
Graph Evacuation
Problems

Mordecai GOLIN
Hong Kong UST

CRM June, 2015

Joint Work with

• Guru Prakash Arumugam

• John Augustine

• Di Chen

• Siu-Wing Cheng

• Yuya Higashikawa

• Naoki Katoh

• Guanqun Ni

• Bing Su

• Prashanth Srikanthan

• Yinfeng Xu
2

Outline
• Dynamic Flow Networks

• Congestion in Dynamic Flows

• Evacuation Flows
• Problem Definitions
• Known Results

• Example Algorithm 1: k-Sink Evacuation on a Path

• Example Algorithm 2: 1-sink Min-Max Regret Evacuation on
a Path with uniform capacity

• Open Problems
3

Evacuating Graphs

Evacuating Graphs
• Graph G=(V,E) represents structure

• Vertices are rooms, Edges are Hallways
• Vertices are Buildings, Edges are roads
• Edge weight 𝜏e is transit time on edge
• Edge capacity ce is “width”

Evacuating Graphs
• Graph G=(V,E) represents structure

• Vertices are rooms, Edges are Hallways
• Vertices are Buildings, Edges are roads
• Edge weight 𝜏e is transit time on edge
• Edge capacity ce is “width”

• Special vertices (sinks) are emergency exits
• In case of emergency, want to evacuate everybody to

exits as quickly as possible
• Problem: Design Good Evacuation Protocols

Evacuating Graphs
• Graph G=(V,E) represents structure

• Vertices are rooms, Edges are Hallways
• Vertices are Buildings, Edges are roads
• Edge weight 𝜏e is transit time on edge
• Edge capacity ce is “width”

• Special vertices (sinks) are emergency exits
• In case of emergency, want to evacuate everybody to

exits as quickly as possible
• Problem: Design Good Evacuation Protocols

• Often Approached via Dynamic Flow Networks

Dynamic Flow Networks
• G=(V,E)
• Edges have travel times 𝜏e and capacities ce
• Distinguished source s and sink t

• Max Flow Over Time Problem (input T)  
How much flow can be pushed from s to t in time T?

• Ford Fulkerson (1958)
• Not polynomial (Constructs Static Max-Flow each

timestep)

• Quickest Flow Problem (input W)  
How quickly can W items be moved from s to t?

• Burkard, Dlasks and Klinz (1993)
• Strongly Polynomial (uses parametric search)  

• Quickest Transhipment Problem  
Like QF Problem but Multiple Sources/Sinks  
(with fixed supply/demands)

• Hoppe & Tardos (2000)
• Strongly Polynomial (but uses sub modular optimization)

s t

Edges have Capacities
• Original Flow Model is static. Doesn’t model time

• Time required is function of both transit times and capacities

• ce is edge capacity (“width”)
• At most ce people can enter edge e=(u,v) in one time unit.  

They travel together as a group on e
• If more than ce people at u, remainder need to wait to enter e

• 𝜏e is time for one group to traverse edge

• Start with W people at u 
How much time does take them all to reach v?

13
u v

c=2𝜏=3

13
u v

c=2𝜏=3

t=0

11
u v

c=2𝜏=3

t=1

2

9
u v

c=2𝜏=3

t=2

2 2

7
u v

c=2𝜏=3

t=3

2 2 2

5
u v

c=2𝜏=3

t=4

2 2 4

3
u v

c=2𝜏=3

t=5

2 2 6

1
u v

c=2𝜏=3

t=6

2 2 8

u v
c=2𝜏=3

1 2 10

t=7

u v
c=2𝜏=3

1 12

t=8

u v
c=2𝜏=3

13

t=9

u v
c=2𝜏=3

13

t=9

u v
c=2𝜏=3

13

t=9

• 13 items split into g = ⌈13/2⌉ = 7 groups
• First group reached v at time t= 𝜏=3
• Last group reached v at time t= 3 +g -1=9

u v
c=2𝜏=3

13

t=9

• 13 items split into g = ⌈13/2⌉ = 7 groups
• First group reached v at time t= 𝜏=3
• Last group reached v at time t= 3 +g -1=9

Discrete Model
• W people, Capacity c integral, Transit time 𝜏
• All edge transit times integral
• Requires ⌈W/c⌉+ 𝜏-1 time to move everyone from u to v

u v
c=2𝜏=3

13

t=9

• 13 items split into g = ⌈13/2⌉ = 7 groups
• First group reached v at time t= 𝜏=3
• Last group reached v at time t= 3 +g -1=9

Discrete Model
• W people, Capacity c integral, Transit time 𝜏
• All edge transit times integral
• Requires ⌈W/c⌉+ 𝜏-1 time to move everyone from u to v

 Continuous Model
• W units of non-quantized fluid. Fluid flows continuously
• c is rate: amount that can enter e in one unit of time
• Requires W/c+ 𝜏-1 time to move all fluid from u to v

u v
c=2𝜏=3

13

t=9

• 13 items split into g = ⌈13/2⌉ = 7 groups
• First group reached v at time t= 𝜏=3
• Last group reached v at time t= 3 +g -1=9

Discrete Model
• W people, Capacity c integral, Transit time 𝜏
• All edge transit times integral
• Requires ⌈W/c⌉+ 𝜏-1 time to move everyone from u to v

 Continuous Model
• W units of non-quantized fluid. Fluid flows continuously
• c is rate: amount that can enter e in one unit of time
• Requires W/c+ 𝜏-1 time to move all fluid from u to v

Default for this talk

Outline
• Dynamic Flow Networks

• Congestion in Dynamic Flows

• Evacuation Flows
• Problem Definitions
• Known Results

• Example Algorithm 1: k-Sink Evacuation on a Path

• Example Algorithm 2: 1-sink Min-Max Regret Evacuation on
a Path with uniform capacity

• Open Problems

19

Congestion Effects

u w
v𝜏1=3 𝜏2=5c1=8 c2=3

16 9

A major complication with dynamic flows is that they
introduce congestion effects that can slow down
transport time

20

Congestion Effects
u w

v𝜏1=3 𝜏2=5c1=8 c2=3

916

21

Congestion Effects
u w

v𝜏1=3 𝜏2=5c1=8 c2=3

88 3 33 t=3: first 8 items from u reach v
which is empty.
First 3 items pass through but
others need to wait because c1<c2
Congestion occurs.

22

u w
v𝜏1=3 𝜏2=5c1=8 c2=3

13 3 33 3

Congestion Effects

t=4

t=3: first 8 items from u reach v
which is empty.
First 3 items pass through but
others need to wait because c1<c2
Congestion occurs.

23

u w
v𝜏1=3 𝜏2=5c1=8 c2=3

10 3 33 3

Congestion Effects

t=4

t=3: first 8 items from u reach v
which is empty.
First 3 items pass through but
others need to wait because c1<c2
Congestion occurs.

t=5

3

24

u w
v𝜏1=3 𝜏2=5c1=8 c2=3

7 3 33 3

Congestion Effects

t=4

t=3: first 8 items from u reach v
which is empty.
First 3 items pass through but
others need to wait because c1<c2
Congestion occurs.

t=5

6

t=6

25

u w
v𝜏1=3 𝜏2=5c1=8 c2=3

4 3 33 3

Congestion Effects

t=4

t=3: first 8 items from u reach v
which is empty.
First 3 items pass through but
others need to wait because c1<c2
Congestion occurs.

t=5

9

t=6

t=7

26

u w
v𝜏1=3 𝜏2=5c1=8 c2=3

1 3 33 3

Congestion Effects

t=4

t=3: first 8 items from u reach v
which is empty.
First 3 items pass through but
others need to wait because c1<c2
Congestion occurs.

t=5

3+9

t=6

t=7
t=8

27

u w
v𝜏1=3 𝜏2=5c1=8 c2=3

3 31 3

Congestion Effects

t=4

t=3: first 8 items from u reach v
which is empty.
First 3 items pass through but
others need to wait because c1<c2
Congestion occurs.

t=5

6+9

t=6

t=7
t=8

t=9

28

u w
v𝜏1=3 𝜏2=5c1=8 c2=3

Congestion Effects

t=4

t=3: first 8 items from u reach v
which is empty.
First 3 items pass through but
others need to wait because c1<c2
Congestion occurs.

t=13: Last item arrives at w

16+9

t=5

t=6

t=7
t=8

t=9

…

29

Congestion Effects
u w

v𝜏1=3 𝜏2=5c1=8 c2=3

16 9
Congestion occurs because c1<c2

Full Evacuation at t=13

30

Congestion Effects
u w

v𝜏1=3 𝜏2=5c1=8 c2=3

16 9
Congestion occurs because c1<c2

u w
v𝜏1=3 𝜏2=5c1=8 c2=9

16 36

Full Evacuation at t=13

31

Congestion Effects
u w

v𝜏1=3 𝜏2=5c1=8 c2=3

16 9
Congestion occurs because c1<c2

u w
v𝜏1=3 𝜏2=5c1=8 c2=9

8+9

Full Evacuation at t=13

t=3: first 8 items from u reach v
which still contains 9 items
=> Congestion occurs.

9 9 98

32

Congestion Effects
u w

v𝜏1=3 𝜏2=5c1=8 c2=3

16 9
Congestion occurs because c1<c2

u w
v𝜏1=3 𝜏2=5c1=8 c2=9

Full Evacuation at t=13

t=3: first 8 items from u reach v
which still contains 9 items
=> Congestion occurs.
t=12: Last item arrives at w

16+36

33

Congestion Effects
u w

v𝜏1=3 𝜏2=5c1=8 c2=3

16 9
Congestion occurs because c1<c2

u w
v𝜏1=3 𝜏2=5c1=8 c2=9

16 36

Full Evacuation at t=13

Congestion occurs because v not
empty when first group arrives from u

Full Evacuation at t=12

34

Congestion Effects
u w

v𝜏1=3 𝜏2=5c1=8 c2=3

16 9
Congestion occurs because c1<c2

u w
v𝜏1=3 𝜏2=5c1=8 c2=9

16 36

Full Evacuation at t=13

Congestion occurs because v not
empty when first group arrives from u

u w
v𝜏1=3 𝜏2=5c1=8 c2=9

16 18

Full Evacuation at t=12

35

Congestion Effects
u w

v𝜏1=3 𝜏2=5c1=8 c2=3

16 9
Congestion occurs because c1<c2

u w
v𝜏1=3 𝜏2=5c1=8 c2=9

16 36

Full Evacuation at t=13

Congestion occurs because v not
empty when first group arrives from u

u w
v𝜏1=3 𝜏2=5c1=8 c2=9

Full Evacuation at t=12

t=3: first 8 items from u reach v
which is empty still contains 9 items
=> NO Congestion occurs.

9 988

36

Congestion Effects
u w

v𝜏1=3 𝜏2=5c1=8 c2=3

16 9
Congestion occurs because c1<c2

u w
v𝜏1=3 𝜏2=5c1=8 c2=9

16 36

Full Evacuation at t=13

Congestion occurs because v not
empty when first group arrives from u

u w
v𝜏1=3 𝜏2=5c1=8 c2=9

Full Evacuation at t=12

t=3: first 8 items from u reach v
which is empty still contains 9 items
=> NO Congestion occurs.

16+18

t=9: Last item arrives at w

Congestion Effects
u w

v𝜏1=3 𝜏2=5c1=8 c2=3

16 9
Congestion occurs because c1<c2

u w
v𝜏1=3 𝜏2=5c1=8 c2=9

16 36

Full Evacuation at t=13

Congestion occurs because v not
empty when first group arrives from u

u w
v𝜏1=3 𝜏2=5c1=8 c2=9

Full Evacuation at t=12

Items at u pass through v with
No Congestion occuring

16 18

Full Evacuation at t=9

37

Congestion Effects
u w

v𝜏1=3 𝜏2=5c1=8 c2=3

16 9
Congestion occurs because c1<c2

u w
v𝜏1=3 𝜏2=5c1=8 c2=9

16 36

Full Evacuation at t=13

Congestion occurs because v not
empty when first group arrives from u

u w
v𝜏1=3 𝜏2=5c1=8 c2=9

Full Evacuation at t=12

Items at u pass through v with
No Congestion occuring

16 18

Full Evacuation at t=9

Analysis of Flow/Evacuation times must include congestion!!

Can be very complicated!

Outline
• Dynamic Flow Networks

• Congestion in Dynamic Flows

• Evacuation Flows
• Problem Definitions
• Known Results

• Example Algorithm 1: k-Sink Evacuation on a Path

• Example Algorithm 2: 1-sink Min-Max Regret Evacuation on
a Path with uniform capacity

• Open Problems

Evacuation is NOT Flow

Evacuation is NOT Flow
• In Flow, different people from same

vertex can follow different paths

Evacuation is NOT Flow
• In Flow, different people from same

vertex can follow different paths

• In Evacuation, want signs at
vertices pointing this way out =>
• Each vertex has unique

evacuation edge.
• Every person reaching that

vertex must follow the
evacuation edge to next vertex

Evacuation is NOT Flow
• In Flow, different people from same

vertex can follow different paths

• In Evacuation, want signs at
vertices pointing this way out =>
• Each vertex has unique

evacuation edge.
• Every person reaching that

vertex must follow the
evacuation edge to next vertex

Evacuation is NOT Flow
• In Flow, different people from same

vertex can follow different paths

• In Evacuation, want signs at
vertices pointing this way out =>
• Each vertex has unique

evacuation edge.
• Every person reaching that

vertex must follow the
evacuation edge to next vertex

• Evacuation edges partition
vertices into directed forests
moving toward sinks

Evacuation is NOT Flow
• In Flow, different people from same

vertex can follow different paths

• In Evacuation, want signs at
vertices pointing this way out =>
• Each vertex has unique

evacuation edge.
• Every person reaching that

vertex must follow the
evacuation edge to next vertex

• Evacuation edges partition
vertices into directed forests
moving toward sinks

Graph Evacuation Problems

Graph Evacuation Problems
• Input: Graph G=(V,E)

• 𝜏e, ce: transit times and capacities for each edge
• wv: # of people starting on vertex v
• Sinks: Either fixed set K ⊆V of sinks or a number k of sinks allowed

Graph Evacuation Problems
• Input: Graph G=(V,E)

• 𝜏e, ce: transit times and capacities for each edge
• wv: # of people starting on vertex v
• Sinks: Either fixed set K ⊆V of sinks or a number k of sinks allowed

• Output: An Evacuation Protocol that minimizes maximum evacuation time
• Evacuation Protocol

• A unique evacuation edge for each vertex
• If input is k, a set K ⊆V of sinks with |K|=k

• Maximum Evacuation time
• The evacuation time of a vertex is the earliest time by which ALL

items from that vertex have reached a sink.
• Maximum evacuation time is the maximum evacuation time over all

vertices

Graph Evacuation Problems: Variations

• Type of graph G: Path, Tree, General, ….
• For general G and k>1 problem is NP-Complete because it solves

k-Center (if ce set to be large)

Graph Evacuation Problems: Variations

• Type of graph G: Path, Tree, General, ….
• For general G and k>1 problem is NP-Complete because it solves

k-Center (if ce set to be large)

• Sink Input: Actual Sinks vs # of sinks

Graph Evacuation Problems: Variations

• Type of graph G: Path, Tree, General, ….
• For general G and k>1 problem is NP-Complete because it solves

k-Center (if ce set to be large)

• Sink Input: Actual Sinks vs # of sinks

• Discrete vs Continuous flow
• Fleischer, Tardos (1998). D and C Dynamic Flow problems can

often be solved using same algorithm

Graph Evacuation Problems: Variations

• Type of graph G: Path, Tree, General, ….
• For general G and k>1 problem is NP-Complete because it solves

k-Center (if ce set to be large)

• Sink Input: Actual Sinks vs # of sinks

• Discrete vs Continuous flow
• Fleischer, Tardos (1998). D and C Dynamic Flow problems can

often be solved using same algorithm

• Sink locations: anywhere or only on vertices

Graph Evacuation Problems: Variations

• Type of graph G: Path, Tree, General, ….
• For general G and k>1 problem is NP-Complete because it solves

k-Center (if ce set to be large)

• Sink Input: Actual Sinks vs # of sinks

• Discrete vs Continuous flow
• Fleischer, Tardos (1998). D and C Dynamic Flow problems can

often be solved using same algorithm

• Sink locations: anywhere or only on vertices

• ce: uniform (all the same) vs general (arbitrary)

Graph Evacuation Problems: Variations

• Type of graph G: Path, Tree, General, ….
• For general G and k>1 problem is NP-Complete because it solves

k-Center (if ce set to be large)

• Sink Input: Actual Sinks vs # of sinks

• Discrete vs Continuous flow
• Fleischer, Tardos (1998). D and C Dynamic Flow problems can

often be solved using same algorithm

• Sink locations: anywhere or only on vertices

• ce: uniform (all the same) vs general (arbitrary)

• Min-Max vs Min-Max Regret
• Robust solutions. MMR allows wv, # of people on vertex, to be a

range rather than a number. Find “best” solution for all allowable
scenarios

Graph Evacuation Problems: Variations

Outline
• Dynamic Flow Networks

• Congestion in Dynamic Flows

• Evacuation Flows
• Problem Definitions
• Known Results

• Example Algorithm 1: k-Sink Evacuation on a Path

• Example Algorithm 2: 1-sink Min-Max Regret Evacuation on
a Path with uniform capacity

• Open Problems
42

　
Min-­‐max	
 cost	
 (DISCRETE/CONTINUOUS)

General	
 capacity Uniform	
 capacity
1-­‐sink k-­‐sink 1-­‐sink k-­‐sink

Path O(n) [2] O(kn log2n) [2] O(n) O(kn) [6]
Tree O(n log2n) [7] O(k2 n log4n) [3] O(n log n) [4] O(k2 n log3n) [3]

General	
 graph Poly? NP-­‐Hard Poly? NP-­‐Hard

　
Min-­‐max	
 regret	
 cost	
 (DISCRETE/CONTINUOUS)

General	
 capacity Uniform	
 capacity
1-­‐sink k-­‐sink 1-­‐sink k-­‐sink

Path

None
O(n log n) [5,9] O(kn3 log n) [1]

Tree O(n2log2n) [4]
None

General	
 graph None

Known Results

References

[6]	
 Y.	
 Higashikawa,	
 M.	
 J.	
 Golin	
 and	
 N.	
 Katoh,	
 “Multiple	
 Sink	
 Location	
 Problems	
 in	
 Dynamic	
 Path	
 Networks”,	

Theoretical	
 Computer	
 Science	
 (to	
 appear)	
 2015.

[7]	
 S.	
 Mamada,	
 T.	
 Uno,	
 K.	
 Makino	
 and	
 S.	
 Fujishige,	
 	
 “An	
 O(n	
 log2	
 n)	
 Algorithm	
 for	
 the	
 Optimal	
 Sink	
 Location	

Problem	
 in	
 Dynamic	
 Tree	
 Networks”,	
 Discrete	
 Applied	
 Mathematics,	
 154(16),	
 pp.	
 2387-­‐2401,	
 2006.

[4]	
 Y.	
 Higashikawa,	
 M.	
 J.	
 Golin	
 and	
 N.	
 Katoh,	
 “Minimax	
 Regret	
 Sink	
 Location	
 Problem	
 in	
 Dynamic	
 Tree	

Networks	
 with	
 Uniform	
 Capacity”,	
 Proc.	
 WALCOM	
 2014,	
 LNCS	
 8344,	
 pp.	
 125-­‐137,	
 2014.

[5]	
 Y.	
 Higashikawa,	
 J.	
 Augustine,	
 S.	
 W.	
 Cheng,	
 N.	
 Katoh,	
 G.	
 Ni,	
 B.	
 Su	
 and	
 Y.	
 Xu,	
 “Minimax	
 Regret	
 1-­‐Sink	

Location	
 Problem	
 in	
 Dynamic	
 Path	
 Networks”,	
 Theoretical	
 Computer	
 Science,	
 	
 2014.

[9]	
 H.	
 Wang,	
 “Minmax	
 Regret	
 1-­‐Facility	
 Location	
 on	
 Uncertain	
 Path	
 Networks”,	
 Proc.	
 ISAAC	
 2013,	
 LNCS	
 8283,	

pp.	
 733-­‐743,	
 2013.

[8]	
 G.	
 Ni,	
 Y.	
 Xu	
 and	
 Y.	
 Dong,	
 “Minimax	
 regret	
 k-­‐sink	
 location	
 problem	
 in	
 dynamic	
 path	
 networks”,	
 Proc.	
 AAIM	

2014	

[1]	
 G.P.	
 Arumugam,	
 J.	
 Augustine,	
 M.J.	
 Golin	
 and	
 P.	
 Srikanthan,	
 “A	
 Polynomial	
 Time	
 Algorithm	
 for	
 Minimax-­‐
Regret	
 Evacuation	
 on	
 a	
 Dynamic	
 Path”,	
 arXiv:1404.5448,	
 2014

[2]	
 G.P.	
 Arumugam,	
 J.	
 Augustine,	
 M.J.	
 Golin	
 and	
 P.	
 Srikanthan,	
 “Evacuation	
 on	
 Dynamic	
 Paths	
 with	
 General	

Edge	
 Capacities”,	
 document	
 in	
 preparation	
 (2015)	

[3]	
 	
 Di	
 Chen	
 and	
 M.J.	
 Golin,	
 “Optimal	
 Sink	
 Location	
 Problems	
 in	
 Dynamic	
 Tree	
 Networks”,	
 	
 document	
 in	

preparation	
 (2015)	

Outline
• Dynamic Flow Networks

• Congestion in Dynamic Flows

• Evacuation Flows
• Problem Definitions
• Known Results

• Example Algorithm 1: k-Sink Evacuation on a Path

• Example Algorithm 2: 1-sink Min-Max Regret Evacuation on
a Path with uniform capacity

• Open Problems

K-Sink Evacuation on a Path
Given a path, associated values ce, 𝜏e,Wv and k, # of sinks,

x0

c1

w0

x1 x2 x3 xn

w2 w3 wnw1
c2 c3

cn

K-Sink Evacuation on a Path
Given a path, associated values ce, 𝜏e,Wv and k, # of sinks,

Find a partition into k-subpaths and a sink for each subpath,
that minimizes the maximum evacuation time over all
subpaths.

x0

c1

w0

x1 x2 x3 xn

w2 w3 wnw1
c2 c3

cn

P1 P2 Pk

XXX

K-Sink Evacuation on a Path
Given a path, associated values ce, 𝜏e,Wv and k, # of sinks,

Find a partition into k-subpaths and a sink for each subpath,
that minimizes the maximum evacuation time over all
subpaths.

x0

c1

w0

x1 x2 x3 xn

w2 w3 wnw1
c2 c3

cn

1-Sink Evacuation Notation

X

ϴL(P,x) ϴR(P,x)

1-Sink Evacuation Notation

X

ϴL(P,x) ϴR(P,x)

ϴL(P,x) = Time to evacuate all nodes to left of x on P to x

ϴR(P,x) = Time to evacuate all nodes to right of x on P to x

ϴ(P,x) = max(ϴL(P,x), ϴR(P,x))

 = Time to evacuate all nodes on P to x

ϴ1(P) = min{x∈P} ϴ(P,x)

 = min evacuation time for P with one sink

1-Sink Evacuation Example

!=3, c=2 !=4, c=3 !=3, c=4 !=3, c=5 !=3, c=3

8 12 8 3 4 47

Original Input:

1-Sink Evacuation Example

!=3, c=2 !=4, c=3 !=3, c=4 !=3, c=5 !=3, c=3

8 12 8 3 4 47

Original Input:

X is the sink location that minimizes Maximum Evacuation Time

!=3, c=2 !=4, c=3 !=3, c=4 !=3, c=5 !=3, c=3

8 12 8 3 4 47
X

ϴL(P,x)=17 ϴR(P,x)=17

21

1-Sink Evacuation Example

!=3, c=2 !=4, c=3 !=3, c=4 !=3, c=5 !=3, c=3

8 12 8 3 4 47

Original Input:

X is the sink location that minimizes Maximum Evacuation Time

!=3, c=2 !=4, c=3 !=3, c=4 !=3, c=5 !=3, c=3

8 12 8 3 4 47
X

ϴL(P,x)=17 ϴR(P,x)=17

21

Note: Min evac-time sink location is NOT an original vertex.
Can modify problem definition to require sink to be a vertex
Algorithms remain almost the same

• Given Path P and integer k

• P ={P1, P2, …, Pk} is a partition of P into k-subpaths

• Given P, the evacuation time of P is  
 max (ϴ1(P1), ϴ1(P2), … ,ϴ1(Pk))

• Want to find 
 ϴk(P) = minP (max (ϴ1(P1), ϴ1(P2), … ,ϴ1(Pk)))  
 = Min k-sink evacuation time for P

k-Sink Evacuation Notation

P1 P2 Pk

1. Formulae for ϴL(P,x) and ϴL(P,x)

2. => O(|P|) Algorithm for ϴL(P,x), ϴL(P,x)

3. => O(|P| log |P|) Algorithm for ϴ1(P)

4. => O(|P| log |P|) Algorithm that ∀α > 0 
 tests whether ϴk(P) ≤ α

5. => O(k|P| log2 |P|) Algorithm for ϴk(P)

Algorithm Development Sketch

x0

c1

w0

x1 x2 x3

w2 w3w1
c2 c3 . . .

wj-1

xj-1

wj

xj

wj+1

xj+1

x
cj cj+1

wr

xr

Formulae for ϴL(P,x) and ϴR(P,x)

x0

c1

w0

x1 x2 x3

w2 w3w1
c2 c3 . . .

wj-1

xj-1

wj

xj

wj+1

xj+1

x
cj cj+1

wr

xr

• Consider ϴL(P,x) with sink at right

Formulae for ϴL(P,x) and ϴR(P,x)

x0

c1

w0

x1 x2 x3

w2 w3w1
c2 c3 . . .

wj-1

xj-1

wj

xj

wj+1

xj+1

x
cj cj+1

wr

xr

• Consider ϴL(P,x) with sink at right

• Lemma: Suppose cj > cj+1.  
Create P’ by replacing cj with cʹj =cj+1.
=>Then ϴL(P,x) = ϴL(Pʹ,x)

Formulae for ϴL(P,x) and ϴR(P,x)

x0

c1

w0

x1 x2 x3

w2 w3w1
c2 c3 . . .

wj-1

xj-1

wj

xj

wj+1

xj+1

x
cj cj+1

wr

xr

• Consider ϴL(P,x) with sink at right

• Lemma: Suppose cj > cj+1.  
Create P’ by replacing cj with cʹj =cj+1.
=>Then ϴL(P,x) = ϴL(Pʹ,x)

Formulae for ϴL(P,x) and ϴR(P,x)

c’j

x0

c1

w0

x1 x2 x3

w2 w3w1
c2 c3 . . .

wj-1

xj-1

wj

xj

wj+1

xj+1

x
cj cj+1

wr

xr

• Consider ϴL(P,x) with sink at right

• Lemma: Suppose cj > cj+1.  
Create P’ by replacing cj with cʹj =cj+1.
=>Then ϴL(P,x) = ϴL(Pʹ,x)

• Corollary: May replace capacities by

Formulae for ϴL(P,x) and ϴR(P,x)

c’j

cʹ1 ≤ cʹ2 ≤ cʹ3 ≤ … ≤ cʹn c0i = min
ijr+1

cj

c’1 c’2 c’3 c’j+1

Formula for ϴL(P,x)

xr is last vertex to right of x

Path with ci has same evac time 
as Path with

x0

c1

w0

x1 x2 x3

w2 w3w1
c2 c3 . . .

wj-1

xj-1

wj

xj

wj+1

xj+1

x
cj cj+1

wr

xr
cʹ1 cʹ2 cʹ3 cʹj cʹj+1

c0i = min
ijr+1

cj

Formula for ϴL(P,x)

xr is last vertex to right of x

Path with ci has same evac time 
as Path with

Lemma:

x0

c1

w0

x1 x2 x3

w2 w3w1
c2 c3 . . .

wj-1

xj-1

wj

xj

wj+1

xj+1

x
cj cj+1

wr

xr
cʹ1 cʹ2 cʹ3 cʹj cʹj+1

c0i = min
ijr+1

cj

⇥L(P, x) = max

0tr

✓✓
(x� xt) +

⇠
Wt

c

0
t+1

⇡
� 1

◆◆
Wt =

X

0jt

wj

Formula for ϴL(P,x)

xr is last vertex to right of x

Path with ci has same evac time 
as Path with

Lemma:

Intuition: Analysis is on path P’

x0

c1

w0

x1 x2 x3

w2 w3w1
c2 c3 . . .

wj-1

xj-1

wj

xj

wj+1

xj+1

x
cj cj+1

wr

xr
cʹ1 cʹ2 cʹ3 cʹj cʹj+1

c0i = min
ijr+1

cj

⇥L(P, x) = max

0tr

✓✓
(x� xt) +

⇠
Wt

c

0
t+1

⇡
� 1

◆◆
Wt =

X

0jt

wj

Formula for ϴL(P,x)

xr is last vertex to right of x

Path with ci has same evac time 
as Path with

Lemma:

Intuition: Analysis is on path P’
• Fix xt. x-xt is uncongested travel time from xt to x

x0

c1

w0

x1 x2 x3

w2 w3w1
c2 c3 . . .

wj-1

xj-1

wj

xj

wj+1

xj+1

x
cj cj+1

wr

xr
cʹ1 cʹ2 cʹ3 cʹj cʹj+1

c0i = min
ijr+1

cj

⇥L(P, x) = max

0tr

✓✓
(x� xt) +

⇠
Wt

c

0
t+1

⇡
� 1

◆◆
Wt =

X

0jt

wj

Formula for ϴL(P,x)

xr is last vertex to right of x

Path with ci has same evac time 
as Path with

Lemma:

Intuition: Analysis is on path P’
• Fix xt. x-xt is uncongested travel time from xt to x
• Remove all items to right of xt.  

Move all items to left of xt onto xt. xt’s new weight is Wt

x0

c1

w0

x1 x2 x3

w2 w3w1
c2 c3 . . .

wj-1

xj-1

wj

xj

wj+1

xj+1

x
cj cj+1

wr

xr
cʹ1 cʹ2 cʹ3 cʹj cʹj+1

c0i = min
ijr+1

cj

⇥L(P, x) = max

0tr

✓✓
(x� xt) +

⇠
Wt

c

0
t+1

⇡
� 1

◆◆
Wt =

X

0jt

wj

Formula for ϴL(P,x)

xr is last vertex to right of x

Path with ci has same evac time 
as Path with

Lemma:

Intuition: Analysis is on path P’
• Fix xt. x-xt is uncongested travel time from xt to x
• Remove all items to right of xt.  

Move all items to left of xt onto xt. xt’s new weight is Wt

• # of groups leaving xt is g = ⌈Wt/cʹt+1⌉.  
No congestion on path to x.

x0

c1

w0

x1 x2 x3

w2 w3w1
c2 c3 . . .

wj-1

xj-1

wj

xj

wj+1

xj+1

x
cj cj+1

wr

xr
cʹ1 cʹ2 cʹ3 cʹj cʹj+1

c0i = min
ijr+1

cj

⇥L(P, x) = max

0tr

✓✓
(x� xt) +

⇠
Wt

c

0
t+1

⇡
� 1

◆◆
Wt =

X

0jt

wj

Formula for ϴL(P,x)

xr is last vertex to right of x

Path with ci has same evac time 
as Path with

Lemma:

Intuition: Analysis is on path P’
• Fix xt. x-xt is uncongested travel time from xt to x
• Remove all items to right of xt.  

Move all items to left of xt onto xt. xt’s new weight is Wt

• # of groups leaving xt is g = ⌈Wt/cʹt+1⌉.  
No congestion on path to x.

• => x-xt +g-1 is the exact evacuation time for items on xt

x0

c1

w0

x1 x2 x3

w2 w3w1
c2 c3 . . .

wj-1

xj-1

wj

xj

wj+1

xj+1

x
cj cj+1

wr

xr
cʹ1 cʹ2 cʹ3 cʹj cʹj+1

c0i = min
ijr+1

cj

⇥L(P, x) = max

0tr

✓✓
(x� xt) +

⇠
Wt

c

0
t+1

⇡
� 1

◆◆
Wt =

X

0jt

wj

Formula for ϴL(P,x)
Path with ci has same evac time 
as Path with

Lemma:

x0

c1

w0

x1 x2 x3

w2 w3w1
c2 c3 . . .

wj-1

xj-1

wj

xj

wj+1

xj+1

x
cj cj+1

wr

xr
cʹ1 cʹ2 cʹ3 cʹj cʹj+1

c0i = min
ijr+1

cj

⇥L(P, x) = max

0tr

✓✓
(x� xt) +

⇠
Wt

c

0
t+1

⇡
� 1

◆◆
Wt =

X

0jt

wj

Formula for ϴL(P,x)
Path with ci has same evac time 
as Path with

Lemma:

• Fix vertex xt and consider the Wt items passing through xt

x0

c1

w0

x1 x2 x3

w2 w3w1
c2 c3 . . .

wj-1

xj-1

wj

xj

wj+1

xj+1

x
cj cj+1

wr

xr
cʹ1 cʹ2 cʹ3 cʹj cʹj+1

c0i = min
ijr+1

cj

⇥L(P, x) = max

0tr

✓✓
(x� xt) +

⇠
Wt

c

0
t+1

⇡
� 1

◆◆
Wt =

X

0jt

wj

Formula for ϴL(P,x)
Path with ci has same evac time 
as Path with

Lemma:

• Fix vertex xt and consider the Wt items passing through xt

• => These Wt items leave xt in g ≥⌈Wt/cʹt+1⌉ groups 
=> Last group leaves xt at time ≥g-1.

x0

c1

w0

x1 x2 x3

w2 w3w1
c2 c3 . . .

wj-1

xj-1

wj

xj

wj+1

xj+1

x
cj cj+1

wr

xr
cʹ1 cʹ2 cʹ3 cʹj cʹj+1

c0i = min
ijr+1

cj

⇥L(P, x) = max

0tr

✓✓
(x� xt) +

⇠
Wt

c

0
t+1

⇡
� 1

◆◆
Wt =

X

0jt

wj

Formula for ϴL(P,x)
Path with ci has same evac time 
as Path with

Lemma:

• Fix vertex xt and consider the Wt items passing through xt

• => These Wt items leave xt in g ≥⌈Wt/cʹt+1⌉ groups 
=> Last group leaves xt at time ≥g-1.

• Last item in last group requires at least x- xt time to move from xt to x  
=> final evacuation time ≥ x- xt + g-1

x0

c1

w0

x1 x2 x3

w2 w3w1
c2 c3 . . .

wj-1

xj-1

wj

xj

wj+1

xj+1

x
cj cj+1

wr

xr
cʹ1 cʹ2 cʹ3 cʹj cʹj+1

c0i = min
ijr+1

cj

⇥L(P, x) = max

0tr

✓✓
(x� xt) +

⇠
Wt

c

0
t+1

⇡
� 1

◆◆
Wt =

X

0jt

wj

Formula for ϴL(P,x)
Path with ci has same evac time 
as Path with

Lemma:

• Fix vertex xt and consider the Wt items passing through xt

• => These Wt items leave xt in g ≥⌈Wt/cʹt+1⌉ groups 
=> Last group leaves xt at time ≥g-1.

• Last item in last group requires at least x- xt time to move from xt to x  
=> final evacuation time ≥ x- xt + g-1

• This is true for every t  
=> have just proven ≥ direction of lemma

x0

c1

w0

x1 x2 x3

w2 w3w1
c2 c3 . . .

wj-1

xj-1

wj

xj

wj+1

xj+1

x
cj cj+1

wr

xr
cʹ1 cʹ2 cʹ3 cʹj cʹj+1

c0i = min
ijr+1

cj

⇥L(P, x) = max

0tr

✓✓
(x� xt) +

⇠
Wt

c

0
t+1

⇡
� 1

◆◆
Wt =

X

0jt

wj

Lemma:

• Let L be last item on x0 and xt be last vertex at which L is congested (waits). 
(If L never experiences congestion set t=0.) 
=> If L leaves xt at time Tʹ, L arrives at x at time Tʹ+ x-xt

⇥L(P, x) = max

0tr

✓✓
(x� xt) +

⇠
Wt

c

0
t+1

⇡
� 1

◆◆
Wt =

X

0jt

wj

x0

w0

x1 x2 x3

w2 w3w1
. . .

wt-1

xt-1

wt wt+1

x
wrcʹt cʹt+1

xt

L

xt-x

Lemma:

• Note: # people arriving at xt at any time T is ≤ cʹt ≤ cʹt+1

• Let L be last item on x0 and xt be last vertex at which L is congested (waits). 
(If L never experiences congestion set t=0.) 
=> If L leaves xt at time Tʹ, L arrives at x at time Tʹ+ x-xt

⇥L(P, x) = max

0tr

✓✓
(x� xt) +

⇠
Wt

c

0
t+1

⇡
� 1

◆◆
Wt =

X

0jt

wj

x0

w0

x1 x2 x3

w2 w3w1
. . .

wt-1

xt-1

wt wt+1

x
wrcʹt cʹt+1

xt

L

xt-x

Lemma:

• Note: # people arriving at xt at any time T is ≤ cʹt ≤ cʹt+1
• Suppose ∃ timestep T≥0 at which < cʹt+1 items leave xt.  

=> no one is left waiting at xt.  
=> at T+1 the ≤ cʹt+1 people arriving at xt all pass through without waiting at xt  
=> repeating; no one left waiting at xt at T+2, T+3, etc.  
=> L passes through xt without waiting, contradicting choice of t.

• Let L be last item on x0 and xt be last vertex at which L is congested (waits). 
(If L never experiences congestion set t=0.) 
=> If L leaves xt at time Tʹ, L arrives at x at time Tʹ+ x-xt

⇥L(P, x) = max

0tr

✓✓
(x� xt) +

⇠
Wt

c

0
t+1

⇡
� 1

◆◆
Wt =

X

0jt

wj

x0

w0

x1 x2 x3

w2 w3w1
. . .

wt-1

xt-1

wt wt+1

x
wrcʹt cʹt+1

xt

L

xt-x

Lemma:

• Note: # people arriving at xt at any time T is ≤ cʹt ≤ cʹt+1
• Suppose ∃ timestep T≥0 at which < cʹt+1 items leave xt.  

=> no one is left waiting at xt.  
=> at T+1 the ≤ cʹt+1 people arriving at xt all pass through without waiting at xt  
=> repeating; no one left waiting at xt at T+2, T+3, etc.  
=> L passes through xt without waiting, contradicting choice of t.

• => At every time step exactly cʹt+1 people leave xt

• Let L be last item on x0 and xt be last vertex at which L is congested (waits). 
(If L never experiences congestion set t=0.) 
=> If L leaves xt at time Tʹ, L arrives at x at time Tʹ+ x-xt

⇥L(P, x) = max

0tr

✓✓
(x� xt) +

⇠
Wt

c

0
t+1

⇡
� 1

◆◆
Wt =

X

0jt

wj

x0

w0

x1 x2 x3

w2 w3w1
. . .

wt-1

xt-1

wt wt+1

x
wrcʹt cʹt+1

xt

L

xt-x

Lemma:

• Note: # people arriving at xt at any time T is ≤ cʹt ≤ cʹt+1
• Suppose ∃ timestep T≥0 at which < cʹt+1 items leave xt.  

=> no one is left waiting at xt.  
=> at T+1 the ≤ cʹt+1 people arriving at xt all pass through without waiting at xt  
=> repeating; no one left waiting at xt at T+2, T+3, etc.  
=> L passes through xt without waiting, contradicting choice of t.

• => At every time step exactly cʹt+1 people leave xt

• => L leaves xt in group g=⌈Wt/cʹt+1⌉ at time g -1

• Let L be last item on x0 and xt be last vertex at which L is congested (waits). 
(If L never experiences congestion set t=0.) 
=> If L leaves xt at time Tʹ, L arrives at x at time Tʹ+ x-xt

⇥L(P, x) = max

0tr

✓✓
(x� xt) +

⇠
Wt

c

0
t+1

⇡
� 1

◆◆
Wt =

X

0jt

wj

x0

w0

x1 x2 x3

w2 w3w1
. . .

wt-1

xt-1

wt wt+1

x
wrcʹt cʹt+1

xt

L

xt-x

Lemma:

• Note: # people arriving at xt at any time T is ≤ cʹt ≤ cʹt+1
• Suppose ∃ timestep T≥0 at which < cʹt+1 items leave xt.  

=> no one is left waiting at xt.  
=> at T+1 the ≤ cʹt+1 people arriving at xt all pass through without waiting at xt  
=> repeating; no one left waiting at xt at T+2, T+3, etc.  
=> L passes through xt without waiting, contradicting choice of t.

• => At every time step exactly cʹt+1 people leave xt

• => L leaves xt in group g=⌈Wt/cʹt+1⌉ at time g -1
• => L arrives at x at time x- xt + g-1

• Let L be last item on x0 and xt be last vertex at which L is congested (waits). 
(If L never experiences congestion set t=0.) 
=> If L leaves xt at time Tʹ, L arrives at x at time Tʹ+ x-xt

⇥L(P, x) = max

0tr

✓✓
(x� xt) +

⇠
Wt

c

0
t+1

⇡
� 1

◆◆
Wt =

X

0jt

wj

x0

w0

x1 x2 x3

w2 w3w1
. . .

wt-1

xt-1

wt wt+1

x
wrcʹt cʹt+1

xt

L

xt-x

Lemma:

• Note: # people arriving at xt at any time T is ≤ cʹt ≤ cʹt+1
• Suppose ∃ timestep T≥0 at which < cʹt+1 items leave xt.  

=> no one is left waiting at xt.  
=> at T+1 the ≤ cʹt+1 people arriving at xt all pass through without waiting at xt  
=> repeating; no one left waiting at xt at T+2, T+3, etc.  
=> L passes through xt without waiting, contradicting choice of t.

• => At every time step exactly cʹt+1 people leave xt

• => L leaves xt in group g=⌈Wt/cʹt+1⌉ at time g -1
• => L arrives at x at time x- xt + g-1

• => have just proven ≤ direction of lemma

• Let L be last item on x0 and xt be last vertex at which L is congested (waits). 
(If L never experiences congestion set t=0.) 
=> If L leaves xt at time Tʹ, L arrives at x at time Tʹ+ x-xt

⇥L(P, x) = max

0tr

✓✓
(x� xt) +

⇠
Wt

c

0
t+1

⇡
� 1

◆◆
Wt =

X

0jt

wj

x0

w0

x1 x2 x3

w2 w3w1
. . .

wt-1

xt-1

wt wt+1

x
wrcʹt cʹt+1

xt

L

xt-x

1. Formulae for ϴL(P,x) and ϴL(P,x)

2. => O(|P|) Algorithm for ϴL(P,x), ϴL(P,x)

3. => O(|P| log |P|) Algorithm for ϴ1(P)

4. => O(|P| log |P|) Algorithm that ∀α > 0 
 tests whether ϴk(P) ≤ α

5. => O(k|P| log2 |P|) Algorithm for ϴk(P)

Algorithm Development Sketch

Formulas for ϴL(P,x) and ϴR(P,x)

Theorem: Let k be s.t. xk < x ≤ xk+1. Then

⇥

L

(P, x) = max

xi<x

✓
(x� x

i

) +

⇠ P
0jt

w

j

min

i+1jk+1 cj

⇡
+ 1

◆
⇥

R

(P, x) = max

xi>x

✓
(x

i

� x) +

⇠ P
ijn

w

j

min

k+1jn

c

j

⇡
+ 1

◆

Corollary: ϴL(P,x) and ϴR(P,x) can be computed in O(|P|) time

X

ϴL(P,x) ϴR(P,x)

Xk Xk+1

Formulas for ϴL(P,x) and ϴR(P,x)

X

ϴL(P,x) ϴR(P,x)

Xk Xk+1

Formulas for ϴL(P,x) and ϴR(P,x)

Claim 1: ϴL(P,x) (ϴR(P,x))
is a monotonically increasing
(decreasing) piecewise linear
function in x.

X

ϴL(P,x) ϴR(P,x)

Xk Xk+1

Formulas for ϴL(P,x) and ϴR(P,x)

Claim 1: ϴL(P,x) (ϴR(P,x))
is a monotonically increasing
(decreasing) piecewise linear
function in x.

X

ϴL(P,x) ϴR(P,x)

Xk Xk+1

x0 x1 x2 x3 x4

Formulas for ϴL(P,x) and ϴR(P,x)

Claim 1: ϴL(P,x) (ϴR(P,x))
is a monotonically increasing
(decreasing) piecewise linear
function in x.

Claim 2: ϴ(P,x) = max(ϴL(P,x), ϴR(P,x))
is a unimodal function. It decreases,
achieves a unique minimum and then
increases

X

ϴL(P,x) ϴR(P,x)

Xk Xk+1

x0 x1 x2 x3 x4

1. Formulae for ϴL(P,x) and ϴL(P,x)

2. => O(|P|) Algorithm for ϴL(P,x), ϴL(P,x)

3. => O(|P| log |P|) Algorithm for ϴ1(P)

4. => O(|P| log |P|) Algorithm that ∀α > 0 
 tests whether ϴk(P) ≤ α

5. => O(k|P| log2 |P|) Algorithm for ϴk(P)

Algorithm Development Sketch

An O(|P| log|P|) Algorithm for ϴ1(P)

An O(|P| log|P|) Algorithm for ϴ1(P)

!=3, c=2 !=4, c=3 !=3, c=4 !=3, c=5 !=3, c=3

8 12 8 3 4 47
XϴL(P,x)=0

ϴR(P,x)=39

An O(|P| log|P|) Algorithm for ϴ1(P)

!=3, c=2 !=4, c=3 !=3, c=4 !=3, c=5 !=3, c=3

8 12 8 3 4 47
XϴL(P,x)=0

ϴR(P,x)=39

!=4, c=3!=3, c=2 !=3, c=4 !=3, c=5 !=3, c=3

8 12 8 3 4 47
X

ϴL(P,x)=6 ϴR(P,x)=28

An O(|P| log|P|) Algorithm for ϴ1(P)

!=3, c=2 !=4, c=3 !=3, c=4 !=3, c=5 !=3, c=3

8 12 8 3 4 47
XϴL(P,x)=0

ϴR(P,x)=39

!=3, c=2 !=4, c=3 !=3, c=4 !=3, c=5 !=3, c=3

8 12 8 3 4 47
X

ϴL(P,x)=10 ϴR(P,x)=24

!=4, c=3!=3, c=2 !=3, c=4 !=3, c=5 !=3, c=3

8 12 8 3 4 47
X

ϴL(P,x)=6 ϴR(P,x)=28

An O(|P| log|P|) Algorithm for ϴ1(P)

!=3, c=2 !=4, c=3 !=3, c=4 !=3, c=5 !=3, c=3

8 12 8 3 4 47
XϴL(P,x)=0

ϴR(P,x)=39

!=3, c=2 !=4, c=3 !=3, c=4 !=3, c=5 !=3, c=3

8 12 8 3 4 47
X

ϴL(P,x)=10 ϴR(P,x)=24

!=3, c=2 !=4, c=3 !=3, c=4 !=3, c=5 !=3, c=3

8 12 8 3 4 47
X

ϴL(P,x)=13 ϴR(P,x)=21

!=4, c=3!=3, c=2 !=3, c=4 !=3, c=5 !=3, c=3

8 12 8 3 4 47
X

ϴL(P,x)=6 ϴR(P,x)=28

An O(|P| log|P|) Algorithm for ϴ1(P)

!=3, c=2 !=4, c=3 !=3, c=4 !=3, c=5 !=3, c=3

8 12 8 3 4 47
XϴL(P,x)=0

ϴR(P,x)=39

!=3, c=2 !=4, c=3 !=3, c=4 !=3, c=5 !=3, c=3

8 12 8 3 4 47
X

ϴL(P,x)=16 ϴR(P,x)=18

!=3, c=2 !=4, c=3 !=3, c=4 !=3, c=5 !=3, c=3

8 12 8 3 4 47
X

ϴL(P,x)=10 ϴR(P,x)=24

!=3, c=2 !=4, c=3 !=3, c=4 !=3, c=5 !=3, c=3

8 12 8 3 4 47
X

ϴL(P,x)=13 ϴR(P,x)=21

!=4, c=3!=3, c=2 !=3, c=4 !=3, c=5 !=3, c=3

8 12 8 3 4 47
X

ϴL(P,x)=6 ϴR(P,x)=28

An O(|P| log|P|) Algorithm for ϴ1(P)

!=3, c=2 !=4, c=3 !=3, c=4 !=3, c=5 !=3, c=3

8 12 8 3 4 47
XϴL(P,x)=0

ϴR(P,x)=39

!=3, c=2 !=4, c=3 !=3, c=4 !=3, c=5 !=3, c=3

8 12 8 3 4 47
X

ϴL(P,x)=16 ϴR(P,x)=18

!=3, c=2 !=4, c=3 !=3, c=4 !=3, c=5 !=3, c=3

8 12 8 3 4 47
X

ϴL(P,x)=19

ϴR(P,x)=0

!=3, c=2 !=4, c=3 !=3, c=4 !=3, c=5 !=3, c=3

8 12 8 3 4 47
X

ϴL(P,x)=10 ϴR(P,x)=24

!=3, c=2 !=4, c=3 !=3, c=4 !=3, c=5 !=3, c=3

8 12 8 3 4 47
X

ϴL(P,x)=13 ϴR(P,x)=21

!=4, c=3!=3, c=2 !=3, c=4 !=3, c=5 !=3, c=3

8 12 8 3 4 47
X

ϴL(P,x)=6 ϴR(P,x)=28

An O(|P| log|P|) Algorithm for ϴ1(P)

!=3, c=2 !=4, c=3 !=3, c=4 !=3, c=5 !=3, c=3

8 12 8 3 4 47
XϴL(P,x)=0

ϴR(P,x)=39

!=3, c=2 !=4, c=3 !=3, c=4 !=3, c=5 !=3, c=3

8 12 8 3 4 47
X

ϴL(P,x)=16 ϴR(P,x)=18

!=3, c=2 !=4, c=3 !=3, c=4 !=3, c=5 !=3, c=3

8 12 8 3 4 47
X

ϴL(P,x)=19

ϴR(P,x)=0

!=3, c=2 !=4, c=3 !=3, c=4 !=3, c=5 !=3, c=3

8 12 8 3 4 47
X

ϴL(P,x)=10 ϴR(P,x)=24

!=3, c=2 !=4, c=3 !=3, c=4 !=3, c=5 !=3, c=3

8 12 8 3 4 47
X

ϴL(P,x)=13 ϴR(P,x)=21

!=4, c=3!=3, c=2 !=3, c=4 !=3, c=5 !=3, c=3

8 12 8 3 4 47
X

ϴL(P,x)=6 ϴR(P,x)=28

Search for where
ϴL(P,xi) < ϴR(P,xi)

switches to
ϴL(P,xi) > ϴR(P,xi).

Optimum sink x is in the
interval where the switch
occurs

An O(|P| log|P|) Algorithm for ϴ1(P)

!=3, c=2 !=4, c=3 !=3, c=4 !=3, c=5 !=3, c=3

8 12 8 3 4 47
X

ϴL(P,x)=17 ϴR(P,x)=17

21

!=3, c=2 !=4, c=3 !=3, c=4 !=3, c=5 !=3, c=3

8 12 8 3 4 47
XϴL(P,x)=0

ϴR(P,x)=39

!=3, c=2 !=4, c=3 !=3, c=4 !=3, c=5 !=3, c=3

8 12 8 3 4 47
X

ϴL(P,x)=16 ϴR(P,x)=18

!=3, c=2 !=4, c=3 !=3, c=4 !=3, c=5 !=3, c=3

8 12 8 3 4 47
X

ϴL(P,x)=19

ϴR(P,x)=0

!=3, c=2 !=4, c=3 !=3, c=4 !=3, c=5 !=3, c=3

8 12 8 3 4 47
X

ϴL(P,x)=10 ϴR(P,x)=24

!=3, c=2 !=4, c=3 !=3, c=4 !=3, c=5 !=3, c=3

8 12 8 3 4 47
X

ϴL(P,x)=13 ϴR(P,x)=21

!=4, c=3!=3, c=2 !=3, c=4 !=3, c=5 !=3, c=3

8 12 8 3 4 47
X

ϴL(P,x)=6 ϴR(P,x)=28

Search for where
ϴL(P,xi) < ϴR(P,xi)

switches to
ϴL(P,xi) > ϴR(P,xi).

Optimum sink x is in the
interval where the switch
occurs

X

ϴL(P,x) ϴR(P,x)

Corollary: For fixed x, ϴL(P,x), ϴR(P,x)
can be computed in O(|P|) time

x0 x1 x2 x3 x4Claim 2: ϴ(P,x) = max(ϴL(P,x), ϴR(P,x))
is a unimodal function.

An O(|P| log|P|) Algorithm for ϴ1(P)

X

ϴL(P,x) ϴR(P,x)

Corollary: For fixed x, ϴL(P,x), ϴR(P,x)
can be computed in O(|P|) time

x0 x1 x2 x3 x4Claim 2: ϴ(P,x) = max(ϴL(P,x), ϴR(P,x))
is a unimodal function.

An O(|P| log|P|) Algorithm for ϴ1(P)

Algorithm: Using O(|P| log|P|) time binary search
 Find xt s.t ϴ1(P)= ϴ(P,x) satisfying xt < x ≤ xt+1.
Gives ϴL(P, xt), ϴR(P, xt), ϴL(P, xt+1), ϴR(P, xt+1)  
In O(1) time do a linear interpolation to find x.

1. Formulae for ϴL(P,x) and ϴL(P,x)

2. => O(|P|) Algorithm for ϴL(P,x), ϴL(P,x)

3. => O(|P| log |P|) Algorithm for ϴ1(P)

4. => O(|P| log |P|) Algorithm that ∀α > 0 
 tests whether ϴk(P) ≤ α

5. => O(k|P| log2 |P|) Algorithm for ϴk(P)

Algorithm Development Sketch

An O(|P| log|P|) Testing Algorithm for ϴk(P) [1]
Set Pi,j to be path from xi to xj and Pi,x path from xi to x.  
Set |P| to be # of vertices in P.

An O(|P| log|P|) Testing Algorithm for ϴk(P) [1]
Set Pi,j to be path from xi to xj and Pi,x path from xi to x.  
Set |P| to be # of vertices in P.

Thm: ∀α > 0, k>0 and i,j can test if ϴk(Pi,n) ≤ α  
in O(|Pi,n | log |Pi,n |) time

An O(|P| log|P|) Testing Algorithm for ϴk(P) [1]
Set Pi,j to be path from xi to xj and Pi,x path from xi to x.  
Set |P| to be # of vertices in P.

Thm: ∀α > 0, k>0 and i,j can test if ϴk(Pi,n) ≤ α  
in O(|Pi,n | log |Pi,n |) time

Lemma: ∀α > 0, and i can find maximum j s.t. ϴ1(Pi,j) ≤ α
in O(|Pi,j | log |Pi,j |) time

An O(|P| log|P|) Testing Algorithm for ϴk(P) [1]
Set Pi,j to be path from xi to xj and Pi,x path from xi to x.  
Set |P| to be # of vertices in P.

Thm: ∀α > 0, k>0 and i,j can test if ϴk(Pi,n) ≤ α  
in O(|Pi,n | log |Pi,n |) time

Lemma: ∀α > 0, and i can find maximum j s.t. ϴ1(Pi,j) ≤ α
in O(|Pi,j | log |Pi,j |) time

Proof Idea (Lemma):
In O(|Pi,x | log | Pi,x |) use linear formula for ϴL(Pi,n,x) &
doubling search technique to find max x s.t. ϴL(Pi,n,x) ≤ α.

Xi X

An O(|P| log|P|) Testing Algorithm for ϴk(P) [2]
Set Pi,j to be path from xi to xj and Pi,x path from xi to x.  
Set |P| to be # of vertices in P.

Thm: ∀α > 0, k>0 and i,j can test if ϴk(Pi,n) ≤ α  
in O(|Pi,n| log |Pi,n |) time

Xi X Xj

Lemma: ∀α > 0, and i can find maximum j s.t. ϴ1(Pi,j) ≤ α
in O(|Pi,j | log |Pi,j |) time

Proof Idea (Lemma):
In O(|Pi,x | log | Pi,x |) use linear formula for ϴL(Pi,n,x) &
doubling search technique to find max x s.t. ϴL(Pi,n,x) ≤ α.
Similarly, in O(|Px,j | log | Px,j |), find max j s.t. ϴR(Pi,n,x) ≤ α

An O(|P| log|P|) Testing Algorithm for ϴk(P) [3]
Set Pi,j to be path from xi to xj and Pi,x path from xi to x.  
Set |P| to be # of vertices in P.

Thm: ∀α > 0, k>0 and i,j can test if ϴk(Pi,n) ≤ α  
in O(| Pi,n | log | Pi,n |) time
Lemma: ∀α > 0, and i can find maximum j s.t. ϴ1(Pi,j) ≤ α
in O(| Pi,j | log | Pi,j |) time

An O(|P| log|P|) Testing Algorithm for ϴk(P) [3]

Proof Sketch (Thm): Use Lemma to peel off, from left side of
Pi,j, k max-length subpaths that can each be 1-evacuated in
α time. If this covers all Pi,j, then YES. Otherwise NO.

Set Pi,j to be path from xi to xj and Pi,x path from xi to x.  
Set |P| to be # of vertices in P.

Thm: ∀α > 0, k>0 and i,j can test if ϴk(Pi,n) ≤ α  
in O(| Pi,n | log | Pi,n |) time
Lemma: ∀α > 0, and i can find maximum j s.t. ϴ1(Pi,j) ≤ α
in O(| Pi,j | log | Pi,j |) time

An O(|P| log|P|) Testing Algorithm for ϴk(P) [3]

Proof Sketch (Thm): Use Lemma to peel off, from left side of
Pi,j, k max-length subpaths that can each be 1-evacuated in
α time. If this covers all Pi,j, then YES. Otherwise NO.

Xj+1Xi Xj

Set Pi,j to be path from xi to xj and Pi,x path from xi to x.  
Set |P| to be # of vertices in P.

Thm: ∀α > 0, k>0 and i,j can test if ϴk(Pi,n) ≤ α  
in O(| Pi,n | log | Pi,n |) time
Lemma: ∀α > 0, and i can find maximum j s.t. ϴ1(Pi,j) ≤ α
in O(| Pi,j | log | Pi,j |) time

α evac

Xi Xj Xj+1

An O(|P| log|P|) Testing Algorithm for ϴk(P) [4]

Proof Sketch (Thm): Use Lemma to peel off, from left side of
Pi,j, k max-length subpaths that can each be 1-evacuated in
α time. If this covers all Pi,j, then YES. Otherwise NO.

Set Pi,j to be path from xi to xj and Pi,x path from xi to x.  
Set |P| to be # of vertices in P.

Thm: ∀α > 0, k>0 and i,j can test if ϴk(Pi,n) ≤ α  
in O(| Pi,n | log | Pi,n |) time
Lemma: ∀α > 0, and i can find maximum j s.t. ϴ1(Pi,j) ≤ α
in O(| Pi,j | log | Pi,j |) time

α evac α evac

Xj+1XjXi

An O(|P| log|P|) Testing Algorithm for ϴk(P) [5]

Proof Sketch (Thm): Use Lemma to peel off, from left side of
Pi,j, k max-length subpaths that can each be 1-evacuated in
α time. If this covers all Pi,j, then YES. Otherwise NO.

Set Pi,j to be path from xi to xj and Pi,x path from xi to x.  
Set |P| to be # of vertices in P.

Thm: ∀α > 0, k>0 and i,j can test if ϴk(Pi,n) ≤ α  
in O(| Pi,n | log | Pi,n |) time
Lemma: ∀α > 0, and i can find maximum j s.t. ϴ1(Pi,j) ≤ α
in O(| Pi,j | log | Pi,j |) time

α evac α evac α evac

1. Formulae for ϴL(P,x) and ϴL(P,x)

2. => O(|P|) Algorithm for ϴL(P,x), ϴL(P,x)

3. => O(|P| log |P|) Algorithm for ϴ1(P)

4. => O(|P| log |P|) Algorithm that ∀α > 0 
 tests whether ϴk(P) ≤ α

5. => O(k|P| log2 |P|) Algorithm for ϴk(P)

Algorithm Development Sketch

Xj Xj+1

ϴ1(P0,j) ϴk-1(Pj+1,n)

An O(k |P| log2 |P|) Algorithm for ϴk(P) [1]
• ϴk(P) = ϴjk = minj (max(ϴ1(P0,j), ϴk-1(Pj+1,n)))

• ϴ1(P0,j) (ϴk-1(Pj+1,n)) is non decreasing (increasing) in j

• ϴjk = is “unimodal” in j

Xj Xj+1

ϴ1(P0,j) ϴk-1(Pj+1,n)

An O(k |P| log2 |P|) Algorithm for ϴk(P) [1]
• ϴk(P) = ϴjk = minj (max(ϴ1(P0,j), ϴk-1(Pj+1,n)))

• ϴ1(P0,j) (ϴk-1(Pj+1,n)) is non decreasing (increasing) in j

• ϴjk = is “unimodal” in j

• ϴk-1(Pj+1,n) ≤ ϴ1(P0,j) can be tested in O(|P| log |P|) time

Xj Xj+1

ϴ1(P0,j) ϴk-1(Pj+1,n)

An O(k |P| log2 |P|) Algorithm for ϴk(P) [1]
• ϴk(P) = ϴjk = minj (max(ϴ1(P0,j), ϴk-1(Pj+1,n)))

• ϴ1(P0,j) (ϴk-1(Pj+1,n)) is non decreasing (increasing) in j

• ϴjk = is “unimodal” in j

• ϴk-1(Pj+1,n) ≤ ϴ1(P0,j) can be tested in O(|P| log |P|) time
• Using previous algorithms for k=1 and testing

Xj Xj+1

ϴ1(P0,j) ϴk-1(Pj+1,n)

An O(k |P| log2 |P|) Algorithm for ϴk(P) [1]
• ϴk(P) = ϴjk = minj (max(ϴ1(P0,j), ϴk-1(Pj+1,n)))

• ϴ1(P0,j) (ϴk-1(Pj+1,n)) is non decreasing (increasing) in j

• ϴjk = is “unimodal” in j

• ϴk-1(Pj+1,n) ≤ ϴ1(P0,j) can be tested in O(|P| log |P|) time
• Using previous algorithms for k=1 and testing
• O(|P0,j| log |P0,j|) + O(|Pj+1,n| log |Pj+1,n|) = O(|P| log |P|)

Xj Xj+1

ϴ1(P0,j) ϴk-1(Pj+1,n)

An O(k |P| log2 |P|) Algorithm for ϴk(P) [1]
• ϴk(P) = ϴjk = minj (max(ϴ1(P0,j), ϴk-1(Pj+1,n)))

• ϴ1(P0,j) (ϴk-1(Pj+1,n)) is non decreasing (increasing) in j

• ϴjk = is “unimodal” in j

• ϴk-1(Pj+1,n) ≤ ϴ1(P0,j) can be tested in O(|P| log |P|) time
• Using previous algorithms for k=1 and testing
• O(|P0,j| log |P0,j|) + O(|Pj+1,n| log |Pj+1,n|) = O(|P| log |P|)

• Binary search to find largest j s.t. ϴk-1(Pj+1,n) > ϴ1(P0,j)
• O(|P| log2|P|) time

Xj Xj+1

ϴ1(P0,j) ϴk-1(Pj+1,n)

An O(k |P| log2 |P|) Algorithm for ϴk(P) [2]
• ϴk(P) = ϴkj = minj (ϴ1(P0,j), ϴk-1(Pj+1,n))  
 ϴ1(P0,j), ϴk-1(Pj+1,n) increase/decrease in j  
 ϴkj “unimodal” in j

• => O(|P| log2|P|) time Binary search  
 to find largest j s.t ϴk-1(Pj+1,n) > ϴ1(P0,j)

Xj Xj+1

ϴ1(P0,j) ϴk-1(Pj+1,n)

An O(k |P| log2 |P|) Algorithm for ϴk(P) [2]
• ϴk(P) = ϴkj = minj (ϴ1(P0,j), ϴk-1(Pj+1,n))  
 ϴ1(P0,j), ϴk-1(Pj+1,n) increase/decrease in j  
 ϴkj “unimodal” in j

•ϴk(P) is min of ϴ1(P0,j+1) and ϴk-1(Pj+1,n)

• => O(|P| log2|P|) time Binary search  
 to find largest j s.t ϴk-1(Pj+1,n) > ϴ1(P0,j)

Xj Xj+1

ϴ1(P0,j) ϴk-1(Pj+1,n)

An O(k |P| log2 |P|) Algorithm for ϴk(P) [2]
• ϴk(P) = ϴkj = minj (ϴ1(P0,j), ϴk-1(Pj+1,n))  
 ϴ1(P0,j), ϴk-1(Pj+1,n) increase/decrease in j  
 ϴkj “unimodal” in j

•ϴk(P) is min of ϴ1(P0,j+1) and ϴk-1(Pj+1,n)

•ϴk-1(Pj+1,n) can be found recursively
•stop when k=1 (know how to solve)
• Total algorithm is k O(|P| log2 |P|) = O(k |P| log2 |P|)

• => O(|P| log2|P|) time Binary search  
 to find largest j s.t ϴk-1(Pj+1,n) > ϴ1(P0,j)

Outline
• Dynamic Flow Networks

• Congestion in Dynamic Flows

• Evacuation Flows
• Problem Definitions
• Known Results

• Example Algorithm 1: k-Sink Evacuation on a Path

• Example Algorithm 2: 1-sink Min-Max Regret Evacuation on
a Path with uniform capacity

• Open Problems

Min-Max Regret Evacuation on a Path

In the regret version of the problem, input still provides ce, 𝜏e, k

•But Wv is no longer explicitly input.  
Instead, each vertex has an input range wv∈[wʹv,Wʹv]

•Algorithm needs to find robust evacuation protocol that
works least badly against adversarial input.

•Min-Max Regret is one standard way of modelling
robustness  

x0

c1

w0

x1 x2 x3 xn

w2 w3 wnw1
c2 c3

cn

Min-Max Regret Evacuation on a Path

x0

c1

w0

x1 x2 x3 xn

w2 w3 wnw1
c2 c3

cn

Min-Max Regret Evacuation on a Path

• S = ∏v[wʹv,Wʹv] is the set of all feasible scenarios.
 An s ∈ S is of the form s= (w1, …, wn)

x0

c1

w0

x1 x2 x3 xn

w2 w3 wnw1
c2 c3

cn

Min-Max Regret Evacuation on a Path

• S = ∏v[wʹv,Wʹv] is the set of all feasible scenarios.
 An s ∈ S is of the form s= (w1, …, wn)

•ϴ(P,x,s) = evacuation time of P to x in scenario s

•ϴ1(P,s) = min evacuation time of P in scenario s

x0

c1

w0

x1 x2 x3 xn

w2 w3 wnw1
c2 c3

cn

Min-Max Regret Evacuation on a Path

• S = ∏v[wʹv,Wʹv] is the set of all feasible scenarios.
 An s ∈ S is of the form s= (w1, …, wn)

•ϴ(P,x,s) = evacuation time of P to x in scenario s

•ϴ1(P,s) = min evacuation time of P in scenario s

•R(x,s) = Regret of x under scenario s = ϴ(P,x,s) - ϴ1(P,s)

•R(x) = Max regret of x = maxs R(x,s)

x0

c1

w0

x1 x2 x3 xn

w2 w3 wnw1
c2 c3

cn

Min-Max Regret Evacuation on a Path

• S = ∏v[wʹv,Wʹv] is the set of all feasible scenarios.
 An s ∈ S is of the form s= (w1, …, wn)

•ϴ(P,x,s) = evacuation time of P to x in scenario s

•ϴ1(P,s) = min evacuation time of P in scenario s

•R(x,s) = Regret of x under scenario s = ϴ(P,x,s) - ϴ1(P,s)

•R(x) = Max regret of x = maxs R(x,s)

•The Min-max regret of P is minimum regret over all x 
 MMR(P) = Minx R(x)

x0

c1

w0

x1 x2 x3 xn

w2 w3 wnw1
c2 c3

cn

Min-Max Regret Evacuation on a Path

R(x,s) = ϴ(P,x,s) - ϴ1(P,s) R(x) = Maxs R(x,s)
MMR(P) = Minx R(x) = Minx Maxs {ϴ(P,x,s) - ϴ1(P,s)}

x0

c1

w0

x1 x2 x3 xn

w2 w3 wnw1
c2 c3

cn

Min-Max Regret Evacuation on a Path

R(x,s) = ϴ(P,x,s) - ϴ1(P,s) R(x) = Maxs R(x,s)
MMR(P) = Minx R(x) = Minx Maxs {ϴ(P,x,s) - ϴ1(P,s)}

• A-Priori, it isn’t obvious that this can be calculated efficiently.

x0

c1

w0

x1 x2 x3 xn

w2 w3 wnw1
c2 c3

cn

Min-Max Regret Evacuation on a Path

R(x,s) = ϴ(P,x,s) - ϴ1(P,s) R(x) = Maxs R(x,s)
MMR(P) = Minx R(x) = Minx Maxs {ϴ(P,x,s) - ϴ1(P,s)}

• A-Priori, it isn’t obvious that this can be calculated efficiently.
• Can show that, for uniform capacities, there are only O(n)

scenarios s at which any R(x) attains maximum

x0

c1

w0

x1 x2 x3 xn

w2 w3 wnw1
c2 c3

cn

Min-Max Regret Evacuation on a Path

R(x,s) = ϴ(P,x,s) - ϴ1(P,s) R(x) = Maxs R(x,s)
MMR(P) = Minx R(x) = Minx Maxs {ϴ(P,x,s) - ϴ1(P,s)}

• A-Priori, it isn’t obvious that this can be calculated efficiently.
• Can show that, for uniform capacities, there are only O(n)

scenarios s at which any R(x) attains maximum
• This, permits evaluating MMR(P) in polynomial time

• further observations reduce this to O(n log n)

x0

c1

w0

x1 x2 x3 xn

w2 w3 wnw1
c2 c3

cn

Min-Max Regret Evacuation on a Path

R(x,s) = ϴ(P,x,s) - ϴ1(P,s) R(x) = Maxs R(x,s)
MMR(P) = Minx R(x) = Minx Maxs {ϴ(P,x,s) - ϴ1(P,s)}

• A-Priori, it isn’t obvious that this can be calculated efficiently.
• Can show that, for uniform capacities, there are only O(n)

scenarios s at which any R(x) attains maximum
• This, permits evaluating MMR(P) in polynomial time

• further observations reduce this to O(n log n)
• Existence of O(n) scenarios not totally surprising

• Same phenomenon arises in MMR for medians on a line

x0

c1

w0

x1 x2 x3 xn

w2 w3 wnw1
c2 c3

cn

Min-Max Regret Evacuation on a Path
R(x,s) = ϴ(P,x,s) - ϴ1(P,s) R(x) = Maxs R(x,s)

MMR(P) = Minx R(x) = Minx Maxs {ϴ(P,x,s) - ϴ1(P,s)}

There are 2n scenarios at which R(s,x) attains max.
These are si in which wj = wʹj for j ≤ i & wj = Wʹj for i > j
 and sʹi in which wj = Wʹj for j ≤ i & wʹj = wʹj for i > j

x0

wʹ0

x1 x2 xi xn

wʹ2 wʹiwʹ1
cn

Wʹi+1 Wʹi+2 Wʹn

xi+1 xi+2

si

x0

Wʹ0

x1 x2 xi xn

Wʹ2 WʹiWʹ1
cn

wʹi+1 wʹi+2 wʹn

xi+1 xi+2

sʹi

Min-Max Regret Evacuation on a Path
R(s,x) = ϴ(P,x,s) - ϴ1(P,s) R(x) = Maxs R(s,x)

MMR(P) = Minx R(x) = Minx Maxs {ϴ(P,x,s) - ϴ1(P,s)}

There are 2n scenarios at which R(s,x) attains max.
These are si in which wj = wʹj for j < i & wj = Wʹj for i > j
 and sʹi in which wj = Wʹj for j < i & wʹj = wʹj for i > j

•k-sink uniform capacity on path have O(n3) worst case
scenarios => O(kn3logn) time time algorithm

•1-sink uniform capacity on tree have O(n2) worst case
MMR scenarios => O(n2log2n) time algorithm

•NOTHING is known about any other cases.  
In particular, even on path no structure for MMR solution
for 1-sink gen cap problem => no polynomial time alg

Outline
• Dynamic Flow Networks

• Congestion in Dynamic Flows

• Evacuation Flows
• Problem Definitions
• Known Results

• Example Algorithm 1: k-Sink Evacuation on a Path

• Example Algorithm 2: 1-sink Min-Max Regret Evacuation on
a Path with uniform capacity

• Open Problems

• G a General Graph, k>1 (NP Hard)
• Find approximation algorithm or PTAS

• G a General Graph, k=1
• Solve exactly or prove NP-Hard
• Even if the one sink is given

• G a tree with uniform capacities, k>1
• solve min-max regret k-sink problem

• G a path (tree) tree with general capacities, k=1
• solve min-max regret 1-sink problem

• For Robust Computation
• Replace Min-Max-Regret by size distribution on nodes

and find sink(s) that minimize expected evacuation time.

Open Frontier Problems

