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Outline
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• Congestion in Dynamic Flows  
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• Known Results 
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• Vertices are rooms, Edges are Hallways 
• Vertices are Buildings, Edges are roads 
• Edge weight  𝜏e is transit time on edge  
• Edge capacity  ce  is “width”

• Special vertices (sinks) are emergency exits 
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• Problem: Design Good Evacuation Protocols

• Often Approached via Dynamic Flow Networks



Dynamic Flow Networks
• G=(V,E) 
• Edges have travel times 𝜏e and capacities  ce 
• Distinguished source s and sink t 

• Max Flow Over Time  Problem  (input T)  
How much flow can be pushed from s to t in time T? 

• Ford Fulkerson (1958) 
• Not polynomial (Constructs Static Max-Flow each 

timestep) 

• Quickest Flow Problem (input W)  
How quickly can W items be moved from s to t? 

• Burkard, Dlasks and Klinz (1993) 
• Strongly Polynomial (uses parametric search)  

• Quickest Transhipment Problem  
Like QF Problem but Multiple Sources/Sinks  
(with fixed supply/demands) 

• Hoppe & Tardos (2000) 
• Strongly Polynomial (but uses sub modular optimization)

s t



Edges have Capacities
• Original Flow Model is static.  Doesn’t model time 

• Time required is function of both transit times and capacities 

• ce is edge capacity (“width”)  
• At most ce people can enter edge e=(u,v) in one time unit.  

They travel together as a group on e 
• If more than ce people at u, remainder need to wait to enter e 

• 𝜏e   is time for one group to  traverse edge 

• Start with W  people at u 
How much time does take them all to reach v?

13
u v

c=2𝜏=3



13
u v

c=2𝜏=3

t=0



11
u v

c=2𝜏=3

t=1

2



9
u v

c=2𝜏=3

t=2

2 2



7
u v

c=2𝜏=3

t=3

2 2 2



5
u v

c=2𝜏=3

t=4

2 2 4



3
u v

c=2𝜏=3

t=5

2 2 6



1
u v

c=2𝜏=3

t=6

2 2 8



u v
c=2𝜏=3

1 2 10

t=7



u v
c=2𝜏=3

1 12

t=8



u v
c=2𝜏=3

13

t=9



u v
c=2𝜏=3

13

t=9



u v
c=2𝜏=3

13

t=9

• 13 items split into g = ⌈13/2⌉ = 7 groups 
• First group  reached v at time  t= 𝜏=3 
• Last group  reached v at time  t= 3 +g -1=9



u v
c=2𝜏=3

13

t=9

• 13 items split into g = ⌈13/2⌉ = 7 groups 
• First group  reached v at time  t= 𝜏=3 
• Last group  reached v at time  t= 3 +g -1=9

Discrete Model  
• W people,  Capacity c integral, Transit time  𝜏 
• All edge transit times  integral 
• Requires ⌈W/c⌉+ 𝜏-1 time to move everyone from u to v



u v
c=2𝜏=3

13

t=9

• 13 items split into g = ⌈13/2⌉ = 7 groups 
• First group  reached v at time  t= 𝜏=3 
• Last group  reached v at time  t= 3 +g -1=9

Discrete Model  
• W people,  Capacity c integral, Transit time  𝜏 
• All edge transit times  integral 
• Requires ⌈W/c⌉+ 𝜏-1 time to move everyone from u to v

 Continuous Model 
• W units of non-quantized fluid. Fluid flows continuously 
• c is rate: amount that can enter e in one unit of time 
• Requires W/c+ 𝜏-1 time to move all fluid  from u to v



u v
c=2𝜏=3

13

t=9

• 13 items split into g = ⌈13/2⌉ = 7 groups 
• First group  reached v at time  t= 𝜏=3 
• Last group  reached v at time  t= 3 +g -1=9

Discrete Model  
• W people,  Capacity c integral, Transit time  𝜏 
• All edge transit times  integral 
• Requires ⌈W/c⌉+ 𝜏-1 time to move everyone from u to v

 Continuous Model 
• W units of non-quantized fluid. Fluid flows continuously 
• c is rate: amount that can enter e in one unit of time 
• Requires W/c+ 𝜏-1 time to move all fluid  from u to v

Default for this talk
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Congestion  Effects

u w
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A major complication with dynamic flows is that they 
introduce congestion effects that can slow down  
transport time  
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t=3:  first 8 items from u reach v 
which is empty.  
First 3 items pass through but 
others  need to wait because  c1<c2 
Congestion occurs.   

t=5

3



24

u w
v𝜏1=3 𝜏2=5c1=8 c2=3

7 3 33 3

Congestion  Effects

t=4

t=3:  first 8 items from u reach v 
which is empty.  
First 3 items pass through but 
others  need to wait because  c1<c2 
Congestion occurs.   

t=5

6

t=6



25

u w
v𝜏1=3 𝜏2=5c1=8 c2=3

4 3 33 3

Congestion  Effects

t=4

t=3:  first 8 items from u reach v 
which is empty.  
First 3 items pass through but 
others  need to wait because  c1<c2 
Congestion occurs.   

t=5

9

t=6

t=7



26

u w
v𝜏1=3 𝜏2=5c1=8 c2=3

1 3 33 3

Congestion  Effects

t=4

t=3:  first 8 items from u reach v 
which is empty.  
First 3 items pass through but 
others  need to wait because  c1<c2 
Congestion occurs.   

t=5

3+9

t=6

t=7
t=8



27

u w
v𝜏1=3 𝜏2=5c1=8 c2=3

3 31 3

Congestion  Effects

t=4

t=3:  first 8 items from u reach v 
which is empty.  
First 3 items pass through but 
others  need to wait because  c1<c2 
Congestion occurs.   

t=5

6+9

t=6

t=7
t=8

t=9



28

u w
v𝜏1=3 𝜏2=5c1=8 c2=3

Congestion  Effects

t=4

t=3:  first 8 items from u reach v 
which is empty.  
First 3 items pass through but 
others  need to wait because  c1<c2 
Congestion occurs.   

t=13: Last item arrives at w

16+9
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t=7
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…
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u w
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Full Evacuation at t=13

t=3:  first 8 items from u reach v 
which still contains 9 items 
=>  Congestion occurs.   

9 9 98
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u w
v𝜏1=3 𝜏2=5c1=8 c2=9

Full Evacuation at t=12

t=3:  first 8 items from u reach v 
which is empty still contains 9 items 
=>  NO Congestion occurs.   
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=>  NO Congestion occurs.   
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t=9: Last item arrives at w
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Congestion  Effects
u w

v𝜏1=3 𝜏2=5c1=8 c2=3
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16 36

Full Evacuation at t=13

Congestion occurs because v not 
empty when first group arrives from u
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Full Evacuation at t=12

Items at u pass through v with  
No Congestion occuring

16 18

Full Evacuation at t=9

Analysis of Flow/Evacuation times must include congestion!!

Can be very complicated!
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• 𝜏e, ce: transit times and  capacities for each edge 
• wv: # of people starting on vertex v 
• Sinks:  Either fixed set  K ⊆V of sinks or a number k of sinks allowed



Graph Evacuation Problems
• Input:  Graph G=(V,E) 

• 𝜏e, ce: transit times and  capacities for each edge 
• wv: # of people starting on vertex v 
• Sinks:  Either fixed set  K ⊆V of sinks or a number k of sinks allowed

• Output:  An Evacuation Protocol that minimizes maximum evacuation time 
• Evacuation Protocol 

• A unique evacuation edge for each vertex 
• If input is k, a set K ⊆V of sinks with |K|=k 

• Maximum Evacuation time 
• The evacuation time of a vertex is the earliest time by which ALL 

items from that vertex have reached a sink. 
• Maximum evacuation time is the maximum evacuation time over all 

vertices
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• For general G  and k>1 problem is NP-Complete because it solves 
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• Type of graph G:  Path, Tree, General, …. 
• For general G  and k>1 problem is NP-Complete because it solves 

k-Center (if ce  set to be large)

• Sink Input: Actual Sinks vs # of sinks

• Discrete vs Continuous flow
• Fleischer, Tardos (1998). D and C Dynamic Flow problems can 

often be solved using same algorithm

• Sink locations: anywhere or only on vertices 

• ce:  uniform (all the same) vs general (arbitrary)

• Min-Max  vs Min-Max Regret  
• Robust solutions. MMR  allows wv, # of people on vertex, to be a 

range rather than a number. Find “best” solution  for all allowable 
scenarios

Graph Evacuation Problems: Variations
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Min-­‐max	
  cost	
  (DISCRETE/CONTINUOUS)

General	
  capacity Uniform	
  capacity
1-­‐sink k-­‐sink 1-­‐sink k-­‐sink

Path O(n) [2] O(kn log2n) [2] O(n) O(kn) [6]
Tree O(n log2n) [7] O(k2 n log4n) [3] O(n log n) [4] O(k2 n log3n) [3] 

General	
  graph Poly? NP-­‐Hard Poly? NP-­‐Hard

　
Min-­‐max	
  regret	
  cost	
  (DISCRETE/CONTINUOUS)

General	
  capacity Uniform	
  capacity
1-­‐sink k-­‐sink 1-­‐sink k-­‐sink

Path

None
O(n log n) [5,9] O(kn3 log n) [1]

Tree O(n2log2n) [4]
None

General	
  graph None

Known Results
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K-Sink Evacuation on a Path
Given  a path, associated values ce, 𝜏e,Wv and k, # of sinks, 
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cn



K-Sink Evacuation on a Path
Given  a path, associated values ce, 𝜏e,Wv and k, # of sinks, 

Find a partition into k-subpaths and a sink for each subpath, 
that minimizes the maximum evacuation time over all 
subpaths.

x0

c1

w0

x1 x2 x3 xn

w2 w3 wnw1
c2 c3

cn



P1 P2 Pk

XXX

K-Sink Evacuation on a Path
Given  a path, associated values ce, 𝜏e,Wv and k, # of sinks, 

Find a partition into k-subpaths and a sink for each subpath, 
that minimizes the maximum evacuation time over all 
subpaths.

x0

c1

w0

x1 x2 x3 xn

w2 w3 wnw1
c2 c3

cn
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1-Sink Evacuation Notation

X

ϴL(P,x) ϴR(P,x)

ϴL(P,x)   =  Time to evacuate all nodes to left of x on P to x


ϴR(P,x)   =  Time to evacuate all nodes to right of x on P to x


ϴ(P,x)     =  max(ϴL(P,x), ϴR(P,x))

              =  Time to evacuate all nodes on P to x


ϴ1(P)      = min{x∈P} ϴ(P,x)

               = min evacuation time for P with one sink



1-Sink Evacuation Example
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8 12 8 3 4 47

Original Input: 



1-Sink Evacuation Example

!=3, c=2 !=4, c=3 !=3, c=4 !=3, c=5 !=3, c=3

8 12 8 3 4 47

Original Input: 

X is the sink location that minimizes Maximum Evacuation Time

!=3, c=2 !=4, c=3 !=3, c=4 !=3, c=5 !=3, c=3

8 12 8 3 4 47
X

ϴL(P,x)=17 ϴR(P,x)=17
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1-Sink Evacuation Example

!=3, c=2 !=4, c=3 !=3, c=4 !=3, c=5 !=3, c=3

8 12 8 3 4 47

Original Input: 

X is the sink location that minimizes Maximum Evacuation Time

!=3, c=2 !=4, c=3 !=3, c=4 !=3, c=5 !=3, c=3

8 12 8 3 4 47
X

ϴL(P,x)=17 ϴR(P,x)=17

21

Note: Min evac-time sink location is NOT an original vertex. 
Can modify problem definition to require sink to be a vertex 
Algorithms remain almost the same



• Given Path P and integer k 

• P ={P1, P2, …, Pk} is a partition of P into k-subpaths 

• Given P, the  evacuation time of  P is  
              max (ϴ1(P1), ϴ1(P2), … ,ϴ1(Pk)) 

• Want to find 
    ϴk(P) =  minP  ( max (ϴ1(P1), ϴ1(P2), … ,ϴ1(Pk)) )  
            =  Min k-sink evacuation time for P

k-Sink Evacuation Notation

P1 P2 Pk



1. Formulae for ϴL(P,x) and ϴL(P,x) 

2. =>  O(|P|) Algorithm for  ϴL(P,x), ϴL(P,x) 

3. => O(|P| log |P|)  Algorithm for ϴ1(P) 

4. => O(|P| log |P|)  Algorithm that  ∀α > 0 
      tests whether   ϴk(P) ≤ α  

5. => O(k|P| log2 |P|)  Algorithm for ϴk(P)

Algorithm Development Sketch
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• Lemma:  Suppose   cj  > cj+1.  
Create  P’ by replacing cj  with  cʹj =cj+1. 
=>Then ϴL(P,x) = ϴL(Pʹ,x)  

• Corollary: May replace capacities by

Formulae for ϴL(P,x) and ϴR(P,x) 

c’j 

cʹ1  ≤  cʹ2   ≤  cʹ3    ≤  … ≤  cʹn   c0i = min
ijr+1

cj

c’1 c’2 c’3 c’j+1 



Formula for ϴL(P,x) 

xr is last vertex to right of x

Path with ci has same evac time 
as Path with 
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xr is last vertex to right of x

Path with ci has same evac time 
as Path with 
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xr is last vertex to right of x

Path with ci has same evac time 
as Path with 

Lemma:

Intuition: Analysis is on path P’ 
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xr is last vertex to right of x

Path with ci has same evac time 
as Path with 

Lemma:

Intuition: Analysis is on path P’ 
• Fix xt.  x-xt is uncongested travel time from xt to x
• Remove all items to  right of xt.  

Move all  items to left of xt onto xt.  xt’s new weight  is  Wt 
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Formula for ϴL(P,x) 

xr is last vertex to right of x

Path with ci has same evac time 
as Path with 

Lemma:

Intuition: Analysis is on path P’ 
• Fix xt.  x-xt is uncongested travel time from xt to x
• Remove all items to  right of xt.  

Move all  items to left of xt onto xt.  xt’s new weight  is  Wt 

• # of groups leaving xt is g = ⌈Wt/cʹt+1⌉.  
No congestion on path to x.
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xr is last vertex to right of x

Path with ci has same evac time 
as Path with 

Lemma:

Intuition: Analysis is on path P’ 
• Fix xt.  x-xt is uncongested travel time from xt to x
• Remove all items to  right of xt.  

Move all  items to left of xt onto xt.  xt’s new weight  is  Wt 

• # of groups leaving xt is g = ⌈Wt/cʹt+1⌉.  
No congestion on path to x.

• =>  x-xt +g-1  is the exact evacuation  time for items on xt   
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Formula for ϴL(P,x) 
Path with ci has same evac time 
as Path with 

Lemma:

• Fix vertex xt  and consider the Wt  items passing through xt
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Formula for ϴL(P,x) 
Path with ci has same evac time 
as Path with 

Lemma:

• Fix vertex xt  and consider the Wt  items passing through xt

• => These Wt items leave  xt  in g ≥⌈Wt/cʹt+1⌉ groups 
=> Last group leaves xt at time ≥g-1. 

x0

c1

w0

x1 x2 x3

w2 w3w1
c2 c3 . . . 

wj-1

xj-1

wj

xj

wj+1

xj+1

x
cj cj+1

wr

xr
cʹ1 cʹ2 cʹ3 cʹj cʹj+1

c0i = min
ijr+1

cj

⇥L(P, x) = max

0tr

✓✓
(x� xt) +

⇠
Wt

c

0
t+1

⇡
� 1

◆◆
Wt =

X

0jt

wj



Formula for ϴL(P,x) 
Path with ci has same evac time 
as Path with 

Lemma:

• Fix vertex xt  and consider the Wt  items passing through xt

• => These Wt items leave  xt  in g ≥⌈Wt/cʹt+1⌉ groups 
=> Last group leaves xt at time ≥g-1. 

• Last item in last group requires at least x- xt  time to move from xt to x  
=> final evacuation time  ≥   x- xt  + g-1
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Formula for ϴL(P,x) 
Path with ci has same evac time 
as Path with 

Lemma:

• Fix vertex xt  and consider the Wt  items passing through xt

• => These Wt items leave  xt  in g ≥⌈Wt/cʹt+1⌉ groups 
=> Last group leaves xt at time ≥g-1. 

• Last item in last group requires at least x- xt  time to move from xt to x  
=> final evacuation time  ≥   x- xt  + g-1

• This is true for every t   
=> have just proven  ≥   direction of lemma
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Lemma:

• Let L be last item on x0  and xt  be last  vertex at which L is congested (waits). 
(If L never experiences congestion set t=0.) 
=> If L leaves xt at time Tʹ,  L arrives at x at time  Tʹ+ x-xt
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Lemma:
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Lemma:
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=> L passes through xt without waiting, contradicting choice of t.
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1. Formulae for ϴL(P,x) and ϴL(P,x) 

2. =>  O(|P|) Algorithm for  ϴL(P,x), ϴL(P,x) 

3. => O(|P| log |P|)  Algorithm for ϴ1(P) 
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Formulas for ϴL(P,x) and ϴR(P,x) 
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Corollary: ϴL(P,x) and ϴR(P,x) can be computed in O(|P|) time 
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Claim 1: ϴL(P,x) ( ϴR(P,x) )  
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Formulas for ϴL(P,x) and ϴR(P,x) 

Claim 1: ϴL(P,x) ( ϴR(P,x) )  
is a monotonically increasing 
(decreasing)  piecewise linear 
function in x. 

Claim 2:  ϴ(P,x) = max(ϴL(P,x), ϴR(P,x)) 
is a unimodal function. It decreases, 
achieves a unique minimum and then 
increases

X

ϴL(P,x) ϴR(P,x)

Xk Xk+1

x0 x1 x2 x3 x4
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4. => O(|P| log |P|)  Algorithm that  ∀α > 0 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Corollary: For fixed x, ϴL(P,x), ϴR(P,x)   
can be computed in O(|P|) time

x0 x1 x2 x3 x4Claim 2:  ϴ(P,x) = max(ϴL(P,x), ϴR(P,x)) 
is a unimodal function.

An O(|P| log|P|) Algorithm for ϴ1(P) 

Algorithm: Using  O(|P| log|P|)  time binary search  
                    Find xt s.t ϴ1(P)= ϴ(P,x) satisfying xt < x ≤ xt+1. 
Gives ϴL(P, xt), ϴR(P, xt), ϴL(P, xt+1), ϴR(P, xt+1)  
In O(1) time do a linear interpolation to find x.
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An O(|P| log|P|) Testing Algorithm for ϴk(P) [1] 
Set Pi,j to be path from xi to xj and Pi,x  path from xi to x.  
Set |P| to be # of vertices in P.

Thm:  ∀α > 0, k>0  and i,j can test   if ϴk(Pi,n) ≤ α   
in O( |Pi,n |  log |Pi,n | )  time

Lemma:  ∀α > 0, and i  can find maximum j s.t.  ϴ1(Pi,j) ≤ α 
in O( |Pi,j |  log |Pi,j | )   time

Proof Idea (Lemma):   
In O(|Pi,x |  log | Pi,x |)  use linear formula for ϴL(Pi,n,x)  &  
doubling search technique to find max x s.t. ϴL(Pi,n,x) ≤ α.  

Xi X



An O(|P| log|P|) Testing Algorithm for ϴk(P) [2]
Set Pi,j to be path from xi to xj and Pi,x  path from xi to x.  
Set |P| to be # of vertices in P.

Thm:  ∀α > 0, k>0  and i,j can test   if ϴk(Pi,n) ≤ α   
in O( |Pi,n|  log |Pi,n | )  time
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Lemma:  ∀α > 0, and i  can find maximum j s.t.  ϴ1(Pi,j) ≤ α 
in O( |Pi,j |  log |Pi,j | )   time

Proof Idea (Lemma):   
In O(|Pi,x |  log | Pi,x |)  use linear formula for ϴL(Pi,n,x)  &  
doubling search technique to find max x s.t. ϴL(Pi,n,x) ≤ α.  
Similarly, in O(|Px,j |  log | Px,j |),   find max j s.t. ϴR(Pi,n,x) ≤ α
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Proof Sketch (Thm):  Use Lemma to peel off, from left side of  
Pi,j, k max-length subpaths that can each be 1-evacuated in 
α  time.  If this covers all  Pi,j, then YES.  Otherwise NO.
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Proof Sketch (Thm):  Use Lemma to peel off, from left side of  
Pi,j, k max-length subpaths that can each be 1-evacuated in 
α  time.  If this covers all  Pi,j, then YES.  Otherwise NO.
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Set Pi,j to be path from xi to xj and Pi,x  path from xi to x.  
Set |P| to be # of vertices in P.

Thm:  ∀α > 0, k>0  and i,j can test   if ϴk(Pi,n) ≤ α   
in O(| Pi,n | log | Pi,n |)  time
Lemma:  ∀α > 0, and i  can find maximum j s.t.  ϴ1(Pi,j) ≤ α 
in O(| Pi,j | log | Pi,j |)   time
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An O(|P| log|P|) Testing Algorithm for ϴk(P) [4]

Proof Sketch (Thm):  Use Lemma to peel off, from left side of  
Pi,j, k max-length subpaths that can each be 1-evacuated in 
α  time.  If this covers all  Pi,j, then YES.  Otherwise NO.

Set Pi,j to be path from xi to xj and Pi,x  path from xi to x.  
Set |P| to be # of vertices in P.

Thm:  ∀α > 0, k>0  and i,j can test   if ϴk(Pi,n) ≤ α   
in O(| Pi,n | log | Pi,n |)  time
Lemma:  ∀α > 0, and i  can find maximum j s.t.  ϴ1(Pi,j) ≤ α 
in O(| Pi,j | log | Pi,j |)   time
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An O(|P| log|P|) Testing Algorithm for ϴk(P) [5] 

Proof Sketch (Thm):  Use Lemma to peel off, from left side of  
Pi,j, k max-length subpaths that can each be 1-evacuated in 
α  time.  If this covers all  Pi,j, then YES.  Otherwise NO.

Set Pi,j to be path from xi to xj and Pi,x  path from xi to x.  
Set |P| to be # of vertices in P.

Thm:  ∀α > 0, k>0  and i,j can test   if ϴk(Pi,n) ≤ α   
in O(| Pi,n | log | Pi,n |)  time
Lemma:  ∀α > 0, and i  can find maximum j s.t.  ϴ1(Pi,j) ≤ α 
in O(| Pi,j | log | Pi,j |)   time

α evac α evac α evac



1. Formulae for ϴL(P,x) and ϴL(P,x) 

2. =>  O(|P|) Algorithm for  ϴL(P,x), ϴL(P,x) 

3. => O(|P| log |P|)  Algorithm for ϴ1(P) 

4. => O(|P| log |P|)  Algorithm that  ∀α > 0 
       tests whether   ϴk(P) ≤ α  

5. => O(k|P| log2 |P|)  Algorithm for ϴk(P)

Algorithm Development Sketch



Xj Xj+1

ϴ1(P0,j) ϴk-1(Pj+1,n)

An O(k |P| log2 |P|) Algorithm for ϴk(P) [1] 
• ϴk(P) = ϴjk = minj ( max(ϴ1(P0,j), ϴk-1(Pj+1,n)) )

• ϴ1(P0,j) (ϴk-1(Pj+1,n)) is non decreasing (increasing) in j

• ϴjk  = is “unimodal” in j
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• ϴjk  = is “unimodal” in j
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An O(k |P| log2 |P|) Algorithm for ϴk(P) [1] 
• ϴk(P) = ϴjk = minj ( max(ϴ1(P0,j), ϴk-1(Pj+1,n)) )

• ϴ1(P0,j) (ϴk-1(Pj+1,n)) is non decreasing (increasing) in j

• ϴjk  = is “unimodal” in j

• ϴk-1(Pj+1,n) ≤ ϴ1(P0,j) can be tested in  O(|P| log |P|)  time
• Using previous algorithms for k=1 and testing
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ϴ1(P0,j) ϴk-1(Pj+1,n)

An O(k |P| log2 |P|) Algorithm for ϴk(P) [1] 
• ϴk(P) = ϴjk = minj ( max(ϴ1(P0,j), ϴk-1(Pj+1,n)) )

• ϴ1(P0,j) (ϴk-1(Pj+1,n)) is non decreasing (increasing) in j

• ϴjk  = is “unimodal” in j

• ϴk-1(Pj+1,n) ≤ ϴ1(P0,j) can be tested in  O(|P| log |P|)  time
• Using previous algorithms for k=1 and testing
• O(|P0,j| log |P0,j|) + O(|Pj+1,n| log |Pj+1,n|)  = O(|P| log |P|)
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ϴ1(P0,j) ϴk-1(Pj+1,n)

An O(k |P| log2 |P|) Algorithm for ϴk(P) [1] 
• ϴk(P) = ϴjk = minj ( max(ϴ1(P0,j), ϴk-1(Pj+1,n)) )

• ϴ1(P0,j) (ϴk-1(Pj+1,n)) is non decreasing (increasing) in j

• ϴjk  = is “unimodal” in j

• ϴk-1(Pj+1,n) ≤ ϴ1(P0,j) can be tested in  O(|P| log |P|)  time
• Using previous algorithms for k=1 and testing
• O(|P0,j| log |P0,j|) + O(|Pj+1,n| log |Pj+1,n|)  = O(|P| log |P|)

• Binary search to find largest j s.t. ϴk-1(Pj+1,n) > ϴ1(P0,j) 
• O(|P| log2|P|) time



Xj Xj+1

ϴ1(P0,j) ϴk-1(Pj+1,n)

An O(k |P| log2 |P|) Algorithm for ϴk(P) [2] 
• ϴk(P) = ϴkj = minj (ϴ1(P0,j), ϴk-1(Pj+1,n))  
  ϴ1(P0,j), ϴk-1(Pj+1,n) increase/decrease in j  
  ϴkj  “unimodal” in j

•  => O(|P| log2|P|) time Binary search  
   to find largest j s.t ϴk-1(Pj+1,n) > ϴ1(P0,j) 
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An O(k |P| log2 |P|) Algorithm for ϴk(P) [2] 
• ϴk(P) = ϴkj = minj (ϴ1(P0,j), ϴk-1(Pj+1,n))  
  ϴ1(P0,j), ϴk-1(Pj+1,n) increase/decrease in j  
  ϴkj  “unimodal” in j

•ϴk(P) is min of ϴ1(P0,j+1) and ϴk-1(Pj+1,n)

•  => O(|P| log2|P|) time Binary search  
   to find largest j s.t ϴk-1(Pj+1,n) > ϴ1(P0,j) 
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ϴ1(P0,j) ϴk-1(Pj+1,n)

An O(k |P| log2 |P|) Algorithm for ϴk(P) [2] 
• ϴk(P) = ϴkj = minj (ϴ1(P0,j), ϴk-1(Pj+1,n))  
  ϴ1(P0,j), ϴk-1(Pj+1,n) increase/decrease in j  
  ϴkj  “unimodal” in j

•ϴk(P) is min of ϴ1(P0,j+1) and ϴk-1(Pj+1,n)

•ϴk-1(Pj+1,n) can be found recursively 
•stop when k=1 (know how to solve) 
• Total algorithm is   k O( |P| log2 |P|) =  O( k |P| log2 |P|) 

•  => O(|P| log2|P|) time Binary search  
   to find largest j s.t ϴk-1(Pj+1,n) > ϴ1(P0,j) 
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• Example Algorithm 2: 1-sink Min-Max Regret Evacuation on 
a Path with uniform capacity 
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Min-Max Regret Evacuation on a Path

In the regret version of the problem, input still provides ce, 𝜏e, k 

•But Wv is no longer explicitly input.  
Instead, each vertex has an input range wv∈[wʹv,Wʹv] 

•Algorithm needs to find robust evacuation protocol that 
works least badly against adversarial input. 

•Min-Max Regret is one standard way of modelling 
robustness  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Min-Max Regret Evacuation on a Path

• S = ∏v[wʹv,Wʹv] is the set of all feasible scenarios.
         An s ∈ S is of the form s= (w1, …, wn)  
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Min-Max Regret Evacuation on a Path

• S = ∏v[wʹv,Wʹv] is the set of all feasible scenarios.
         An s ∈ S is of the form s= (w1, …, wn)  

•ϴ(P,x,s)  = evacuation time of P to x in scenario s

•ϴ1(P,s)   = min evacuation time of P in scenario s
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Min-Max Regret Evacuation on a Path

• S = ∏v[wʹv,Wʹv] is the set of all feasible scenarios.
         An s ∈ S is of the form s= (w1, …, wn)  

•ϴ(P,x,s)  = evacuation time of P to x in scenario s

•ϴ1(P,s)   = min evacuation time of P in scenario s

•R(x,s)     = Regret of x under scenario s  = ϴ(P,x,s) - ϴ1(P,s)

•R(x)        = Max regret of x  =  maxs R(x,s)
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Min-Max Regret Evacuation on a Path

• S = ∏v[wʹv,Wʹv] is the set of all feasible scenarios.
         An s ∈ S is of the form s= (w1, …, wn)  

•ϴ(P,x,s)  = evacuation time of P to x in scenario s

•ϴ1(P,s)   = min evacuation time of P in scenario s

•R(x,s)     = Regret of x under scenario s  = ϴ(P,x,s) - ϴ1(P,s)

•R(x)        = Max regret of x  =  maxs R(x,s)

•The Min-max regret of P is minimum regret over all x 
                       MMR(P)  = Minx R(x)
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Min-Max Regret Evacuation on a Path

R(x,s) = ϴ(P,x,s) - ϴ1(P,s)       R(x) = Maxs R(x,s)
MMR(P)  = Minx R(x) = Minx  Maxs  {ϴ(P,x,s) - ϴ1(P,s)}
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Min-Max Regret Evacuation on a Path

R(x,s) = ϴ(P,x,s) - ϴ1(P,s)       R(x) = Maxs R(x,s)
MMR(P)  = Minx R(x) = Minx  Maxs  {ϴ(P,x,s) - ϴ1(P,s)}

• A-Priori, it isn’t obvious that this can be calculated efficiently.
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R(x,s) = ϴ(P,x,s) - ϴ1(P,s)       R(x) = Maxs R(x,s)
MMR(P)  = Minx R(x) = Minx  Maxs  {ϴ(P,x,s) - ϴ1(P,s)}

• A-Priori, it isn’t obvious that this can be calculated efficiently.
• Can show that, for uniform capacities,  there  are only O(n) 

scenarios s at which any R(x) attains maximum
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Min-Max Regret Evacuation on a Path

R(x,s) = ϴ(P,x,s) - ϴ1(P,s)       R(x) = Maxs R(x,s)
MMR(P)  = Minx R(x) = Minx  Maxs  {ϴ(P,x,s) - ϴ1(P,s)}

• A-Priori, it isn’t obvious that this can be calculated efficiently.
• Can show that, for uniform capacities,  there  are only O(n) 

scenarios s at which any R(x) attains maximum
• This, permits evaluating MMR(P) in polynomial time 

• further observations reduce this to O(n log n)
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Min-Max Regret Evacuation on a Path

R(x,s) = ϴ(P,x,s) - ϴ1(P,s)       R(x) = Maxs R(x,s)
MMR(P)  = Minx R(x) = Minx  Maxs  {ϴ(P,x,s) - ϴ1(P,s)}

• A-Priori, it isn’t obvious that this can be calculated efficiently.
• Can show that, for uniform capacities,  there  are only O(n) 

scenarios s at which any R(x) attains maximum
• This, permits evaluating MMR(P) in polynomial time 

• further observations reduce this to O(n log n)
• Existence of O(n) scenarios not totally surprising 

• Same phenomenon arises in MMR for medians on a line
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Min-Max Regret Evacuation on a Path
R(x,s) = ϴ(P,x,s) - ϴ1(P,s)       R(x) = Maxs R(x,s)

MMR(P)  = Minx R(x) = Minx  Maxs  {ϴ(P,x,s) - ϴ1(P,s)}

There are 2n scenarios at which R(s,x) attains max. 
These are si in which wj = wʹj for j ≤ i & wj = Wʹj for i > j 
         and sʹi in which wj = Wʹj for j ≤ i & wʹj = wʹj for i > j
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Min-Max Regret Evacuation on a Path
R(s,x) = ϴ(P,x,s) - ϴ1(P,s)       R(x) = Maxs R(s,x)

MMR(P)  = Minx R(x) = Minx  Maxs  {ϴ(P,x,s) - ϴ1(P,s)}

There are 2n scenarios at which R(s,x) attains max. 
These are si in which wj = wʹj for j < i & wj = Wʹj for i > j 
         and sʹi in which wj = Wʹj for j < i & wʹj = wʹj for i > j

•k-sink uniform capacity on path have O(n3) worst case 
scenarios => O(kn3logn) time time algorithm 

•1-sink uniform capacity on tree have O(n2) worst case 
MMR scenarios  => O(n2log2n) time algorithm 

•NOTHING is known about any other cases.  
In particular, even on path no structure for MMR solution 
for 1-sink gen cap problem => no polynomial time alg



Outline
• Dynamic Flow Networks 

• Congestion in Dynamic Flows  

• Evacuation Flows 
• Problem Definitions 
• Known Results 

• Example Algorithm 1: k-Sink Evacuation on a Path 

• Example Algorithm 2: 1-sink Min-Max Regret Evacuation on 
a Path with uniform capacity 

• Open Problems



• G a General Graph, k>1   (NP Hard) 
• Find approximation algorithm or PTAS 

• G a General Graph,  k=1  
• Solve exactly or prove NP-Hard  
• Even if the one sink is given 

• G a tree with uniform capacities,  k>1 
• solve min-max regret k-sink problem 

• G a path (tree) tree with general capacities,  k=1 
• solve min-max regret 1-sink problem 

• For Robust Computation 
• Replace Min-Max-Regret by size distribution on nodes 

and find sink(s) that minimize expected evacuation time.

Open Frontier Problems


