

�
Wi,j:h +OPT (i, k : h1(k)) +OPT (k, j : h2(k))

Set initial conditions for ranges OPT(i,i+1,*)
OPT(i,i+1,1)=0 Ki<Q<Ki+1 αi

Ki<Q<Ki+1 αiKi=Qβi

Q=KiOPT(i,i+1,0)= βi + αi

Comments
• Must restrict h ≤ j-i (can’t have more holes than keys in interval)
• Need to fill in table in proper order, e.g.,  

 (a) d= 0 to n, (b) i=0 to n-d, j=i+d+1, (c) h =(j-i) downto 0
• Need O(1) method for computing hi(k)

• => O(j-i) to calculate OPT(i,j: h)
• => O(n^4) to fill in complete table

• OPT(0,n+1:0) is optimal cost. Use standard DP backtracking to construct
corresponding optimal tree

34

Perturbing for Key Weight Uniqueness (I)

34

Perturbing for Key Weight Uniqueness (I)
• Strongly used assumption βi are all distinct to find `weightiest’ keys

• Assumption can be removed using perturbation argument

34

Perturbing for Key Weight Uniqueness (I)
• Strongly used assumption βi are all distinct to find `weightiest’ keys

• Assumption can be removed using perturbation argument

• All values constructed/compared in algorithm are subtree costs
• in form ∑ aiαi + ∑biβi where 0 ≤ ai,bi ≤ 2n are integral node depths

34

Perturbing for Key Weight Uniqueness (I)
• Strongly used assumption βi are all distinct to find `weightiest’ keys

• Assumption can be removed using perturbation argument

• All values constructed/compared in algorithm are subtree costs
• in form ∑ aiαi + ∑biβi where 0 ≤ ai,bi ≤ 2n are integral node depths

• Perturb input by setting α’i=αi , β’i = βi+i𝝐 where 𝝐 is very small
• => β’i are all distinct

34

Perturbing for Key Weight Uniqueness (I)
• Strongly used assumption βi are all distinct to find `weightiest’ keys

• Assumption can be removed using perturbation argument

• All values constructed/compared in algorithm are subtree costs
• in form ∑ aiαi + ∑biβi where 0 ≤ ai,bi ≤ 2n are integral node depths

• Perturb input by setting α’i=αi , β’i = βi+i𝝐 where 𝝐 is very small
• => β’i are all distinct

• Since β’i are all distinct, algorithm gives correct result for α’i ,β’i
• Easy to prove that optimum tree for α’i ,β’i is optimum for αi ,βi
• => resulting tree is optimum for original α’i ,β’i

34

Perturbing for Key Weight Uniqueness (I)
• Strongly used assumption βi are all distinct to find `weightiest’ keys

• Assumption can be removed using perturbation argument

• All values constructed/compared in algorithm are subtree costs
• in form ∑ aiαi + ∑biβi where 0 ≤ ai,bi ≤ 2n are integral node depths

• Perturb input by setting α’i=αi , β’i = βi+i𝝐 where 𝝐 is very small
• => β’i are all distinct

• Since β’i are all distinct, algorithm gives correct result for α’i ,β’i
• Easy to prove that optimum tree for α’i ,β’i is optimum for αi ,βi
• => resulting tree is optimum for original α’i ,β’i

• In fact don’t actually need to know value of 𝝐

35

Perturbing for Key Weight Uniqueness (II)

35

Perturbing for Key Weight Uniqueness (II)
• Perturb input: α’i=αi , β’i = βi+i𝝐 where 𝝐 is very small

• Need to find optimum tree for α’i ,β’i (which is also optimum for α’i ,β’i)

35

Perturbing for Key Weight Uniqueness (II)
• Perturb input: α’i=αi , β’i = βi+i𝝐 where 𝝐 is very small

• Need to find optimum tree for α’i ,β’i (which is also optimum for α’i ,β’i)

• Recall that algorithm only performs additions/comparisons
• All values are subtree costs ∑ aiαi + ∑biβi where 0 ≤ ai,bi ≤ 2n are integral

35

Perturbing for Key Weight Uniqueness (II)
• Perturb input: α’i=αi , β’i = βi+i𝝐 where 𝝐 is very small

• Need to find optimum tree for α’i ,β’i (which is also optimum for α’i ,β’i)

• Recall that algorithm only performs additions/comparisons
• All values are subtree costs ∑ aiαi + ∑biβi where 0 ≤ ai,bi ≤ 2n are integral

• Don’t actually need to know or store value of 𝝐

35

Perturbing for Key Weight Uniqueness (II)
• Perturb input: α’i=αi , β’i = βi+i𝝐 where 𝝐 is very small

• Need to find optimum tree for α’i ,β’i (which is also optimum for α’i ,β’i)

• Recall that algorithm only performs additions/comparisons
• All values are subtree costs ∑ aiαi + ∑biβi where 0 ≤ ai,bi ≤ 2n are integral

• Don’t actually need to know or store value of 𝝐

• Every value in algorithm is in form x = x1+x2𝝐, where x2=O(n3) is an integer
• Forget 𝝐. Store pair (x1,x2)

35

Perturbing for Key Weight Uniqueness (II)
• Perturb input: α’i=αi , β’i = βi+i𝝐 where 𝝐 is very small

• Need to find optimum tree for α’i ,β’i (which is also optimum for α’i ,β’i)

• Recall that algorithm only performs additions/comparisons
• All values are subtree costs ∑ aiαi + ∑biβi where 0 ≤ ai,bi ≤ 2n are integral

• Don’t actually need to know or store value of 𝝐

• Every value in algorithm is in form x = x1+x2𝝐, where x2=O(n3) is an integer
• Forget 𝝐. Store pair (x1,x2)

• (A) Addition is pairwise-addition
• (x1,x2) + (y1,y2) = (x1+y1, x2+y2)

• (C) Comparison is lexicographic-comparison
• (x1,x2) < (y1,y2) iff x1<y1 or x1=y1 and x2=<y2

35

Perturbing for Key Weight Uniqueness (II)
• Perturb input: α’i=αi , β’i = βi+i𝝐 where 𝝐 is very small

• Need to find optimum tree for α’i ,β’i (which is also optimum for α’i ,β’i)

• Recall that algorithm only performs additions/comparisons
• All values are subtree costs ∑ aiαi + ∑biβi where 0 ≤ ai,bi ≤ 2n are integral

• Don’t actually need to know or store value of 𝝐

• Every value in algorithm is in form x = x1+x2𝝐, where x2=O(n3) is an integer
• Forget 𝝐. Store pair (x1,x2)

• (A) Addition is pairwise-addition
• (x1,x2) + (y1,y2) = (x1+y1, x2+y2)

• (C) Comparison is lexicographic-comparison
• (x1,x2) < (y1,y2) iff x1<y1 or x1=y1 and x2=<y2

• Both (A) and (C) can be implemented in O(1) time without knowing 𝝐
• Perturbed algorithm has same asymptotic running time as regular one  

36

Odds and Ends

36

Odds and Ends
• Designed O(n4) algorithm for constructing OBCSTs  

 when C={<,=} and need to report Exact Failures

36

Odds and Ends
• Designed O(n4) algorithm for constructing OBCSTs  

 when C={<,=} and need to report Exact Failures

• Strongly used assumption βi are all distinct
• Assumption can be removed using perturbation argument

36

Odds and Ends
• Designed O(n4) algorithm for constructing OBCSTs  

 when C={<,=} and need to report Exact Failures

• Strongly used assumption βi are all distinct
• Assumption can be removed using perturbation argument

• To solve problem C={<,=} with Non-Exact failures
• only need to modify initial conditions

36

Odds and Ends
• Designed O(n4) algorithm for constructing OBCSTs  

 when C={<,=} and need to report Exact Failures

• Strongly used assumption βi are all distinct
• Assumption can be removed using perturbation argument

• To solve problem C={<,=} with Non-Exact failures
• only need to modify initial conditions

• Symmetry argument gives algorithms for C={≤, =}

36

Odds and Ends
• Designed O(n4) algorithm for constructing OBCSTs  

 when C={<,=} and need to report Exact Failures

• Strongly used assumption βi are all distinct
• Assumption can be removed using perturbation argument

• To solve problem C={<,=} with Non-Exact failures
• only need to modify initial conditions

• Symmetry argument gives algorithms for C={≤, =}

• Algorithms for C={<, ≤, =} requires only slight modifications of SPLIT(i,j: h)

36

Odds and Ends
• Designed O(n4) algorithm for constructing OBCSTs  

 when C={<,=} and need to report Exact Failures

• Strongly used assumption βi are all distinct
• Assumption can be removed using perturbation argument

• To solve problem C={<,=} with Non-Exact failures
• only need to modify initial conditions

• Symmetry argument gives algorithms for C={≤, =}

• Algorithms for C={<, ≤, =} requires only slight modifications of SPLIT(i,j: h)

• If C={<, ≤}, ranges have no holes and problem can be solved in O(n log n)
similar to Hu-Tucker

Outline
• History

• Binary Search Trees
• Hu-Tucker Trees
• AKKL Trees

• Optimal Binary Comparison Search Trees with Failures
• Problem Models
• List of New Results

• New Results
• The Main Lemma
• Structural Properties of OBCSTs
• Dynamic Programming for OBCSTs
• Proof of The Main Lemma (Sketch)

• Extensions and Open Problems

37

38

Proof of Main Lemma

Q = x

Q = y

T3

Q < Kj

 T1 Q < Kj

Q < z

T3

Q=x

Q=y

38

Proof of Main Lemma
Let T be an OBCST. Assume

Q = x

Q = y

T3

Q < Kj

 T1 Q < Kj

Q < z

T3

Q=x

Q=y

38

Proof of Main Lemma
Let T be an OBCST. Assume
• y<x (x>y is symmetric)

Q = x

Q = y

T3

Q < Kj

 T1 Q < Kj

Q < z

T3

Q=x

Q=y

38

Proof of Main Lemma
Let T be an OBCST. Assume
• y<x (x>y is symmetric)
• (Q=x) is above (Q=y) Q = x

Q = y

T3

Q < Kj

 T1 Q < Kj

Q < z

T3

Q=x

Q=y

38

Proof of Main Lemma
Let T be an OBCST. Assume
• y<x (x>y is symmetric)
• (Q=x) is above (Q=y)
• => βx < βy will show contradiction

Q = x

Q = y

T3

Q < Kj

 T1 Q < Kj

Q < z

T3

Q=x

Q=y

38

Proof of Main Lemma
Let T be an OBCST. Assume
• y<x (x>y is symmetric)
• (Q=x) is above (Q=y)
• => βx < βy will show contradiction
• => βx ≥ βy and Thm correct

Q = x

Q = y

T3

Q < Kj

 T1 Q < Kj

Q < z

T3

Q=x

Q=y

38

Proof of Main Lemma
Let T be an OBCST. Assume
• y<x (x>y is symmetric)
• (Q=x) is above (Q=y)
• => βx < βy will show contradiction
• => βx ≥ βy and Thm correct

• All comparisons between  
(Q=x) and (Q=y) are inequalities
• otherwise ∃ (Q=w) on path with either  

βx < βw or βw < βy and can show  
contradiction with (x,w) or (w,y)

Q = x

Q = y

T3

Q < Kj

 T1 Q < Kj

Q < z

T3

Q=x

Q=y

38

Proof of Main Lemma
Let T be an OBCST. Assume
• y<x (x>y is symmetric)
• (Q=x) is above (Q=y)
• => βx < βy will show contradiction
• => βx ≥ βy and Thm correct

• All comparisons between  
(Q=x) and (Q=y) are inequalities
• otherwise ∃ (Q=w) on path with either  

βx < βw or βw < βy and can show  
contradiction with (x,w) or (w,y)

• x,y ∈ Range((Q=x)) by definition 
If x,y ∈ Range((Q=y))  
then could swap (Q=X) and (Q=y)  
to get cheaper tree.

Q = x

Q = y

T3

Q < Kj

 T1 Q < Kj

Q < z

T3

Q=x

Q=y

39

Proof of Main Lemma

Q = x

Q = y

T3

Q < Kj

 T1 Q < Kj

Q < z

T3

Q=x

Q=y

x would
be here

39

Proof of Main Lemma
Let T be an OBCST. Assume
• y<x (x>y is symmetric)
• (Q=x) is above (Q=y)
• => βx < βy will show contradiction

• All comparisons between  
(Q=x) and (Q=y) are inequalities

Q = x

Q = y

T3

Q < Kj

 T1 Q < Kj

Q < z

T3

Q=x

Q=y

x would
be here

39

Proof of Main Lemma
Let T be an OBCST. Assume
• y<x (x>y is symmetric)
• (Q=x) is above (Q=y)
• => βx < βy will show contradiction

• All comparisons between  
(Q=x) and (Q=y) are inequalities

• Since x∉ Range((Q=y)  
=> Path (Q=x) to (Q=y) contains (Q<z)  
s.t z’s children’s ranges are [i,z,h’), [z,j,h’’)  
where y∈ [i,z) and x ∈[z,j).  
z is called splitter.  

• P’ is (red) path from (Q=x) to (Q=y)

Q = x

Q = y

T3

Q < Kj

 T1 Q < Kj

Q < z

T3

Q=x

Q=y

x would
be here

40

Proof of Main Lemma

40

Proof of Main Lemma
• P is path in T from (Q=x) to (Q=y). y< x. z is x-y splitter on P
• P’ is path from (Q=x) to (Q=z)

40

Proof of Main Lemma
• P is path in T from (Q=x) to (Q=y). y< x. z is x-y splitter on P
• P’ is path from (Q=x) to (Q=z)
• Proof will be case analysis of structure of P’
• For every P’, will show can build cheaper OBCST T’ 

contradicting optimality of T

40

Proof of Main Lemma
• P is path in T from (Q=x) to (Q=y). y< x. z is x-y splitter on P
• P’ is path from (Q=x) to (Q=z)
• Proof will be case analysis of structure of P’
• For every P’, will show can build cheaper OBCST T’ 

contradicting optimality of T

Case 1: P’ is one edge

40

Proof of Main Lemma
• P is path in T from (Q=x) to (Q=y). y< x. z is x-y splitter on P
• P’ is path from (Q=x) to (Q=z)
• Proof will be case analysis of structure of P’
• For every P’, will show can build cheaper OBCST T’ 

contradicting optimality of T

Case 1: P’ is one edge
Q = x

Q < z

x

A

B

Q < z

Q = x

A

x

B

) �1

+1

y

y

n

n

40

Proof of Main Lemma
• P is path in T from (Q=x) to (Q=y). y< x. z is x-y splitter on P
• P’ is path from (Q=x) to (Q=z)
• Proof will be case analysis of structure of P’
• For every P’, will show can build cheaper OBCST T’ 

contradicting optimality of T

Case 1: P’ is one edge
Q = x

Q < z

x

A

B

Q < z

Q = x

A

x

B

) �1

+1

y

y

n

n

y∈A => Weight(A) ≥ βy > βx

40

Proof of Main Lemma
• P is path in T from (Q=x) to (Q=y). y< x. z is x-y splitter on P
• P’ is path from (Q=x) to (Q=z)
• Proof will be case analysis of structure of P’
• For every P’, will show can build cheaper OBCST T’ 

contradicting optimality of T

Case 1: P’ is one edge
Q = x

Q < z

x

A

B

Q < z

Q = x

A

x

B

) �1

+1

y

y

n

n

y∈A => Weight(A) ≥ βy > βx

=> replacing left subtree by right  
subtree in T yields new BCST T’  
with lower cost than T,  
contradicting T being OBCST

41

Proof of Main Lemma
• P is path in T from (Q=x) to (Q=y). y<x. z is x-y splitter on P
• P’ is path from (Q=x) to (Q=z)

Case 2: P’ is two edges ≠≮
Q = x

Q < z1x

B1

B

Q < z

Q = x

A

x

B

)

�1+1

y

y

n

n

Q < z

A

Q < z1

B1 �1

41

Proof of Main Lemma
• P is path in T from (Q=x) to (Q=y). y<x. z is x-y splitter on P
• P’ is path from (Q=x) to (Q=z)

Case 2: P’ is two edges ≠≮

y∈A => Weight(A) ≥ βy > βx
Q = x

Q < z1x

B1

B

Q < z

Q = x

A

x

B

)

�1+1

y

y

n

n

Q < z

A

Q < z1

B1 �1

41

Proof of Main Lemma
• P is path in T from (Q=x) to (Q=y). y<x. z is x-y splitter on P
• P’ is path from (Q=x) to (Q=z)

Case 2: P’ is two edges ≠≮

y∈A => Weight(A) ≥ βy > βx

=> again replacing left tree by  
right tree in T yields new BCST T’  
with lower cost than T,  
contradicting T being OBCST

Q = x

Q < z1x

B1

B

Q < z

Q = x

A

x

B

)

�1+1

y

y

n

n

Q < z

A

Q < z1

B1 �1

42

Proof of Main Lemma

42

Proof of Main Lemma
• P is path in T from (Q=x) to (Q=y). y<x. z is x-y splitter on P
• P’ is path from (Q=x) to (Q=z)
• Proof will be case analysis of structure of P’

42

Proof of Main Lemma
• P is path in T from (Q=x) to (Q=y). y<x. z is x-y splitter on P
• P’ is path from (Q=x) to (Q=z)
• Proof will be case analysis of structure of P’

• Already saw first two cases of P’
• Showed for each that assumptions allow replacing subtree  

rooted at (Q=x) with cheaper subtree for some range.  
Replacement leads to cheaper BCST, contradicting optimality 
of T

42

Proof of Main Lemma
• P is path in T from (Q=x) to (Q=y). y<x. z is x-y splitter on P
• P’ is path from (Q=x) to (Q=z)
• Proof will be case analysis of structure of P’

• Already saw first two cases of P’
• Showed for each that assumptions allow replacing subtree  

rooted at (Q=x) with cheaper subtree for some range.  
Replacement leads to cheaper BCST, contradicting optimality 
of T

• The full proof splits P’ into 7 cases.
• For each, can show replacement with cheaper subtree,  

contradicting optimality of T.

Outline
• History

• Binary Search Trees
• Hu-Tucker Trees
• AKKL Trees

• Optimal Binary Comparison Search Trees with Failures
• Problem Models
• List of New Results

• Our Results
• The Main Lemma
• Structural Properties of OBCSTs
• Dynamic Programming for OBCSTs
• Proof of The Main Lemma

• Extensions and Open Problems

43

44

Extensions & Open Problems
• If the βi,αi are probabilities (sum to 1) can show an O(n)

algorithm that constructs BCST within additive error 3
of optimal for Exact Failure Case
• Modification of similar algorithm for Hu-Tucker case.

• O(n4) is quite high for worst case.
• Can we do better?

