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Fvacuating Graphs

 Graph G=(V,E) represents structure

* \ertices are rooms, Edges are Hallways
* \ertices are Buildings, Edges are roads

 Edge weight te is transit time on edge

 Edge capacity ce Is "width’

e Special vertices (sinks) are emergency exits

* |n case of emergency, want to evacuate everybody to
exits as quickly as possible

 Problem: Design Good Evacuation Protocols

e QOften Approached via Dynamic Flow Networks



Dyvnamic Flow Networks

* G=(VE)
* Edges have travel times t_ and capacities c,
* Distinguished source s and sink t

 Max Flow Over Time Problem (inputT) |
How much flow can be pushed from stotintime T7 S
» Ford Fulkerson (1958) l/
« Not polynomial (Constructs Static Max-Flow each
timestep)

» Quickest Flow Problem (input W)
How quickly can W items be moved from s to t?

» Burkard, Dlasks and Klinz (1993)
e Strongly Polynomial (uses parametric search)

* Quickest Transhipment Problem
Like QF Problem but Multiple Sources/Sinks

(with fixed supply/demands)

e Hoppe & Tardos (2000)
e Strongly Polynomial (but uses sub modular optimization)



Edges have Capacities

Original Flow Model is static. Doesn’t model time
Time required is function of both transit times and capacities

Ce IS €dge capacity (“width”)

* At most ¢, people can enter edge e=(u,v) in one time unit.
They travel together as a group on e

 |f more than ¢, people at u, remainder need to wait to enter e
Te 1S time for one group to traverse edge

Start with W people at u
How much time does take them all to reach v?
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® 13 items split into g = r13/27 = 7 groups

e irst group
e | ast group

reached v at time = 7=3

reached v attime =3 +g-1=9
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13
u@® ®v
=3 c=2

® 13 items split into g = r13/27 = 7 groups
e First group reached v attime (= 7=3
e | ast group reached v attime =3 +g-1=9

Discrete Model  pegauit for this talk o

e |/ people, Capacity c integral, Transittime t

e All edge transit times integral

®* Requires rlV/c1 + -1 time to move everyone from u to v

Continuous Model

* \W units of non-quantized fluid. Fluid flows continuously
e Cis rate: amount that can enter e in one unit of time

* Requires W/c+ t-7 time to move all fluid from vto v
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Congestion Effects

A major complication with dynamic flows is that they
introduce congestion effects that can slow down
transport time
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Congestlon Fffects

u®

8 3 3 3 t=3: first 8 items from u reach v
- ®w which is empty.
T1=3 C1=8 y Te=0 C2=3 First 3 items pass through but

others need to wait because ci1<C»
Congestion occurs.
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Congestlon Fffects

u®

13 3 3 3 t=3: first 8 items from u reach v
- ®w which is empty.
1=3 C1=8 |, Te=0 C2=3 First 3 items pass through but

others need to wait because ci1<C»
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Congestlon Fffects

u®

10 3 3 3 3 =3 first 8 items from u reach v
- ®w which is empty.
1=3 C1=8 |, T2=0 C2=3 First 3 items pass through but

others need to wait because ci1<C»
Congestion occurs.

t=4
t=5
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Congestlon Fffects

/ 3 3 3 6 =3 first 8 items from u reach v
B ®w which is empty.
11=3 C1=8 , Te=0 C2=3 First 3 items pass through but

others need to wait because ci1<C»
Congestion occurs.

t=4
t=5
t=6
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Congestlon Fffects

4 3 3 3 9 =3 first 8 items from u reach v

u®

T1=3

- ®w which is empty.
To=5  C2=3 . .
Y% First 3 items pass through but
others need to wait because ci<cCy
Congestion occurs.

t=4
t=5
{=0
t=7

c1=8

25



Congestlon Fffects

1 3 3 3 349 {_3 first 8items from u reach v
u@® - ®w which is empty.
T1=3 C1=38 Vv To=5  C2=3 First 3 items pass through but

others need to wait because ci1<C»
Congestion occurs.

t=4
t=5
{=0
t=7
t=38

20



Congestlon Fffects

3 3 3 649 (-3 first 8 items from u reach v

u®

T1=3

- ®w which is empty.
To=5  C2=3 . .
Y% First 3 items pass through but
others need to wait because ci<cCy
Congestion occurs.

t=4
t=5
{=0
t=7
t=38

c1=8

=9
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Congestion Effects

1649 1_3 first 8 items from u reach v

T1=3

c1=8

Vv

To=5

Co=3

®w which is empty.

First 3 items pass through but
others need to wait because ci<cCy
Congestion occurs.

t=4
t=5
{=0
t=7
t=38

=9

t=13: Last item arrives at w
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Congestion Effects

16 9
u® & ®\ Congestion occurs because ci<C
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v Full Evacuation at t=13
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Congestion Effects

16 9
u ®. Congestion occurs because ci<C
7 T1=3 C1=8 ® To=5  C»=3 J | e
v Full Evacuation at t=13
106 30
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Congestion Effects

ow

10 9
u® T1=3 C1=8 : To=H  (Co=3
8 8+9 9 9 9
u® T1=3 Cc1=8 : To=5  C»=9
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Full Evacuation at t=13

t=3: first 8 items from u reach v
which still contains 9 items
=> Congestion occurs.



Congestion Effects

16 9
u@® e ®\w Congestion occurs because ci<C
=3 C1=8 =5  Co=3 J | =
v Full Evacuation at t=13
10+36
u @ B R—— e r-S——— ®w =3 first 8 items from u reach v
= = v o teT e which still contains 9 items

=> Congestion occurs.
t=12: Last item arrives at w
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Congestion Effects

®\w Congestion occurs because ci<Co
Full Evacuation at t=13
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Congestion Effects

®\w Congestion occurs because ci<Co
Full Evacuation at t=13

& Congestion occurs because v not

empty when first group arrives from u

Full Evacuation at t=12
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Congestion Effects

®\w Congestion occurs because ci<Co
Full Evacuation at t=13

B Congestion occurs because v not
empty when first group arrives from u

Full Evacuation at t=12

Ny t=3: first 8 items from u reach v

10 9
u® T1=3 C1=8 : To=H  Co=3
10 36
u® T1=3 Cc1=8 : To=5  C»=9
8 8 9
u® T1=3 Cc1=8 : To=5  C»=9
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Congestion Effects

10 9
u® T1=3 C1=8 : To=H  Co=3 ow
10 36
u® T1=3 Cc1=8 : To=5  C»=9 ow
10+18
u® T1=3 Cc1=8 : To=5  C»=9 ow
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Congestion occurs because ci<Co
Full Evacuation at t=13

Congestion occurs because v not
empty when first group arrives from u

Full Evacuation at t=12

t=3: first 8 items from u reach v
which is empty still contains 9 items
=> NO Congestion occurs.

t=9: Last item arrives at w



Congestion Effects
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Congestion Effects

®\w Congestion occurs because ci<Co
Full Evacuation at t=13

& Congestion occurs because v not

empty when first group arrives from u

Full Evacuation at t=12

ltems at u pass through v with

o

10 9

u® T1=3 C1=8 : To=H  Co=3
10 36

u® T1=3 Cc1=8 : To=5  C»=9
10 18

u® T1=3 Cc1=8 : To=5  C»=9

No Congestion occuring
Full Evacuation at t=9

Analysis of Flow/Evacuation times must include congestion!!

Can be very complicated!
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Graph Evacuation Problems

e Input: Graph G=(V,E)
* T, Co transittimes and capacities for each edge
e w,:#of people starting on vertex v
o Sinks: Either fixed set K cV of sinks or a number k of sinks allowed

 Output: An Evacuation Protocol that minimizes maximum evacuation time

e Evacuation Protocol
* A unique evacuation edge for each vertex
e Ifinputisk, a set K ¢V of sinks with |K|=k

e Maximum Evacuation time

* The evacuation time of a vertex is the earliest time by which ALL
items from that vertex have reached a sink.

* Maximum evacuation time is the maximum evacuation time over all
vertices
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Graph Evacuation Problems: Variations

 Type of graph G: Path, Tree, General, ....

* For general G and k>1 problem is NP-Complete because it solves
k-Center (if ¢, set to be large)

- Sink Input: Actual Sinks vs # of sinks

- Discrete vs Continuous flow

* Fleischer, Tardos (1998). D and C Dynamic Flow problems can
often be solved using same algorithm

- Sink locations: anywhere or only on vertices
* Ce: Uniform (all the same) vs general (arbitrary)

- Min-Max vs Min-Max Regret

* Robust solutions. MMR allows w,, # of people on vertex, to be a
range rather than a number. Find “best” solution for all allowable
scenarios
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KNnown Besults

Min-max cost (DISCRETE/CONTINUOQUS)

General capacity

Uniform capacity

1-sink k-sink 1-sink k-sink
Path O(n) [2] O(kn log?n) [2] O(n) O(kn) [6]
Tree O(n log2n) [7] |O(k?nlog*n) [3]| O(nlog n) [4] |O(k?n log®n)[3]
General graph Poly? NP-Hard Poly? NP-Hard

Min-max regret cost (DISCRETE/CONTINUOUS)

General capacity

Uniform capacity

1-sink

k-sink

1-sink

k-sink

Tree

General graph

None

O(n log n) [5,9]

O(kn3logn) [1]

O(n2log2n) [4]

None

None
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K-Sink Evacuation on a Path

Given a path, associated values ce, e and K, # of sinks,

C1 C2 C3 Cn
o—=e- { L @ *r——0—0—0—0
XO X-| X2 X3 Xn

Find a partition into k-subpaths and a sink for each subpath,
that minimizes the maximum evacuation time over all
subpaths.

< - = > < >

e o ¢ 0 e e 0O e e e O e e
P, P, P\



1-Sink Evacuation Notation

O, (Px) O(Px)
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1-Sink Evacuation Notation

S, (Px) Ox(PX)

o-——0— *——o

OL(Px) = Time to evacuate all nodes to left of x on P to x

Or(Px) = Time to evacuate all nodes to right of x on P to x

O(Fx) = max(OL(Px), Br(PX))
Time to evacuate all nodes on P to x

©'(P) = minxery O(PX)
= min evacuation time for P with one sink



1-Sink Evacuation Example
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1-Sink Evacuation Example

Original Input:
8 12 8 3 4 47
o———o—— ¢ ——— o —0—9
=3, C=2 =4, c=3 =3, c=4 7=3, c=5 7=3, C=3

IS the sink location that minimizes Maximum Evacuation Time

eR(P,X)21 /

<« {4
3 4 , 47

8 12 8 1
%
7=3, c=4 7=3, C=5 7=3, c=3

7=3, C=2 =4, c=3

eL(P,X)=1 !




1-Sink Evacuation Example

Original Input:
8 12 8 3 4 47
e e & & e e
7=3, C=2 =4, c=3 =3, c=4 =3, c=5 7=3, Cc=3
IS the sink location that minimizes Maximum Evacuation Time
OLPX)=17 OR(PX)=17
- 4>
8 12 8 3 4 ., 4
* ——0o———06—0—O0——0
7=3, C=2 =4, c=3 =3, c=4 7=3, c=5 7=3, C=3

Note: Min evac-time sink location is NOT an original vertex.
Can modify problem definition to require sink to be a vertex

Algorithms remain almost the same



K-Sink Evacuation Notation

- P> 4— —p <— — >

o o o—0-0o 0 0 e o @ 0 e @

P P, Py

Given Path P and integer k
P ={P1, P2, ..., Px} is a partition of P into k-subpaths

Given P, the evacuation time of P is
max (8'(P1), ©1(P2), ... ,©"(P))

Want to find
GK(P) = minp ( Mmax (91(P1), 61(P2), ,91(Pk)) )
= Min k-sink evacuation time for P



Algorithm Development Sketch

1. Formulae for ©.(P,x) and ©.(P,x)
2. => O(|P]) Algorithm for ©.(Px), ©.(Px)
3. => O(|P| log |P|) Algorithm for ©1(P)

4. => O(|P| log |P|) Algorithm that va > O
tests whether ©K(P) < a

5. => O(k|P| log? |P|) Algorithm for ©%(P)
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Formulae for © (P.x) and ©_(Px)

Cy Cy Cq . S Cjt1
—— o — o — o — 0o —— 90 o
X0 X1 X2 X3 Xj-1 %] *j+1

* Consider ©.(P,x) with sink at right
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* Consider ©.(P,x) with sink at right

 Lemma: Suppose ¢ > Cj+1.
Create P’ by replacing ¢; with ¢’j=cj.1.
=>Then B.(P.x) = ©.(P’,x)



Formulae for © (P.x) and ©_(Px)

Cy Cy Cq . J X J Cjt1
~—o—0—0—0—0—0—0—0
X0 X X0 X3 X1 9K Xj+1

* Consider ©.(P,x) with sink at right

 Lemma: Suppose ¢ > Cj+1.
Create P’ by replacing ¢; with ¢’j=cj.1.
=>Then B.(P.x) = ©.(P’,x)



Formulae for ©, (P.x) and ©_(Px)

Yo Wi W2 "3 Wi-1 Wi Wis1 Wy

Cy Cy Cq . J }( J Cjt1
——o—0—0————0——0—0—0—0-
XOC1 X1 C2 Xo C3 X3 Xj—‘l Cj Xj Cj+1 Xj+1 Xy

* Consider ©.(P,x) with sink at right

 Lemma: Suppose ¢ > Cj+1.
Create P’ by replacing ¢; with ¢’j=cj.1.
=>Then B.(P.x) = ©.(P’,x)

e Corollary: May replace capacities by

/ .
c'1 < co <3 <. <y C; = N ¢;

Li<i<r+1



Formula for ©, (P.x)

Xr IS last vertex to right of x

Wo W+ Wo W3 Wj-1 N Wj . Wj+1 W,
o & &+ e e e : :
Tk T T s s T ox o % FPath with c; has same evac time

. / .
as Path with ¢; = min ¢;
1<73<r+41



Formula for ©, (P.x)

Xy 1S last vertex to right of x

Wo Wiy W2 W3 Wi Y Wis1 Wy

A e e a2 | Path with ¢ has same evac time
. / .
as Path with ¢; = min ¢;
1<7<r+1
Lemma:

OL(P,z) = max (((az—azt)—l—[Wt] 1)) W= > w

O=t=r 0<j<t



Formula for ©, (P.x)

Xy 1S last vertex to right of x

Wo Wiy W2 W3 Wi Y Wis1 Wy

OF T : '3 ,'1 °, S Path with ci has same evac time
. / .
as Path with ¢; = min ¢;
1<7<r+1
Lemma:
4%
Or(P,x) = max <<(az—azt)—|— [ , t—| 1>> Wi = Z W
st Cipa 0<j<t

Intuition: Analysis is on path P’




Formula for ©, (P.x)

Xy 1S last vertex to right of x

Wo Wiy W2 W3 il Y Wis1 Wy

:*1 : °3 ,°1 °, S T Path with ci has same evac time
as Path with ¢; = min ¢,
1<jSr+l
Lemma:
Wi _
Or(P,x) = max <<(az—azt)—|— [ , _| 1>> Wi = Z W
O<t<r Ct41 0<j<t

Intuition: Analysis is on path P’

e FiX Xt. x-xt1s uncongested travel time from x; to x



Formula for ©, (P.x)

Xy 1S last vertex to right of x

Wo Wy W2 "3 Wit W] Wir1 Wy

ST T X | Path with ¢ has same evac time

3 c i

_ as Path with ¢; = min ¢;
1<j<r+1
Lemma:
W
Or(P,x) = max (((x—xt)—l— [ , t—| 1>> Wi = Z W
O<t<r Ct41 0<j<t

Intuition: Analysis is on path P’

e FiXXt. X-XtIs uncongested travel time from x: to x

« Remove all items to right of x.
Move all items to left of xt onto xi. xt's new weight is W




Formula for ©, (P.x)

Xy 1S last vertex to right of x

Wo w4y W2 W3 Wit W] Wir1 W

ST T X | Path with ¢ has same evac time

3 . c i

_ as Path with ¢; = min ¢;
1<j<r+1
Lemma:
W
Or(P,x) = max (((x—mt)—l— [ , t—| 1>> Wi = Z W
O<t<r Ct41 0<j<t

Intuition: Analysis is on path P’

e Fix xt. x-x:is uncongested travel time from x: to X

« Remove all items to right of x.
Move all items to left of xt onto xi. xi's new weight is Wi

* # of groups leaving xiis g = TWy/c't,171,
No congestion on path to x.



Formula for ©, (P.x)

Xy 1S last vertex to right of x

Wo w4y W2 W3 Wit W] Wir1 W

:*1 '2 °3 ,°1 °, S T Path with ci has same evac time
as Path with ¢; = min ¢,
1<jSr+l
Lemma:
Wi _
Or(P,x) = max (((x—mt)—l— [ , _| 1>> Wi = Z W
O<t<r Ct41 0<j<t

Intuition: Analysis is on path P’

e Fix xt. x-x:is uncongested travel time from x: to X

« Remove all items to right of x.
Move all items to left of xt onto xi. xi's new weight is Wi

* # of groups leaving xiis g = TWy/c't,171,
No congestion on path to x.

 => X-Xi+Q-1 Is the exact evacuation time for items on x;



Formula for ©, (P.x)

o wi W W w o w W w Path with c; has same evac time

NN as Path with ¢; = min ¢,

X0 X Xo X3 Xt N TR X X 1<j<r+1
Lemma:

0<j<t

O.(P,z) = max (((:U—:Bt)jL[Wt] 1)) We= ) w



Formula for ©, (P.x)

wo wi o wp o ws o wy o w W w, Path with ci has same evac time
S . o X as Path with ¢; = min ¢,
X0 X X2 xg K1 N R Xy X 1<j<r+l
Lemma:
W, _ .
O, (P,r) = max (x —x¢) + | 5 ‘ 1 Wy = Z Wy
Ostsr Ct 11 0<j<t

e Fix vertex xt and consider the W; items passing through xi



Formula for ©, (P.x)

wo wp o WpWawy ow Wy w Path with ci has same evac time
NN as Path with ¢; = min ¢;
X0 X X2 xg K1 N R Xy X 1<j<r+l
Lemma:
Wi _ .
O, (P,r) = max (x —x¢) + | 5 1 Wi = Z Wy
Ostsr Ct 11 0<j<t

e Fix vertex xt and consider the W; items passing through xi

* => These W;items leave x; in g > M'Wi/c'i+11 groups
=> L ast group leaves x; at time >g-1.



Formula for ©, (P.x)

o wi o we W wgw W ow FPath with ci has same evac time
NN as Path with ¢; = min ¢;
X0 X X2 xg K1 N R Xy X 1<j<r+l
Lemma:
Wi _ .
O, (P,r) = max (x —x¢) + | 5 1 Wi = Z Wy
Ostsr Ct 11 0<j<t

e Fix vertex xt and consider the W; items passing through xi

* => These W;items leave x; in g > M'Wi/c'i+11 groups
=> L ast group leaves x; at time >g-1.

e [astitem in last group requires at least x- x: time to move from x: to x
=> final evacuation time > x- x; + g-1



Formula for ©, (P.x)

o wi o we W wgw W ow FPath with ci has same evac time
NN as Path with ¢; = min ¢;
X0 X X2 xg K1 N R Xy X 1<j<r+l
Lemma:
W. _ .
O, (P,r) = max (x —x¢) + | 5 ‘ 1 Wy = Z Wy
Ostsr Ct 11 0<j<t

e Fix vertex xt and consider the W; items passing through xi

* => These W;items leave x; in g > M'Wi/c'i+11 groups
=> L ast group leaves x; at time >g-1.

e [astitem in last group requires at least x- x: time to move from x: to x
=> final evacuation time > x- x; + g-1

e Thisis true for every t
=> have just proven = direction of lemma



Lemma: OL(P,z) = max (((x—fth[Wt] 1)) Wi= > w

0<t<r Ciiq

« Letl belastitemon xo and x: be last vertex at which L is congested (waits).
(If L never experiences congestion set t=0.)
=> |f L leaves xtat time T’, L arrives at x at time T'+ x-x

L Wp wy W2 W3 M1 M e W
t T+

o o o e e . o—o—oX

X0 X1 Xo X3 Xt-1 Xt XyX




Lemma: ©L(P,x)= max (((ZB—%H [ Wt] 1)) Wi= > w

0<t<r Ciiq

« Letl belastitemon xo and x: be last vertex at which L is congested (waits).
(If L never experiences congestion set t=0.)
=> |f L leaves xtat time T’, L arrives at x at time T'+ x-x

L Wp wy W2 W3 Wit W o Wit Wy
C t+1
— o — ° ° . o—o—oX
X0 X4 Xo X3 Xt-1 Xt Xt-X

* Note: # people arriving at xr at any time Tis < ¢’ < i+



Lemma: ©L(P z)= max (((l’—wt)Jr [ Wt] 1)) Wi= > w

« Letl belastitemon xo and x: be last vertex at which L is congested (waits).
(If L never experiences congestion set t=0.)
=> |f L leaves xtat time T’, L arrives at x at time T'+ x-x

L Wp wy W2 W3 Wit W o Wit Wy
C t+1
— o — ° ° . o—o—oX
X0 X4 Xo X3 Xt-1 Xt Xt-X

Note: # people arriving at xt at any time Tis < ¢t < ¢4+

Suppose 3 timestep T>0 at which < ¢’i,1 items leave x:.

=> No one is left waiting at x:.

=> at T+1 the < ¢'i.1 people arriving at x; all pass through without waiting at xi
=> repeating; no one left waiting at xtat T+2, T+3, etc.

=> | passes through x: without waiting, contradicting choice of t.



Lemma: ©L(P,x)= max (((év—a?tH [ Wt] 1)) Wi= > w

« Letl belastitemon xo and x: be last vertex at which L is congested (waits).
(If L never experiences congestion set t=0.)
=> |f L leaves xtat time T’, L arrives at x at time T'+ x-x

L Wp wy W2 W3 Wit W o Wit Wy
C t+1
— o — ° ° . o—o—oX
X0 X4 Xo X3 Xt-1 Xt Xt-X

Note: # people arriving at xt at any time Tis < ¢t < ¢4+

Suppose 3 timestep T>0 at which < ¢’i,1 items leave x:.

=> No one is left waiting at x:.

=> at T+1 the < ¢'i.1 people arriving at x; all pass through without waiting at xi
=> repeating; no one left waiting at xtat T+2, T+3, etc.

=> | passes through x: without waiting, contradicting choice of t.

=> At every time step exactly ¢'i.1people leave x;



Lemma: OL(P,z) = max (((x—fth[Wt] 1)) Wi= > w

0<t<r Ciiq

« Letl belastitemon xo and x: be last vertex at which L is congested (waits).
(If L never experiences congestion set t=0.)
=> |f L leaves xtat time T’, L arrives at x at time T'+ x-x

L Wp wy W2 W3 Wit W o Wit Wy
C t+1
— o — ° ° . o—o—oX
X0 X4 Xo X3 Xt-1 Xt Xt-X

Note: # people arriving at xt at any time Tis < ¢t < ¢4+

Suppose 3 timestep T>0 at which < ¢’i,1 items leave x:.

=> No one is left waiting at x:.

=> at T+1 the < ¢'i.1 people arriving at x; all pass through without waiting at xi
=> repeating; no one left waiting at xtat T+2, T+3, etc.

=> | passes through x: without waiting, contradicting choice of t.

=> At every time step exactly ¢'i.1people leave x;

=> L leaves x: in group g= M'Wy/c't,11 attime g -1



Lemma: OL(P,z) = max (((x—fth[Wt] 1)) Wi= > w

0<t<r Ciiq

« Letl belastitemon xo and x: be last vertex at which L is congested (waits).
(If L never experiences congestion set t=0.)
=> |f L leaves xtat time T’, L arrives at x at time T'+ x-x

L Wp wy W2 W3 Wit W o Wit Wy
C t+1
— o — ° ° . o—o—oX
X0 X4 Xo X3 Xt-1 Xt Xt-X

Note: # people arriving at xt at any time Tis < ¢t < ¢4+

Suppose 3 timestep T>0 at which < ¢’i,1 items leave x:.

=> No one is left waiting at x:.

=> at T+1 the < ¢'i.1 people arriving at x; all pass through without waiting at xi
=> repeating; no one left waiting at xtat T+2, T+3, etc.

=> | passes through x: without waiting, contradicting choice of t.

=> At every time step exactly ¢'i.1people leave x;

=> | leaves x: in group g=M'Wy/c’i;171 attime g -1
=> | arrives at x at time x- xt + g-1



Lemma: OL(P,z) = max (((x—fth[Wt] 1)) Wi= > w

0<t<r Ciiq

« Letl belastitemon xo and x: be last vertex at which L is congested (waits).
(If L never experiences congestion set t=0.)
=> |f L leaves x;at time T', L arrives at x attime T+ x-x

L Wp wy W2 W3 Wit W o Wit Wy
C t+1
— o — ° ° . o—o—oX
X0 X4 Xo X3 Xt-1 Xt Xt-X

Note: # people arriving at xt at any time Tis < ¢t < ¢4+

Suppose 3 timestep T>0 at which < ¢’i,1 items leave x:.

=> No one is left waiting at x:.

=> at T+1 the < ¢'i.1 people arriving at x; all pass through without waiting at xi
=> repeating; no one left waiting at xtat T+2, T+3, etc.

=> | passes through x: without waiting, contradicting choice of t.

=> At every time step exactly ¢'i.1people leave x;

=> | leaves x: in group g=M'Wy/c’i;171 attime g -1
=> | arrives at x at time x- xt + g-1

=> have just proven = direction of lemma



Algorithm Development Sketch

1. Formulae for ©.(P,x) and ©.(P,x)
2. => O(|P|) Algorithm for ©.(Px), ©.(Px)
3. => O(|P| log |P|) Algorithm for ©1(P)

4. => O(|P| log |P|) Algorithm that va > O
tests whether OX(P) < a

5. => O(k|P| log? |P|) Algorithm for ©%(P)



Formulas for ©, (P,x) and ©_(Px)

SN Ox(Px)

*—e @ ® r—0—0— 00— 0—0

X | R

Theorem: Let k be s.t. Xk < X < Xk+1. Then

O (P, ) = max ((a; —3) + [ 2osj<t s w + 1) Or(P,z) = max ((xi — 1)+ [ 2igi<n i W + 1)

ri<xT mini+1§j§k+1 Cj Ti>x mink+1§j§n Cj

Corollary: ©.(P,x) and ©r(P,x) can be computed in O(|P|) time



Formulas for ©, (P,x) and ©_(Px)

SN Ox(Px)

@ ® r—0—0— 00— 0—0

X | R



Formulas for ©, (P,x) and ©_(Px)

SN Ox(Px)

e = o . e o o o o o
X | R

Claim 1: ©L(P.x) ( ©r(P,x) )

IS a monotonically increasing
(decreasing) piecewise linear
function in x.




Formulas for ©, (P,x) and ©_(Px)

S, (Px)

Or(Px)

e = o .
X | R

Claim 1: ©L(P.x) ( ©r(P,x) )

IS a monotonically increasing
(decreasing) piecewise linear
function in x.

e o o o o o

- o—*
=
o—®

o/. *—0




Formulas for ©, (P,x) and ©_(Px)

SN Ox(Px)
*—S ® ® *r—0—0—0—0—0
X | R
.\o
Claim 1: ©L(P,x) ( ©r(P.x) ) —
'S @ monotonically increasing T~
(decreasing) piecewise linear
function in x. o—*
o/.
Claim 2: 6(Px) = max(6.(Px), ©r(P.x)) o X %

IS a unimodal function. It decreases,
achieves a unigue minimum and then

Increases



Algorithm Development Sketch

1. Formulae for ©.(P,x) and ©.(P,x)
2. => O(|P]) Algorithm for ©.(Px), ©.(Px)
3. => O(|P| log |P|) Algorithm for ©1(P)

4. => O(|P| log |P|) Algorithm that va > O
tests whether OX(P) < a

5. => O(k|P| log? |P|) Algorithm for ©%(P)



An O(|P| log|P|) Algorithm for ©1(P)




An O(|P| log|P|) Algorithm for ©1(P)

®
¢
®w




An O(|P| log|P|) Algorithm for ©1(P)

R(P.x)=39
« P
8 12 8 3 4 47
O (Px)=0 )& L 2 e @ L ®
7=3, c=2 =4, c=3 =3, c=4 7=3, c=5 7=3, c=3
0| (Px)=6 OR(PX)=28
< P ¢ P
8 12 8 3 4 47
o L J L J { ] ®
7=3, c=2 =4, c=3 7=3, c=4 7=3, c=5 7=3, c=3



An O(|P| log|P

R(P.x)=39
< >
8 12 8 3 4 47
O (Px)=0 )& [ ] e = L ®
=3, c=2 =4, c=3 =3, c=4 7=3, c=5 7=3, c=3
0| (Px)=6 OR(PX)=28
< P ¢ P
8 12 8 3 4 47
o X [ ) L J { ] ®
7=3, c=2 =4, c=3 7=3, c=4 7=3, c=5 7=3, c=3
O (Px)=10 OR(PX)=24
-« > < |
8 12 8 3 4 47
o [ ) 3 [ ) { ] ®
7=3, c=2 =4, c=3 7=3, c=4 7=3, c=5 7=3, c=3

) Algorithm for ©87(P)



) Algorithm for ©87(P)

An O(|P| log|P

R(P.x)=39
< >
8 12 8 3 4 47
O (Px)=0 )& [ ] e K] ° ®
=3, c=2 =4, c=3 =3, c=4 7=3, c=5 7=3, c=3
O (PX)=6 OR(PX)=28
<} > < [
8 12 8 3 4 47
([ e { ] [ ] L ®
7=3, c=2 =4, c=3 7=3, c=4 7=3, c=5 7=3, c=3
O (Px)=10 OR(PX)=24
« > |
8 12 8 3 4 47
([ { ] DS [ ] L L
7=3, c=2 =4, c=3 7=3, c=4 7=3, c=5 7=3, c=3
< > < [
8 12 8 3 4 47
e [ ] —@ — L ®
7=3, c=2 =4, c=3 7=3, c=4 7=3, c=5 7=3, c=3



An O(|P| log|P

R(P.x)=39
< >
8 12 8 3 4 47
8 (Px)=0 )& { 3 e N L ®
=3, c=2 =4, c=3 =3, c=4 7=3, c=5 7=3, c=3
0| (Px)=6 OR(PX)=28
< > < >
8 12 8 3 4 47
o ° ° { ] ®
7=3, c=2 =4, c=3 7=3, c=4 7=3, c=5 7=3, c=3
O (Px)=10 OR(PX)=24
-« > < |
8 12 8 3 4 47
o ° 3 ° ° ®
7=3, c=2 =4, c=3 7=3, c=4 7=3, c=5 7=3, c=3
< > < >
8 12 8 3 4 47
e { 3 —@ —ot o ®
7=3, c=2 =4, c=3 7=3, c=4 7=3, c=5 7=3, c=3
< > < >
8 12 8 3 4 47
e [ ] e -® LS L
7=3, c=2 =4, c=3 7=3, c=4 7=3, c=5 7=3, c=3

) Algorithm for ©87(P)



An O(|P| log|P|) Algorithm for 6(P)

OR(PX)=39
< >
8 12 8 3 4 47
8 (Px)=0 )& [ ] e e ° ®
=3, c=2 =4, c=3 =3, c=4 7=3, c=5 7=3, c=3
O (PX)=6 OR(PX)=28
- > < >
8 12 8 3 4 47
([ e { ] [ ] { ) ®
7=3, c=2 =4, c=3 7=3, c=4 7=3, c=5 7=3, c=3
O (Px)=10 OR(PX)=24
« > |
8 12 8 3 4 47
([ { ] DS [ ] { ) L
7=3, c=2 =4, c=3 7=3, c=4 7=3, c=5 7=3, c=3
-< > < >
8 12 8 3 4 47
e [ ] —@ —4 L ®
7=3, c=2 =4, c=3 7=3, c=4 7=3, c=5 7=3, c=3
- >« |
8 12 8 3 4 47
([ [ 2 e ~-@ D3 o
7=3, c=2 =4, c=3 7=3, c=4 7=3, c=5 7=3, c=3
GL(F’,X) 19
<
8 12 8 3 4 47
{ { ] { ] [ ] [ J .
7=3, c=2 7=4, c=3 7=3, c=4 7=3, c=5 7=3, c=3



An O(|P| log|P|) Algorithm for ©1(P)

8 3 4 47
O (Px)=0 [ ] e N L ®

=3, c=2 =4, c=3 =3, c=4 7=3, c=5 7=3, c=3

0| (Px)=6 OR(PX)=28
< > < >
8 12 8 3 4 47
o L J L J { ] ®

7=3, c=2 =4, c=3 7=3, c=4 7=3, c=5 7=3, c=3

-~ — Search for where
; " 0 i OL(P xi) < Or(P xi)
switches to
oL (PX)=13 OR(PX=2" GL(P,Xi) > eR(P,Xi).

L ]
o w
o~
L

o 2 : " ; o Optimum sink x is in the
¢ =3, c=2 * =4, c=3 - =3, c=4 * =3, c=5 ¢ =3, c=3 * : '
’ | | | | iInterval where the switch
o, (PX)=16 OR(PX)=18 OCCUrs
84 12 8 3 :4 a7
° . e . o °
7=3, c=2 =4, c=3 7=3, c=4 =3, c=5 =3, c=3
O (PX)=19
g 12 8 3 4 :7
. ° . . . & ©R(FEx)=0



An O(|P| log|P[

OR(PXx)=
« >
8 12 8 3 4 47
OLPX=0 X . e K] . .

=3, c=2 =4, c=3 =3, c=4 7=3, c=5 7=3, c=3

O (PX)=6 OR(Px)=28
- > < >
8 12 8 3 4 47
([ { ] [ ] { ) L

7=3, c=2 =4, c=3 7=3, c=4 7=3, c=5 7=3, c=3

O (Px)=10 OR(PX)=24

- > < >
8 12 8 3 4 47
([ { ] DS [ ] { ) { )

7=3, c=2 =4, c=3 7=3, c=4 7=3, c=5 7=3, c=3
< > < >
8 12 8 3 4 47
{ L —@ e L 4 o

7=3, c=2 =4, c=3 7=3, c=4 7=3, c=5 7=3, c=3
< > < >
8 12 8 3 4 47
[ o e K S

7=3, c=2 =4, c=3 7=3, c=4 7=3, c=5 7=3, c=3

oL (PX)=19

< >
8 12 8 3 4 47
° . . ° ° & ©OR(Px)=0

7=3, c=2 7=4, c=3 7=3, c=4 7=3, c=5 7=3, c=3

Algorithm for 61(P)

Search for where
OL(P xi) < Or(P xi)

switches to

OL(P.x) > Or(Pxi).
Optimum sink x is in the
Interval where the switch

OCCUrIS

O (Px)=1 OR(PX)=1
- > < >
8 12 3 4 ., W
® ® ® *—¢ ®
7=3, c=2 =4, c=3 7=3, c=5 7=3, =3



An O(|P| log|P|) Algorithm for ©1(P)

O, (Px) Or(Px)
e = K ’:F' e o o o e o
‘\O .
*~o
Corollary: For fixed x, ©.(P,x), ©r(P,x) ——
can be computed in O(|P|) time -

. — -
Claim 2: S(Px) = max(6.(Px), ©r(Px)) o o -

IS a unimodal function.



An O(|P| log|P|) Algorithm for ©1(P)

O, (Px) Or(Px)
e = ) ’:F' e o o o e o
‘\O .
*~—
Corollary: For fixed x, ©.(P,x), ©r(P,x) ——
can be computed in O(|P|) time -

. — " -
Claim 2: S(Px) = max(6.(Px), ©r(Px)) o o -
IS a unimodal function.

Algorithm: Using O(|P| log|P|) time binary search

Find x; s.t ©1(P)= ©(P,x) satisfying Xt < X < Xt+1.
Gives OL(P, xt), Or(P, xt), OL(P, xt+1), Or(P, Xt+1)
In O(1) time do a linear interpolation to find x.



Algorithm Development Sketch

1. Formulae for ©.(P,x) and ©.(P,x)
2. => O(|P]) Algorithm for ©.(Px), ©.(Px)
3. => O(|P| log |P|) Algorithm for ©1(P)

4. => O(|P| log |P|) Algorithm that va > O
tests whether OX(P) < a

5. => O(k|P| log? |P|) Algorithm for ©%(P)
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) Testing Algorithm for 6%(

°) 1]

Set
Set

P ito be path f

P| to be # of vertices in P

'om X; to Xj and Pix path from xi to x.
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n O]

P| log]

D

) Testing Algorithm for 6%(

°) 1]

Set
Set

P ito be path f

P| to be # of vertices in P

hm: Va >0, k>0 and i,j can test if ©k(Pin) =a
IN O( IPinl IOg IPi,nI) time

'om X; to Xj and Pix path from xi to x.



An O(|P| log|P|) Testing Algorithm for ©%(P) [1]

Set Piito be path from xi to x; and Pix path from x; to x.
Set |P| to be # of vertices in P.

hm: Va >0, k>0 and i,j can test if ©k(Pin) =a
in O(IPinl log IPinl ) time

_emma: Va>0,andi can find maximum j s.t. ©1(Pij) =a
in O(IPijl log IPijl) time




An O(|P| log|P|) Testing Algorithm for ©%(P) [1]

Set Piito be path from xi to x; and Pix path from x; to x.
Set |P| to be # of vertices in P.

hm: Va >0, k>0 and i,j can test if ©k(Pin) =a
in O(IPinl log IPinl) time

_emma: Va>0,andi can find maximum j s.t. ©1(Pij) =a
in O(IPijl log IPijl) time

Proof [dea (Lemma):

INn O(IPix! log I Pixl) use linear formula for ©.(Pin,X) &
doubling search technigue to find max x s.t. ©L(Pin,X) = a.

i )



An O(|P| log|P|) Testing Algorithm for ©%(P) [2]

Set Piito be path from xi to x; and Pix path from x; to x.
Set |P| to be # of vertices in P.

hm: Va >0, k>0 and i,j can test if ©k(Pin) =a
IN O( IPinl Iog IPi,nI) time

_emma: Va>0,andi can find maximum j s.t. ©1(Pij) =a
in O(IPijl log IPijl) time

Proof [dea (Lemma):

INn O(IPix! log I Pixl) use linear formula for ©.(Pin,X) &
doubling search technigue to find max x s.t. ©L(Pin,X) = a.

Similarly, in O(IPxjl log | Pxjl), find max |s.t. ©Or(Pin,X) = a

X o0——— X

—_— J




An O(|P| log|P|) Testing Algorithm for ©%(P) [3]

Set Pijto be path from x;i to x; and Pix path from x; to x.
Set |P| to be # of vertices in P.

Thm: Va >0, k>0 andi,j can test if ©k(Pin) =a
IN O(l Pinl log | Pinl) time

_emma: Va>0,andi can find maximum j s.t. ©1(Pij) =a
in O(l Pijl log | Pijl) time
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Set Pijto be path from x;i to x; and Pix path from x; to x.
Set |P| to be # of vertices in P.

Thm: Va >0, k>0 andi,j can test if ©k(Pin) =a
IN O(l Pinl log | Pinl) time

_emma: Va>0,andi can find maximum j s.t. ©1(Pij) =a
in O(l Pijl log | Pijl) time

Proof Sketch (Thm): Use Lemma to peel off, from left side of

Pii, K max-length subpaths that can each be 1-evacuated in
a time. If this covers all Pjj, then YES. Otherwise NO.



An O(]

P| log]

P|) Testing Algorithm for ©X(

°) [3]

Set Pijto be path from x;i to x; and Pix path from x; to x.
Set |P| to be # of vertices in P.

Thm: Va >0, k>0 andi,j can test if ©k(Pin) =a
IN O(l Pinl log | Pinl) time

_emma: Va>0,andi can find maximum j s.t. ©1(Pij) =a
in O(l Pijl log 1 Pijl) time

Proof Sketch (Thm): Use Lemma to peel off, from left side of

Pii, K max-length subpaths that can each be 1-evacuated in
a time. If this covers all Pij, then YES. Otherwise NO.

x, aevac x. x.
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An O(|P| log|P|) Testing Algorithm for ©%(P) [4]

Set Pijto be path from x;i to x; and Pix path from x; to x.
Set |P| to be # of vertices in P.

Thm: Va >0, k>0 andi,j can test if ©k(Pin) =a
IN O(l Pinl log | Pinl) time

_emma: Va>0,andi can find maximum j s.t. ©1(Pij) =a
in O(l Pijl log | Pijl) time

Proof Sketch (Thm): Use Lemma to peel off, from left side of
Pii, K max-length subpaths that can each be 1-evacuated in
a time. If this covers all Pij, then YES. Otherwise NO.

a evac X, aevac x. x.

c— P o— ¢




An O(|P| log|P|) Testing Algorithm for ©%(P) [5]

Set Pijto be path from x;i to x; and Pix path from x; to x.
Set |P| to be # of vertices in P.

Thm: Va >0, k>0 andi,j can test if ©k(Pin) =a
IN O(l Pinl log | Pinl) time

_emma: Va>0,andi can find maximum j s.t. ©1(Pij) =a
in O(l Pijl log | Pijl) time

Proof Sketch (Thm): Use Lemma to peel off, from left side of
Pii, K max-length subpaths that can each be 1-evacuated in
a time. If this covers all Pij, then YES. Otherwise NO.

a evac a evac Xi aevac X, X-+1

o t—Po—0at—po—oa—po—o -




Algorithm Development Sketch

1. Formulae for ©.(P,x) and ©.(P,x)
2. => O(|P]) Algorithm for ©.(Px), ©.(Px)
3. => O(|P| log |P|) Algorithm for ©1(P)

4. => O(|P| log |P|) Algorithm that va > O
tests whether OX(P) < a

5. => O(K|P| log? |P|) Algorithm for ©%(P)



An O(k |P| log?|P|) Algorithm for ©X(P) [1]
® OK(P) = ©k=min; ( max(©1(Po,;), ©%x1(Pi+1n)) )

kA

91 (PO,j) © F)j+1 ,n)
- > - >

® -@ *——0 ® ® ® -@ *— ® °

® O'(Po) (B51(Pj+1n)) is non decreasing (increasing) in |

® Ok =is “unimodal” in |
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An O(k |P| log?|P|) Algorithm for ©%(P) [1]
® OK(P) = ©k=min; ( max(©1(Po,;), ©%x1(Pi+1n)) )
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® O'(Po) (B51(Pj+1n)) is non decreasing (increasing) in |
® Ok =is “unimodal” in |

® Ok1(P,1n) < ©1(Po)) can be tested in O(IPI log IPI) time
e Using previous algorithms for k=1 and testing



An O(k |P| log?|P|) Algorithm for ©%(P) [1]
® OK(P) = ©k=min; ( max(©1(Po,;), ©%x1(Pi+1n)) )

91(P0,j) oK
< o < o

® -@ *——0 ® ® ® -@ *— ® °

X X4

® O'(Po) (B51(Pj+1n)) is non decreasing (increasing) in |
® Ok =is “unimodal” in |

® Ok1(P,1n) < ©1(Po)) can be tested in O(IPI log IPI) time
e Using previous algorithms for k=1 and testing
® O(|Po,| log |Pa,|) + O(|Pj+1,n| log |Pj+1.n]) = O(|P| log |P|)




An O(k |P| log?|P|) Algorithm for ©%(P) [1]
® OK(P) = ©k=min; ( max(©1(Po,;), ©%x1(Pi+1n)) )

91(P0,j) oK
< o < o

® -@ *——0 ® ® ® -@ *— ® °

X X4

® O'(Po) (B51(Pj+1n)) is non decreasing (increasing) in |
® Ok =is “unimodal” in |

® Ok1(P,1n) < ©1(Po)) can be tested in O(IPI log IPI) time
e Using previous algorithms for k=1 and testing
® O(|Po,| log |Pa,|) + O(|Pj+1,n| log |Pj+1.n]) = O(|P| log |P|)

® Binary search to find largest j s.t. ©%1(Pj+1n) > ©1(Po))
- O(IPI log?IPl) time



An O(k |P| log?|P|) Algorithm for ©X(P) [2]

® OK(P) = ©%=min; (8'(Po,), ©<1(Pj+1))
©1(Po;), ©K1(Pi11n) increase/decrease in |
O “unimodal” in |
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® => O(IPI log?lPl) time Binary search
to find largest j s.t ©%1(Pj+1n) > ©1(Po,)



An O(k |P| log?|P|) Algorithm for ©X(P) [2]

® OK(P) = ©%=min; (8'(Po,), ©<1(Pj+1))
©1(Po;), ©K1(Pi11n) increase/decrease in |
O “unimodal” in |

o' (Py;) 6" (P10

—> < >

*—S ® ® ® ® & ® *—0- *—e

® => O(IPI log?lPI) time Binary search
to find largest j s.t ©%1(Pj+1n) > ©1(Po,)

- ©%(P) is min of ©1(Po,+1) and ©k-1(Pj,1,n)



An O(k |P| log?|P|) Algorithm for ©X(P) [2]

® OK(P) = ©%=min; (8'(Po,), ©<1(Pj+1))
©1(Po;), ©K1(Pi11n) increase/decrease in |
O “unimodal” in |

o' (Py;) 6" (P10

—> < >

*—S ® ® ® ® & ® *—0- *—e

® => O(IPI log?lPI) time Binary search
to find largest j s.t ©%1(Pj+1n) > ©1(Po,)

» ©OK(P) is min of ©1(Po,j+1) and ©¥1(Pj;1,n)
*OKk-1(Pi, 1) can be found recursively

estop when k=1 (know how to solve)
e Total algorithmis k O( 1Pl log2IPl) = O( k IPI log?IPl)
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Congestion in Dynamic Flows

Evacuation Flows
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e Known Results

Example Algorithm 1: k-Sink Evacuation on a Path

Example Algorithm 2: 1-sink Min-Max Regret Evacuation on
a Path with uniform capacity

Open Problems



Min-Max Reqgret Evacuation on a Path

In the regret version of the problem, input still provides ce 7e K

Vo Wy w2 W3 Wn
Cq Co Cs n

e = e ° ' > o —9o—0—0—0

XO X~| X2 X3 Xn

eBut . IS NO longer explicitly input.
Instead, each vertex has an input range wve[w'y,W'/]

e Algorithm needs to find robust evacuation protocol that
works least badly against adversarial input.

*Min-Max Regret is one standard way of modelling
robustness
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Min-Max Reqgret Evacuation on a Path
Wo Wi Wo w3 ) Wn
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XO X1 X2 X3 Xn

¢ S =T[w\,W\]is the set of all feasible scenarios.
An s € S is of the form s= (w1, ..., wn)
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¢ S =T[w\,W\]is the set of all feasible scenarios.
An s € S is of the form s= (w1, ..., wn)

eO(P x,s) = evacuation time of P to x in scenario s

eO1(P,s) = min evacuation time of P in scenario s



Min-Max Reqgret Evacuation on a Path

Vo Wy w2 "3 Wn
Cq Co Cs n
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¢ S =T[w\,W\]is the set of all feasible scenarios.
An s € S is of the form s= (w1, ..., wn)

eO(P x,s) = evacuation time of P to x in scenario s
eO1(P,s) = min evacuation time of P in scenario s
*R(x,s) = Regretof x under scenarios = ©(P,x,s) - ©1(P,s)

*R(x) = Max regret of x = maxs R(x,s)



Min-Max Reqgret Evacuation on a Path

Vo Wi w2 "3 Wn
Cq Co Cs n
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¢ S =T[w\,W\]is the set of all feasible scenarios.

An s € S is of the form s= (w1, ..., wn)

eO(P x,s) = evacuation time of P to x in scenario s

eO1(P,s) = min evacuation time of P in scenario s

*R(x,s) = Regretof x under scenarios = ©(P,x,s) - ©1(P,s)

*R(x) = Max regret of x = maxs R(x,s)

® [|he Min-max regret of P is minimum regret over all x

MMR(P) = Mink R(x)



Min-Max Reqgret Evacuation on a Path
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R(x,s) = ©(Px,s) - ©1(P,s) R(x) = Maxs R(x,s)
MMR(P) = Minx R(x) = Minx Maxs {©(P,x,s) - ©1(P,s)}




Min-Max Reqgret Evacuation on a Path

Vo Wi w2 "3 Wn
Cq Co Cs n
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XO X1 X2 X3 XI"I

R(x,s) = ©(Px,s) - ©1(P,s) R(x) = Maxs R(x,s)
MMR(P) = Minx R(x) = Minx Maxs {©(P,x,s) - ©1(P,s)}

e A-Priori, it isn't obvious that this can be calculated efticiently.
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e A-Priori, it isn't obvious that this can be calculated efticiently.

e Can show that, for uniform capacities, there are only O(n)
scenarios s at which any R(x) attains maximum



Min-Max Reqgret Evacuation on a Path

Vo Wi w2 "3 Wn
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R(x,s) = ©(Px,s) - ©1(P,s) R(x) = Maxs R(x,s)
MMR(P) = Minx R(x) = Minx Maxs {©(P,x,s) - ©1(P,s)}

A-Priori, it isn’t obvious that this can be calculated efticiently.

Can show that, for uniform capacities, there are only O(n)
scenarios s at which any R(x) attains maximum

This, permits evaluating MMR(P) in polynomial time
e further observations reduce this to O(n log n)



Min-Max Reqgret Evacuation on a Path

Vo Wy w2 "3 Wn
Cq Co Cs n

o—=S- o L @ *—0—@0— 00— 0—0

XO X1 X2 X3 Xn

R(x,s) = ©(Px,s) - ©1(P,s) R(x) = Maxs R(x,s)
MMR(P) = Minx R(x) = Minx Maxs {©(P,x,s) - ©1(P,s)}

A-Priori, it isn’t obvious that this can be calculated efticiently.

Can show that, for uniform capacities, there are only O(n)
scenarios s at which any R(x) attains maximum

This, permits evaluating MMR(P) in polynomial time
e further observations reduce this to O(n log n)

Existence of O(n) scenarios not totally surprising
e Same phenomenon arises in MMR for medians on a line



Min-Max Reqgret Evacuation on a Path

R(x,s) = B(Px,s) - ©1(P,s) R(x) = Maxs R(Xx,s)
MMR(P) = Minx R(x) = Minx Maxs {©(P,x,s) - ©1(P,s)}

here are 2n scenarios at which R(s,x) attains max.
hese are siin which w; = w’i for j <i & wj = W' for i > |
and s'i in which wj = Wi for j<i & w'y = w'i fori > |

Wo wqo wh W Wit1 Wi W
C
n
S —eo—o ° ~— *—o o o —0o—o
X0 X1 X9 Xi Xig1  Xi42 Xn
Wo Wy Wh Wi Wit Wiz Wi
C
n
s’ —=o T . . >~—o—o—9o—0o—o

0 X X2 Xi Xig1  Xie2 An



Min-Max

Reqgret

—vacuation on a

Path

R(s,x) = ©(Px,s) - ©1(P,s)

R(x) = Maxs R(s,X)

MMR(P) = Minx R(x) = Miny Maxs {8(Px,s) - ©'(P.s)}

here are 2n scenarios at which
hese are si in which w; = w'j for j < i & wj = W’ for i > |

R(s,X) attains max.

and s’i in which wj = W/ for j < i & wW/j = W/, for i > |

ek-sink uniform capacity on path have O(n3) worst case

scenarios => O(kn3logn) time time algorithm

¢ 1-sink uniform capacity on tree have O(n2) worst case
MMR scenarios => O(n2log2n) time algorithm

eNOTHING Is known about any other cases.
n particular, even on path no structure for MMR solution
for 1-sink gen cap problem => no polynomial time alg
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 Problem Definitions
e Known Results

Example Algorithm 1: k-Sink Evacuation on a Path

Example Algorithm 2: 1-sink Min-Max Regret Evacuation on
a Path with unitorm capacity

Open Problems



Open Frontier Problems

G a General Graph, k=1 (NP Hard)
* Find approximation algorithm or PTAS

o GaGeneralGraphi—Kk=1
o Solve-exacty-orprove NP-Hard
. L £y Sl o o

* (G atree with uniform capacities, k>
e solve min-max regret k-sink problem

(5 a path (tree) tree with general capacities, k="
e solve min-max regret 1-sink problem

* For Robust Computation
* Replace Min-Max-Regret by size distribution on nodes
and find sink(s) that minimize expected evacuation time.



