Graph Evacuation Problems

Mordecai GOLIN Hong Kong UST

CRM June, 2015

Joint Work with

- Guru Prakash Arumugam
- John Augustine
- Di Chen
- Siu-Wing Cheng
- Yuya Higashikawa
- Naoki Katoh
- Guanqun Ni
- Bing Su
- Prashanth Srikanthan
- Yinfeng Xu

<u>Outline</u>

- Dynamic Flow Networks
- Congestion in Dynamic Flows
- Evacuation Flows
 - Problem Definitions
 - Known Results
- Example Algorithm 1: k-Sink Evacuation on a Path
- Example Algorithm 2: 1-sink Min-Max Regret Evacuation on a Path with uniform capacity
- Open Problems

- Graph G=(V,E) represents structure
 - Vertices are rooms, Edges are Hallways
 - Vertices are Buildings, Edges are roads
 - Edge weight τ_e is transit time on edge
 - Edge capacity ce is "width"

- Graph G=(V,E) represents structure
 - Vertices are rooms, Edges are Hallways
 - Vertices are Buildings, Edges are roads
 - Edge weight τ_e is transit time on edge
 - Edge capacity ce is "width"
- Special vertices (sinks) are emergency exits
 - In case of emergency, want to evacuate everybody to exits as quickly as possible
 - Problem: Design Good Evacuation Protocols

- Graph G=(V,E) represents structure
 - Vertices are rooms, Edges are Hallways
 - Vertices are Buildings, Edges are roads
 - Edge weight τ_e is transit time on edge
 - Edge capacity ce is "width"
- Special vertices (sinks) are emergency exits
 - In case of emergency, want to evacuate everybody to exits as quickly as possible
 - Problem: Design Good Evacuation Protocols
- Often Approached via Dynamic Flow Networks

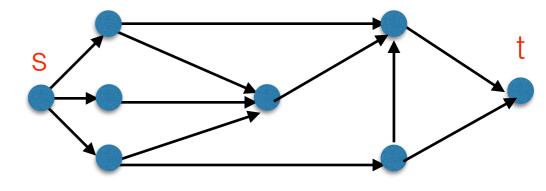
Dynamic Flow Networks

- G=(V,E)
- Edges have travel times τ_{e} and capacities c_{e}
- Distinguished source s and sink t
- Max Flow Over Time Problem (input T) How much flow can be pushed from s to t in time T?
 - Ford Fulkerson (1958)
 - Not polynomial (Constructs Static Max-Flow each timestep)
- Quickest Flow Problem (input W) How quickly can W items be moved from s to t?
 - Burkard, Dlasks and Klinz (1993)
 - Strongly Polynomial (uses parametric search)

Quickest Transhipment Problem

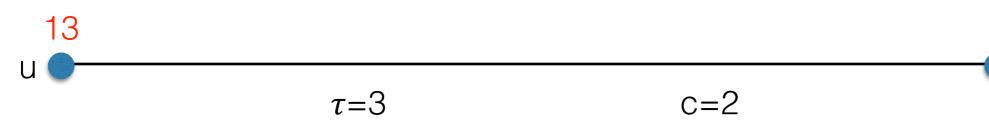
Like QF Problem but Multiple Sources/Sinks (with fixed supply/demands)

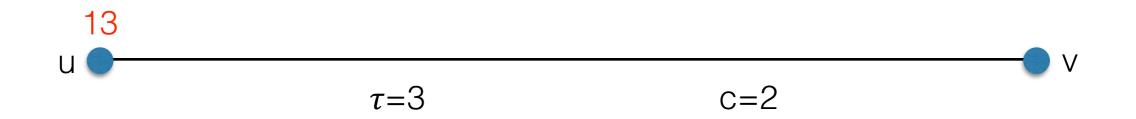
- Hoppe & Tardos (2000)
- Strongly Polynomial (but uses sub modular optimization)

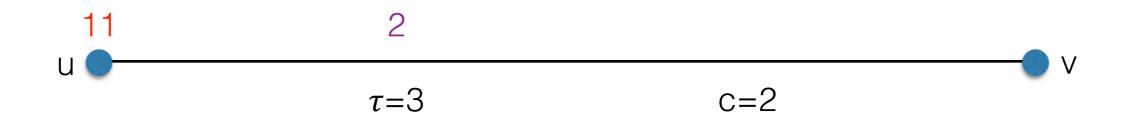


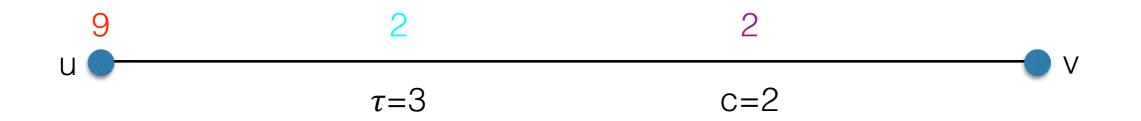
Edges have Capacities

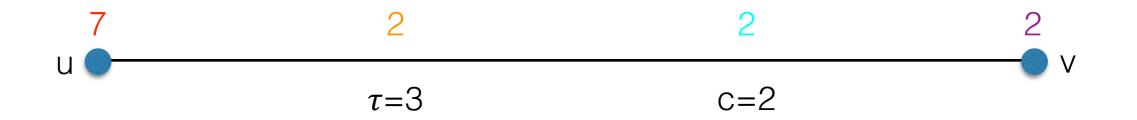
- Original Flow Model is static. Doesn't model time
- Time required is function of both transit times and capacities
- *c*_e is edge capacity ("width")
 - At most c_e people can enter edge e=(u,v) in one time unit.
 They travel together as a group on e
 - If more than *c_e* people at *u*, remainder need to **wait** to enter *e*
- τ_e is time for one group to traverse edge
- Start with W people at u
 How much time does take them all to reach v?

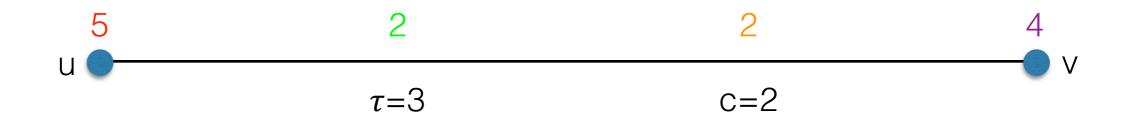


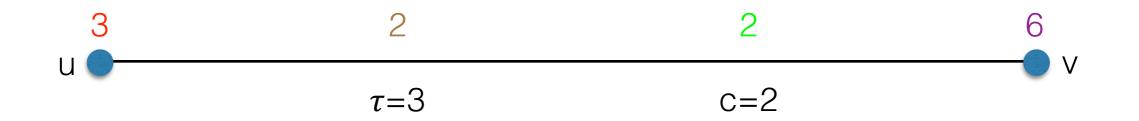


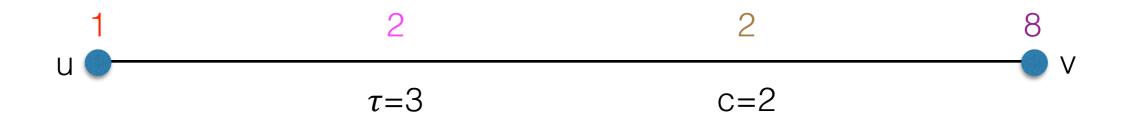


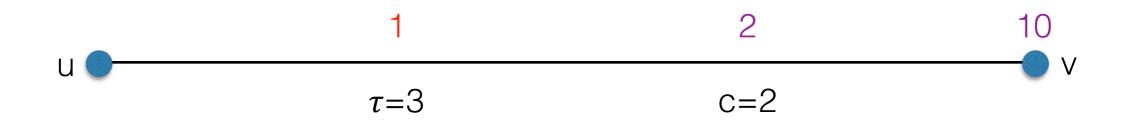


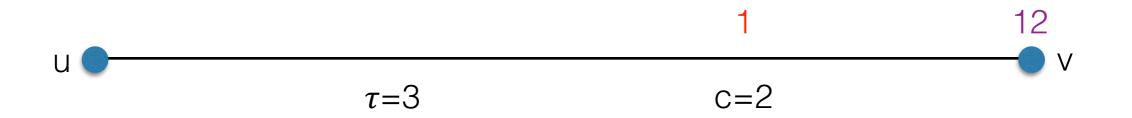


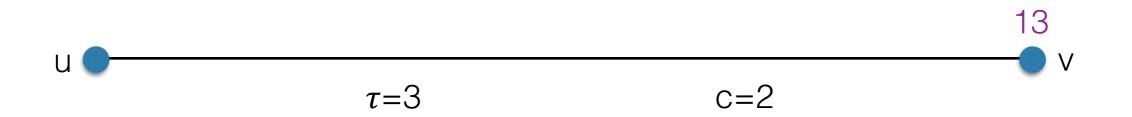


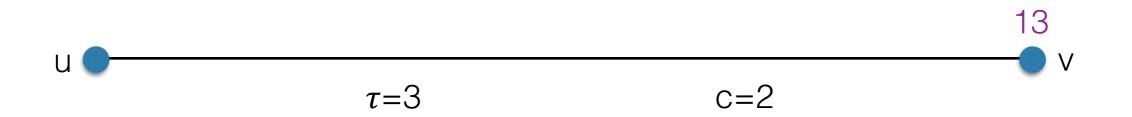


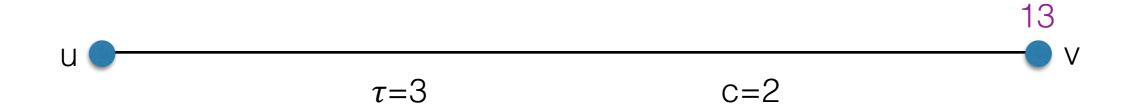




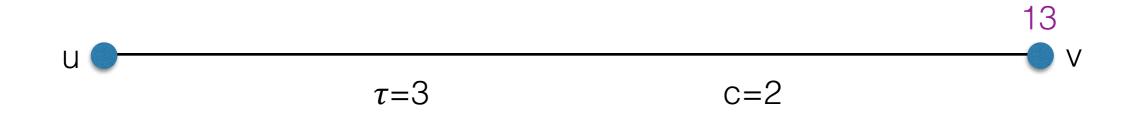








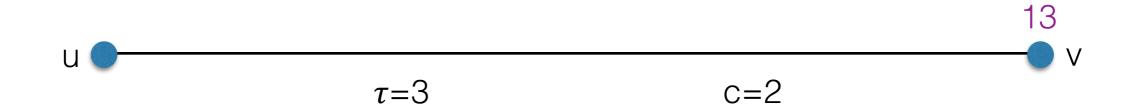
- 13 items split into g = r13/27 = 7 groups
- First group reached v at time $t = \tau = 3$
- Last group reached v at time t=3+g-1=9



- 13 items split into $g = \lceil 13/2 \rceil = 7$ groups
- First group reached v at time $t = \tau = 3$
- Last group reached v at time t=3+g-1=9

Discrete Model

- W people, Capacity c integral, Transit time τ
- All edge transit times integral
- Requires $\Gamma W/C^7 + \tau 1$ time to move everyone from u to v



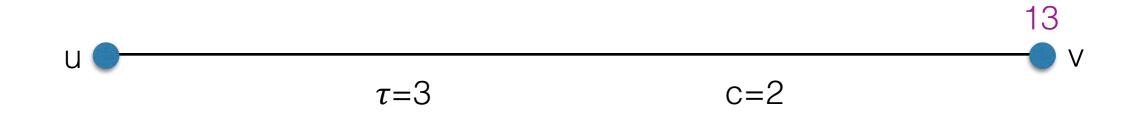
- 13 items split into $g = r13/2^{-1} = 7$ groups
- First group reached v at time $t = \tau = 3$
- Last group reached v at time t=3+g-1=9

Discrete Model

- W people, Capacity c integral, Transit time τ
- All edge transit times integral
- Requires $\Gamma W/C^{T} + \tau 1$ time to move everyone from u to v

Continuous Model

- W units of non-quantized fluid. Fluid flows continuously
- c is rate: amount that can enter e in one unit of time
- Requires $W/c + \tau 1$ time to move all fluid from u to v



- 13 items split into g = r13/27 = 7 groups
- First group reached v at time $t = \tau = 3$
- Last group reached v at time t=3+g-1=9

Discrete Model Default for this talk

- W people, Capacity c integral, Transit time τ
- All edge transit times integral
- Requires $\Gamma W/C^{T} + \tau 1$ time to move everyone from u to v

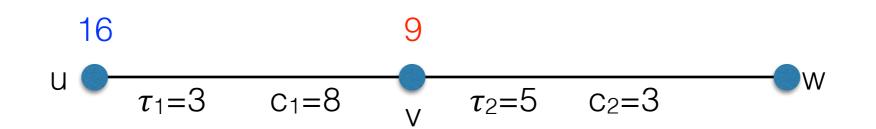
Continuous Model

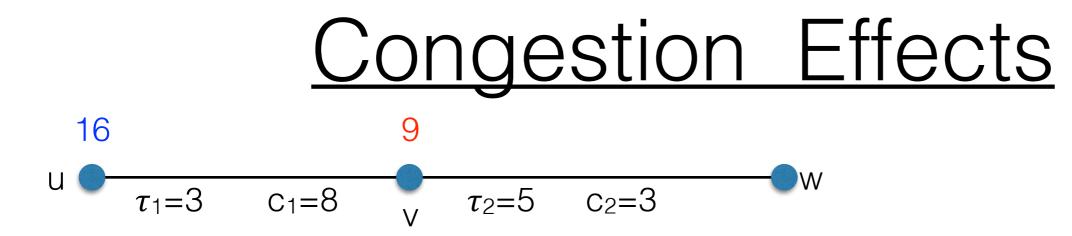
- W units of non-quantized fluid. Fluid flows continuously
- c is rate: amount that can enter e in one unit of time
- Requires $W/c + \tau 1$ time to move all fluid from u to v

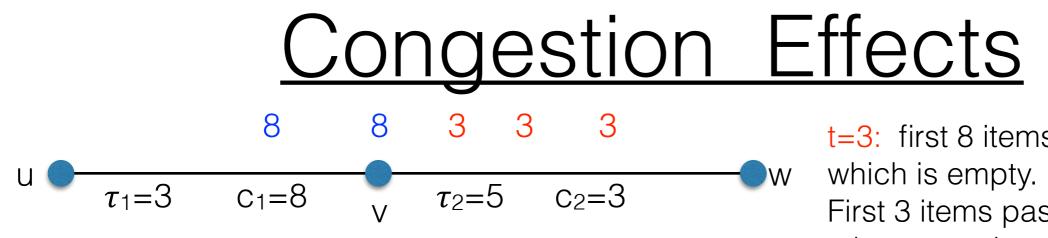
<u>Outline</u>

- Dynamic Flow Networks
- Congestion in Dynamic Flows
- Evacuation Flows
 - Problem Definitions
 - Known Results
- Example Algorithm 1: k-Sink Evacuation on a Path
- Example Algorithm 2: 1-sink Min-Max Regret Evacuation on a Path with uniform capacity
- Open Problems

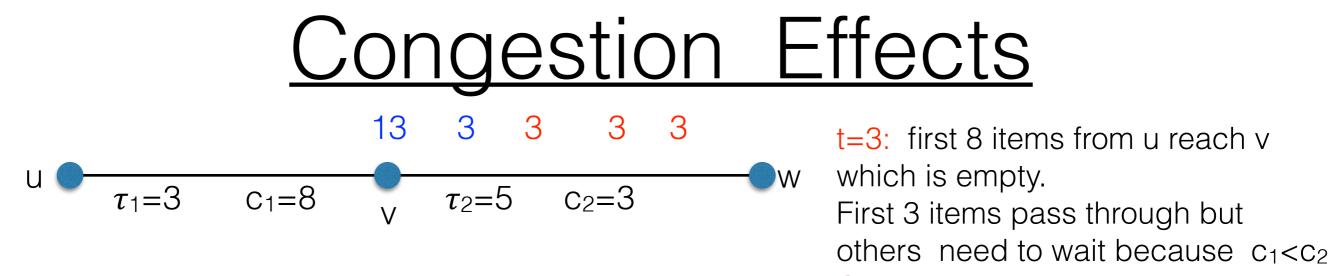
A major complication with dynamic flows is that they introduce congestion effects that can slow down transport time



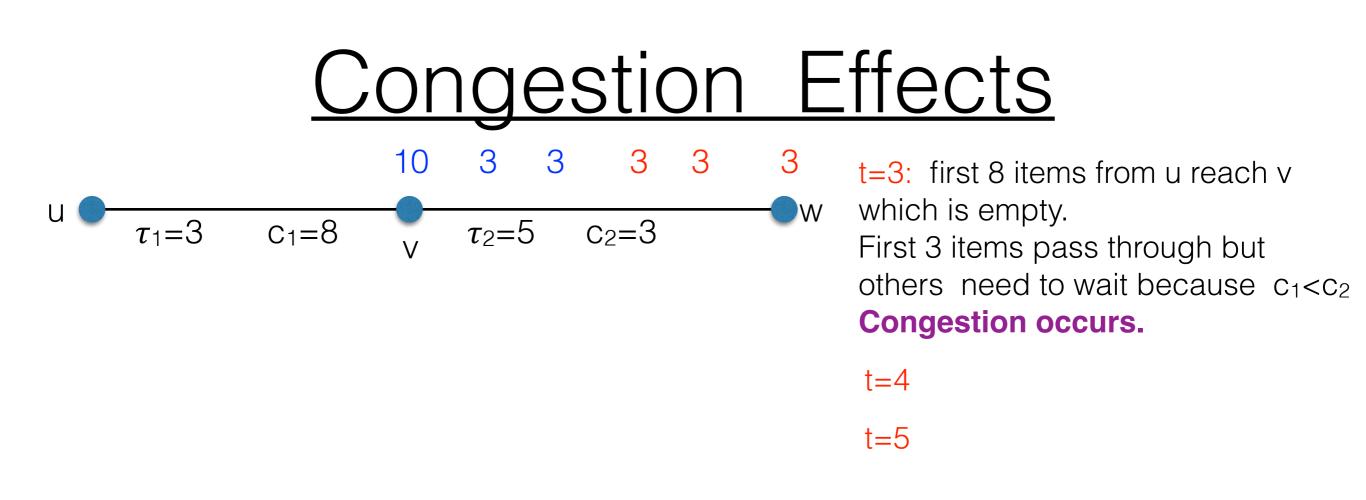


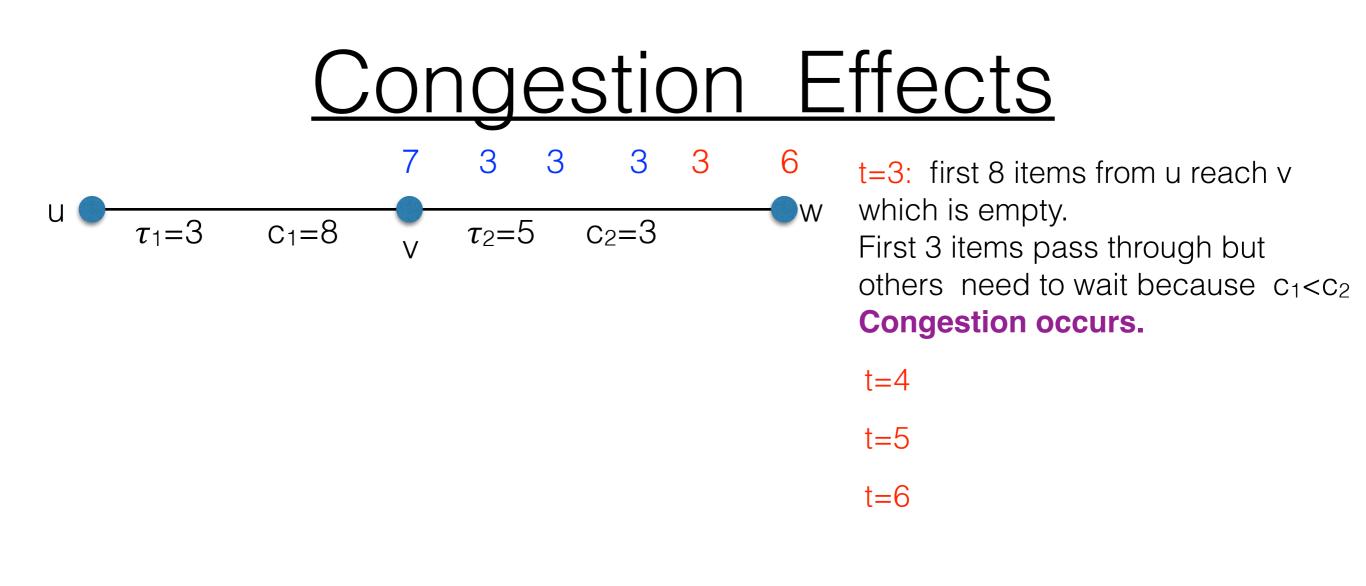


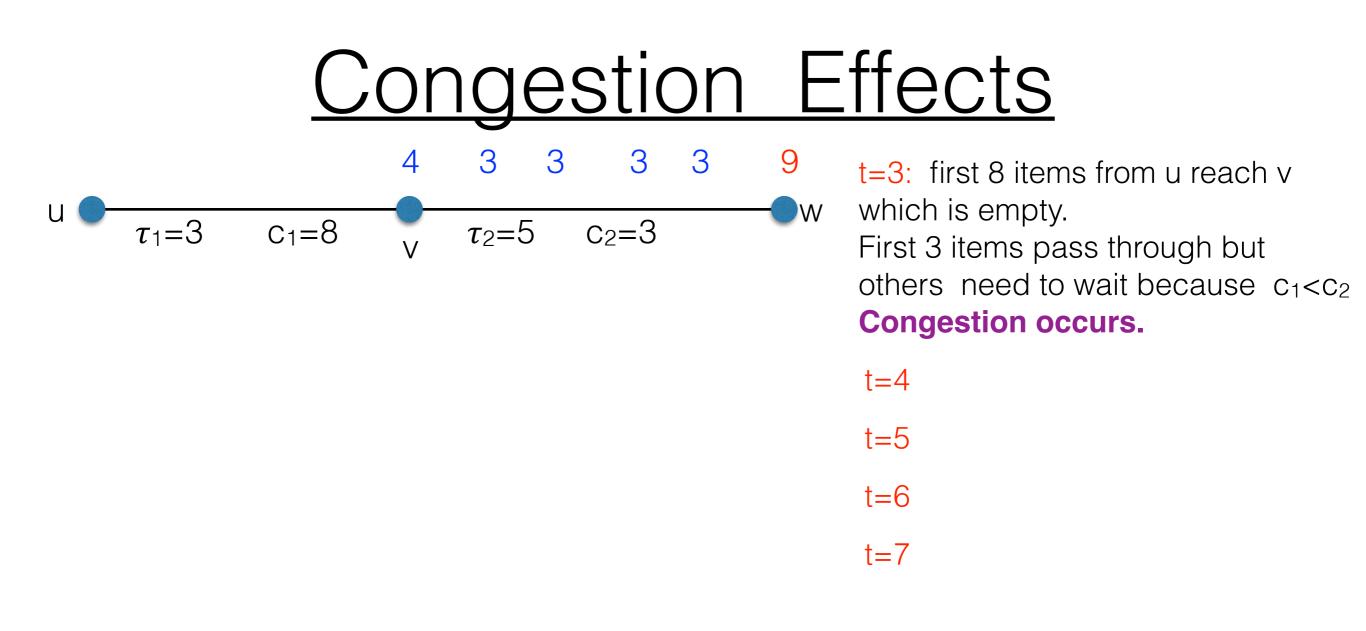
t=3: first 8 items from u reach v which is empty.
First 3 items pass through but others need to wait because c₁<c₂
Congestion occurs.

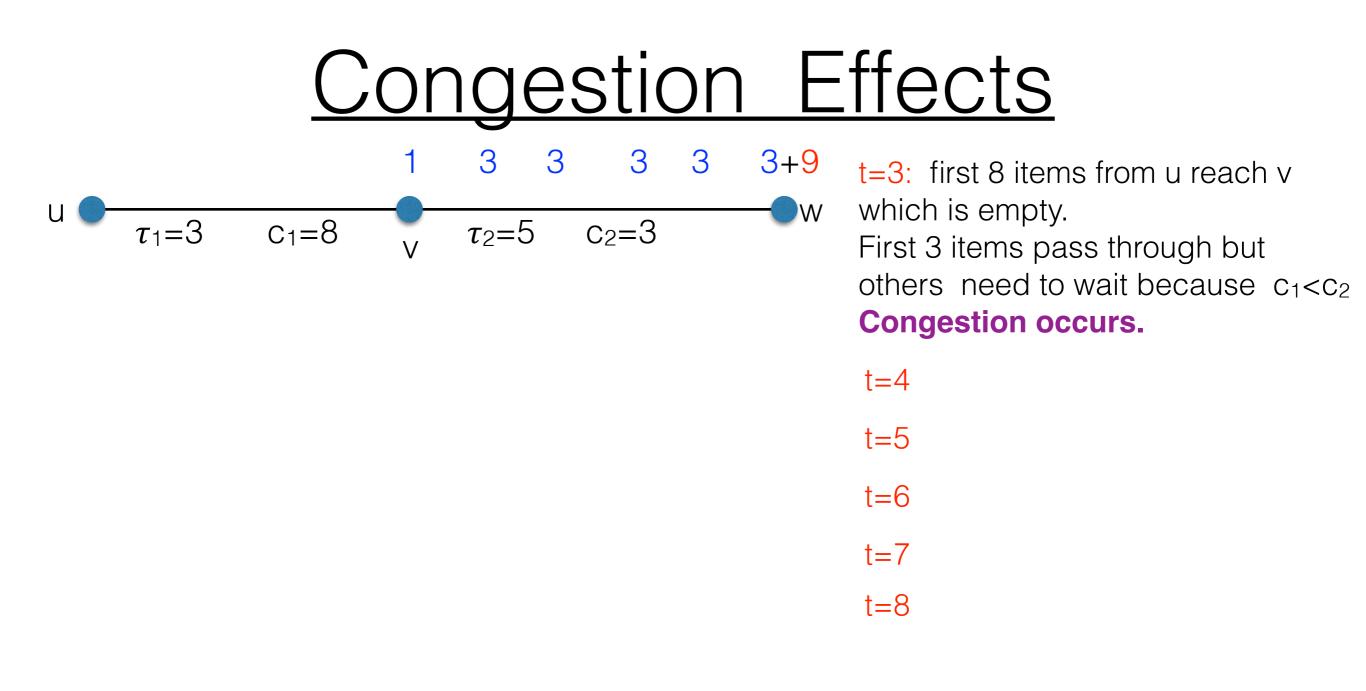


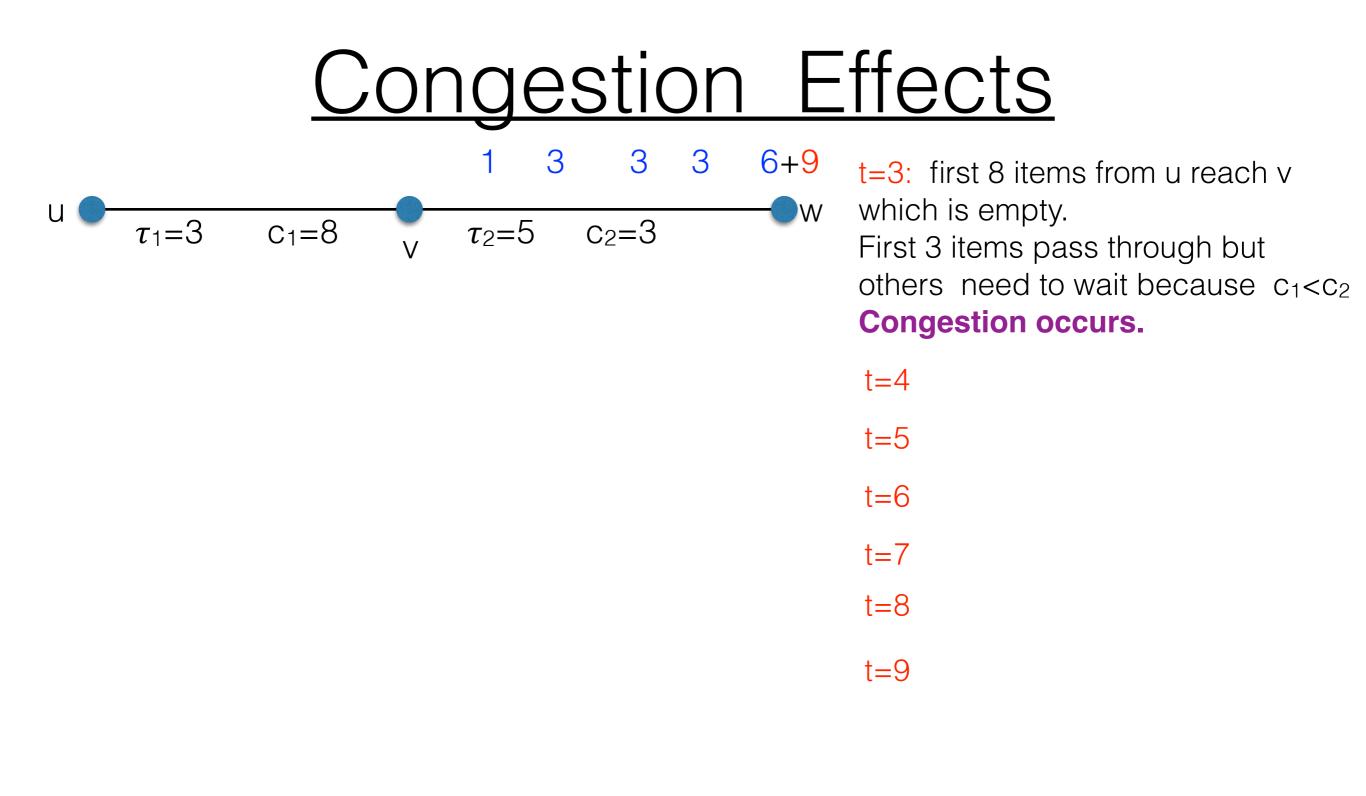
Congestion occurs.

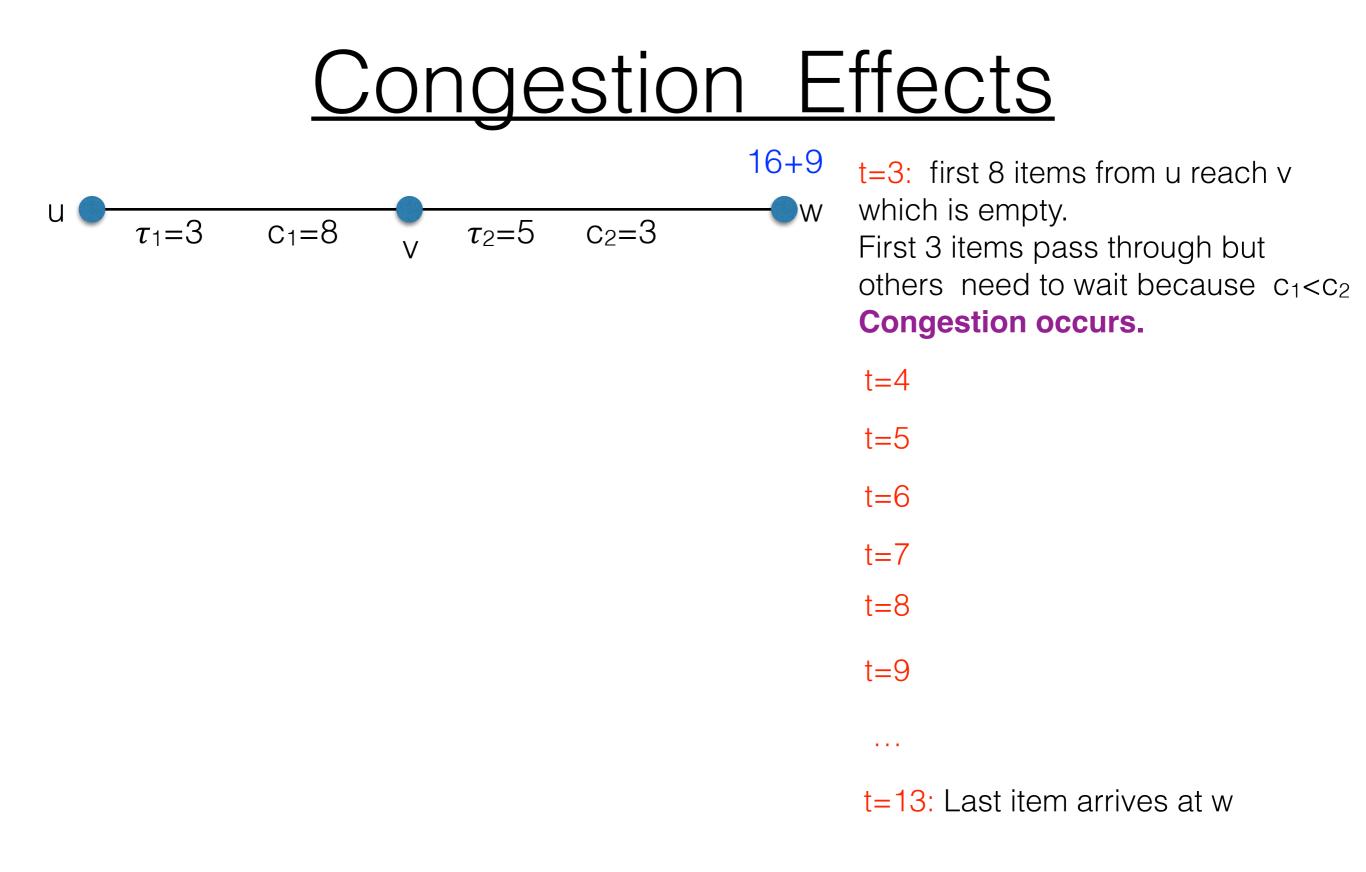


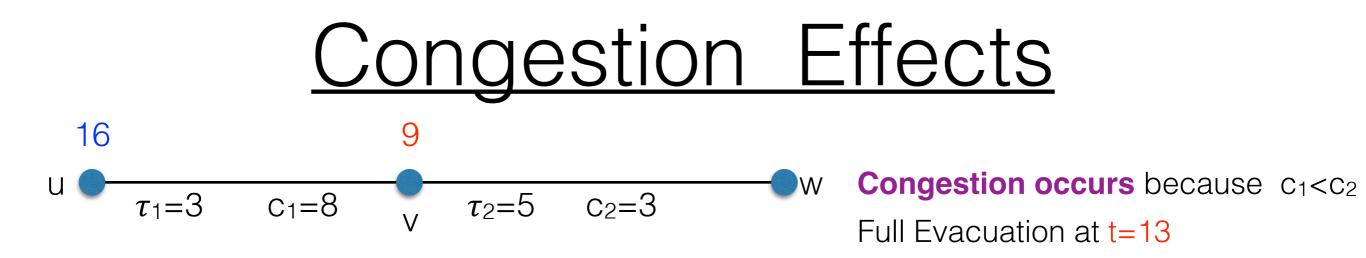


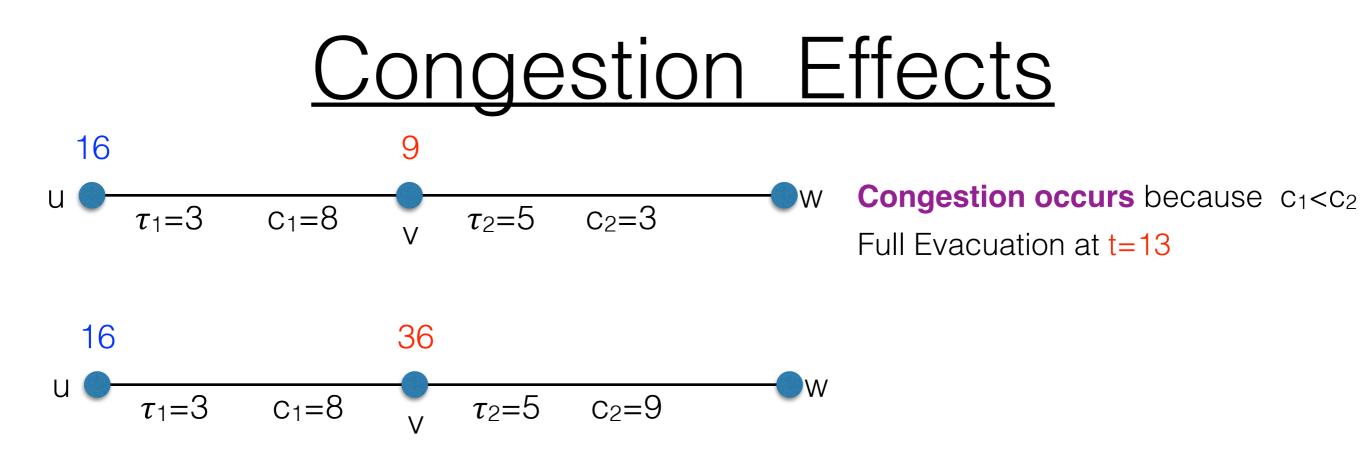


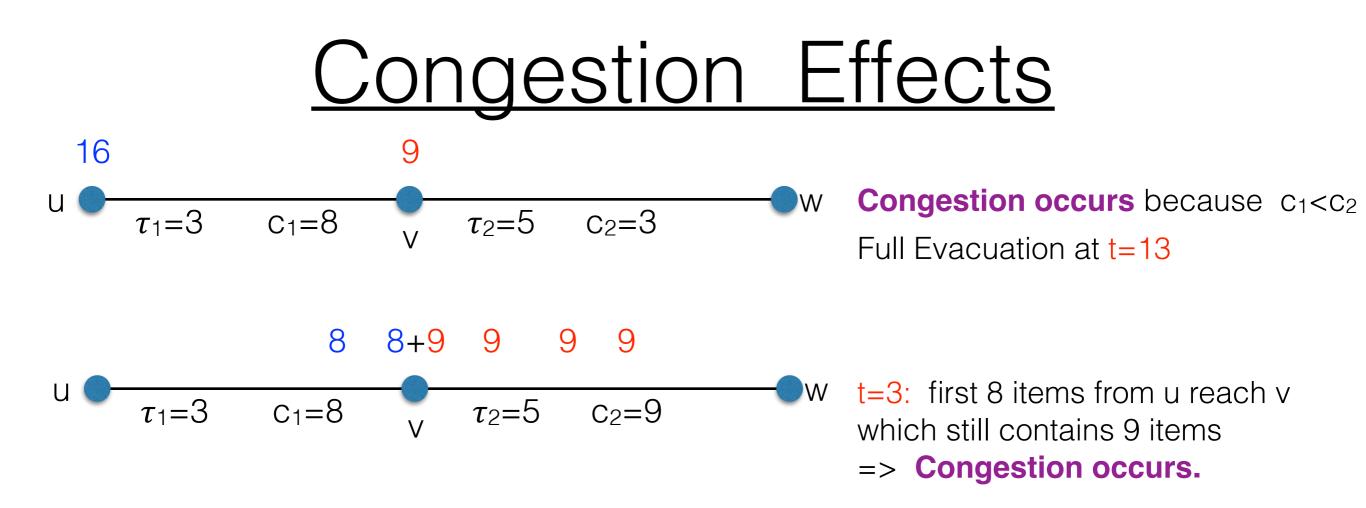


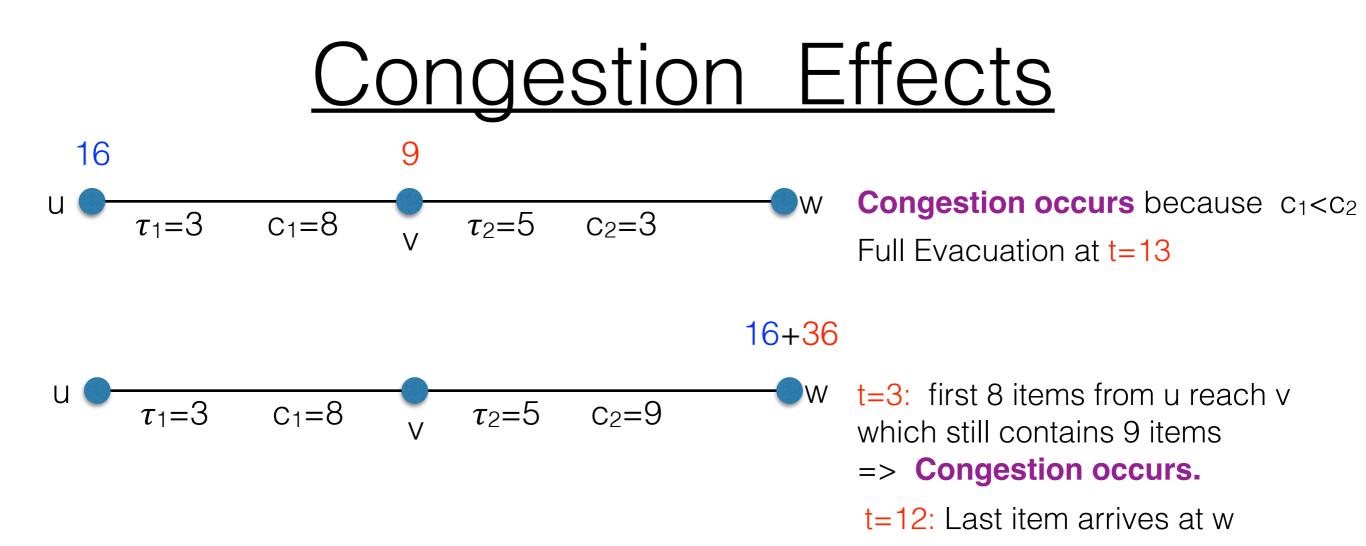


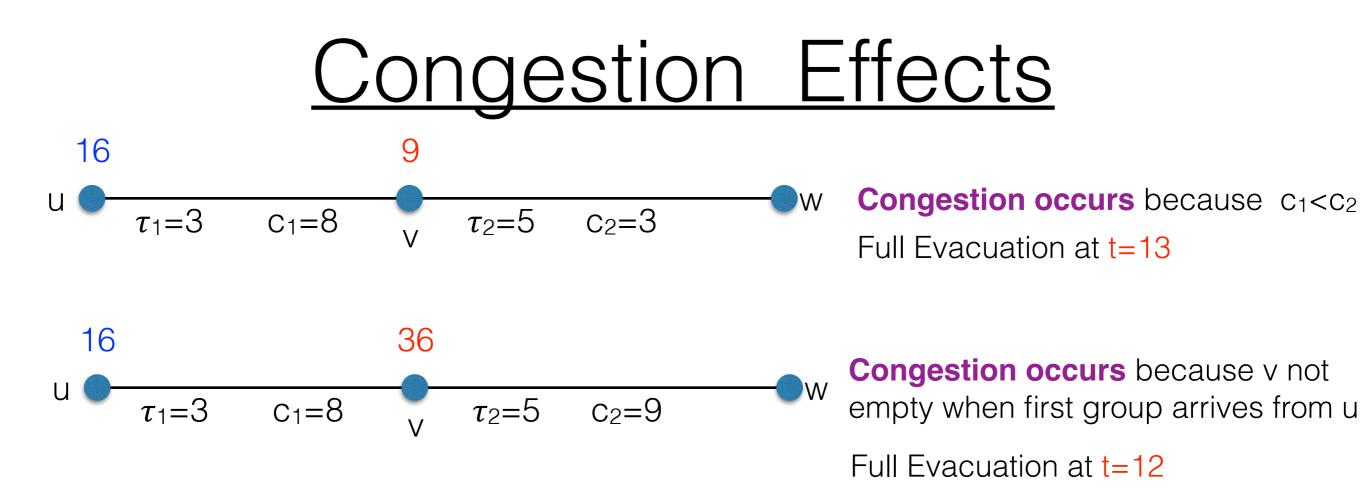


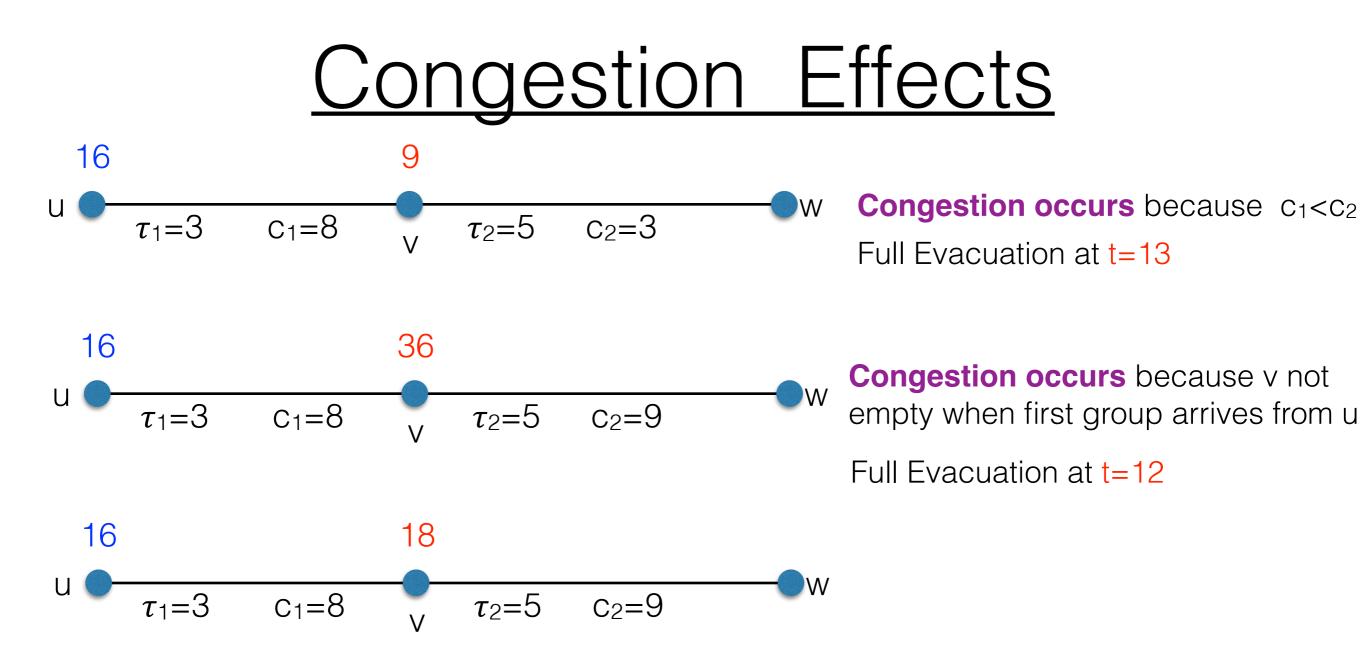


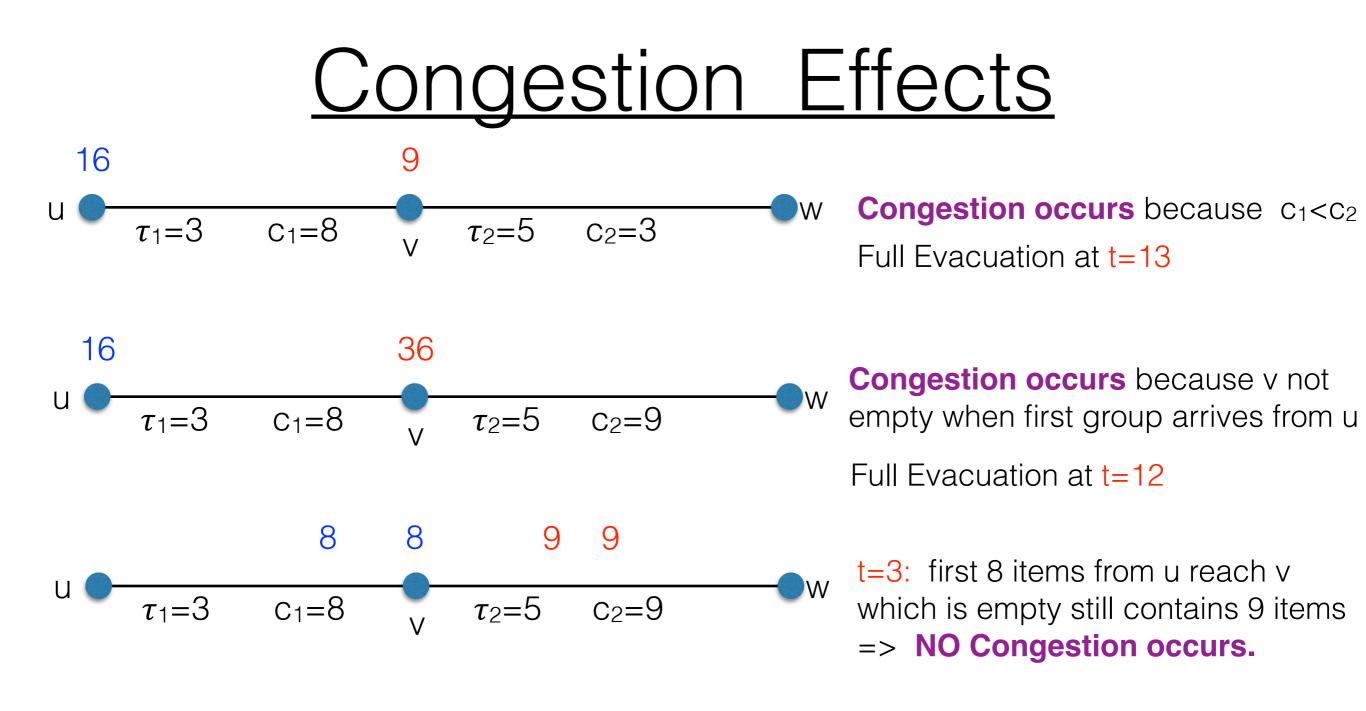


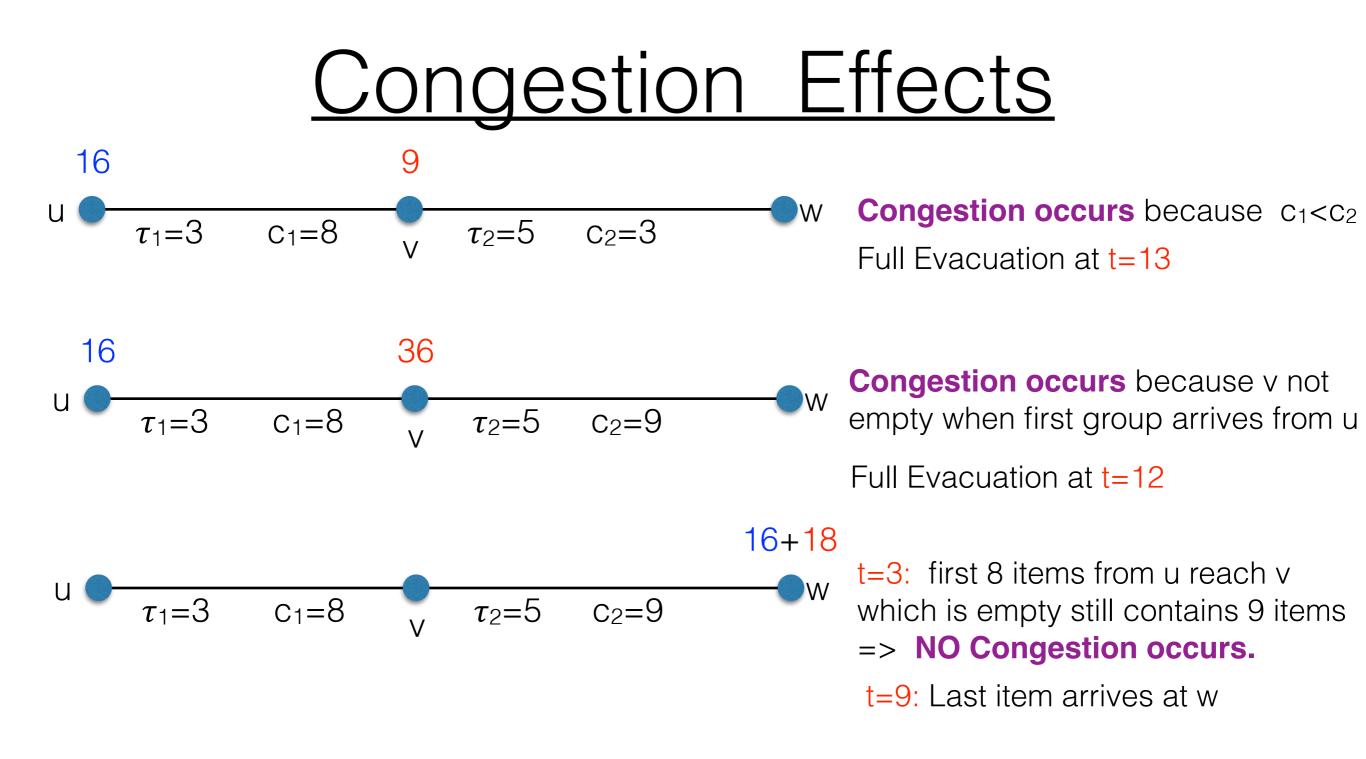


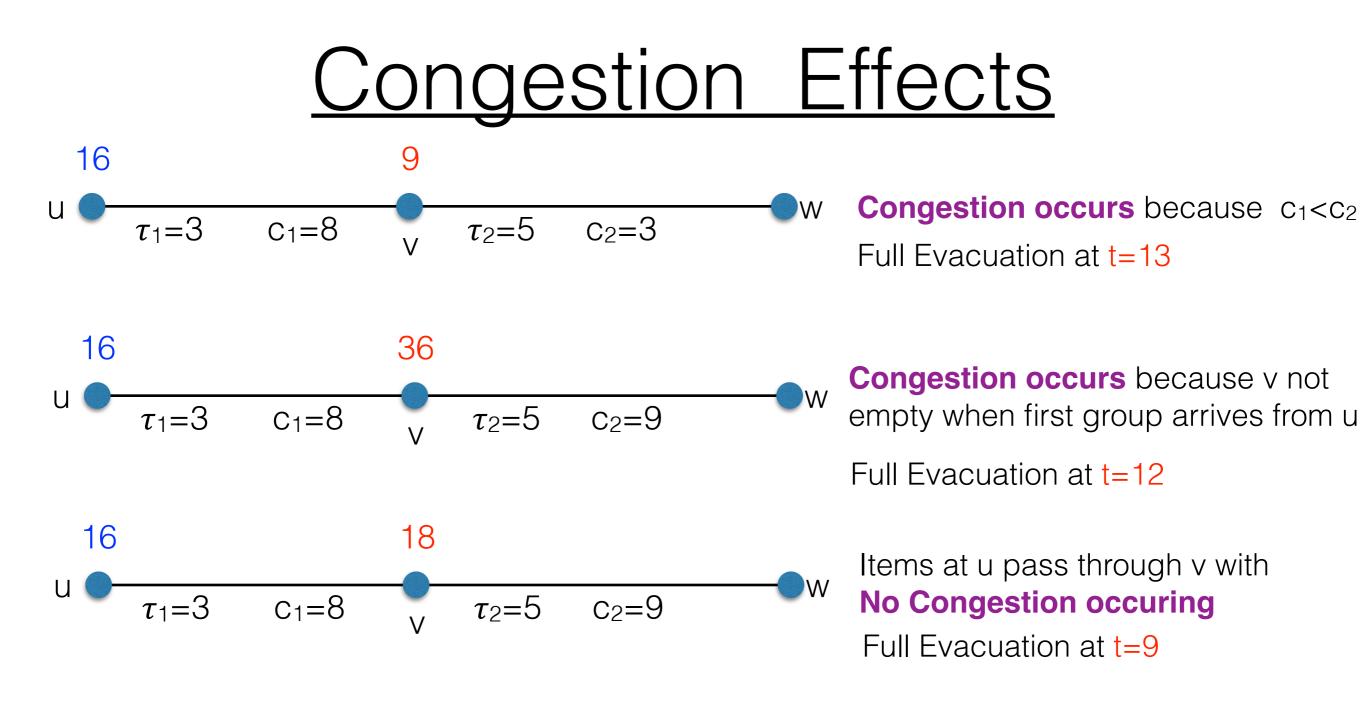


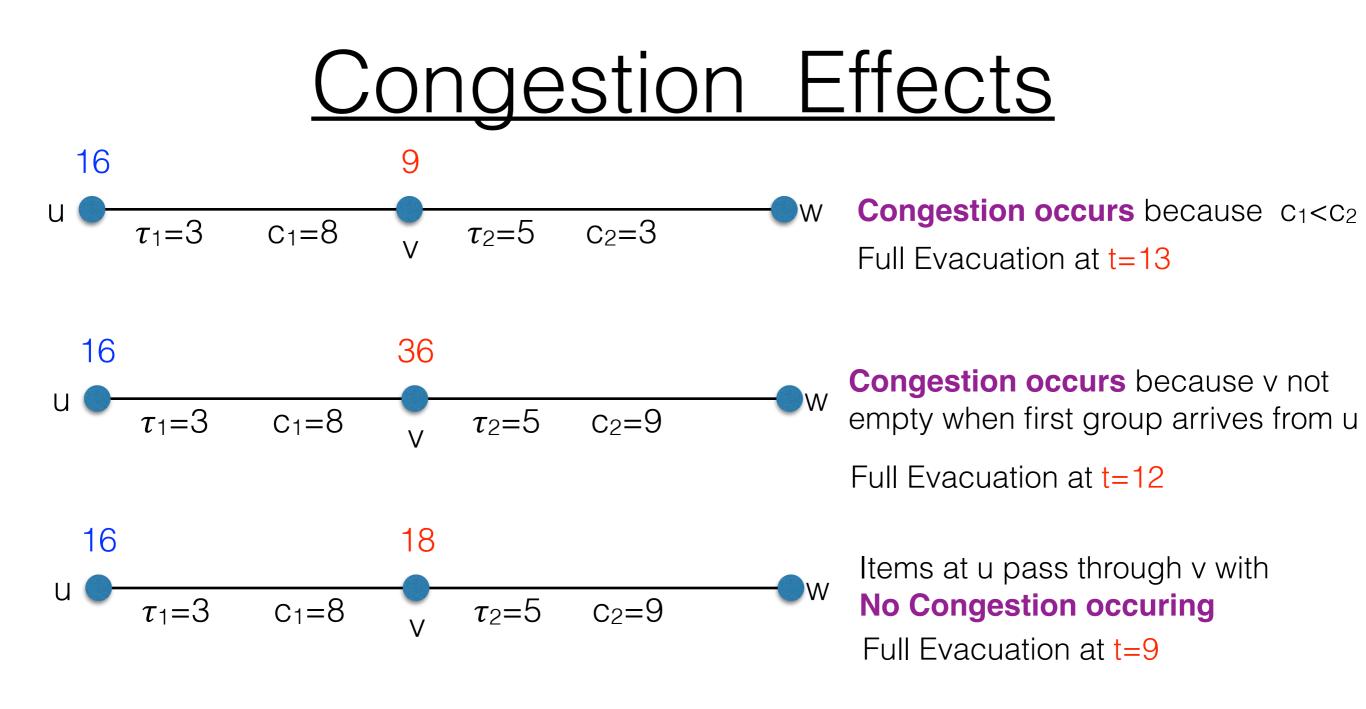






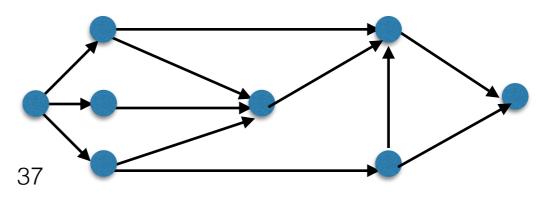






Analysis of Flow/Evacuation times must include congestion!!

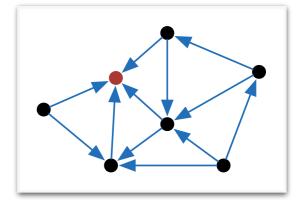
Can be very complicated!



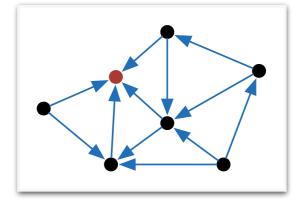
<u>Outline</u>

- Dynamic Flow Networks
- Congestion in Dynamic Flows
- Evacuation Flows
 - Problem Definitions
 - Known Results
- Example Algorithm 1: k-Sink Evacuation on a Path
- Example Algorithm 2: 1-sink Min-Max Regret Evacuation on a Path with uniform capacity
- Open Problems

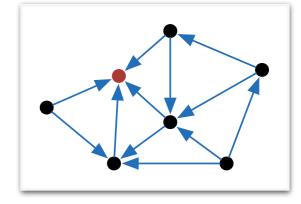
• In Flow, different people from same vertex can follow different paths

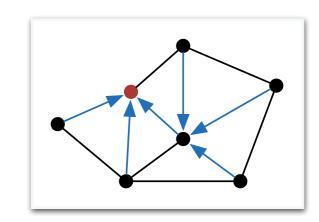


- In Flow, different people from same vertex can follow different paths
- In Evacuation, want signs at vertices pointing this way out =>
 - Each vertex has unique evacuation edge.
 - Every person reaching that vertex must follow the evacuation edge to next vertex

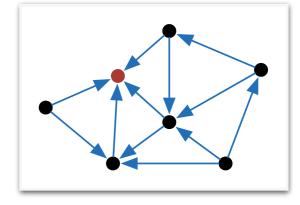


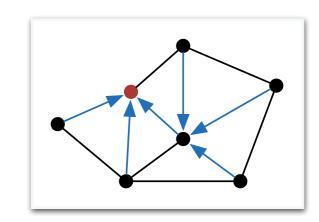
- In Flow, different people from same vertex can follow different paths
- In Evacuation, want signs at vertices pointing this way out =>
 - Each vertex has unique evacuation edge.
 - Every person reaching that vertex must follow the evacuation edge to next vertex



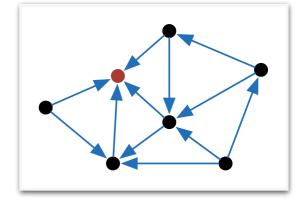


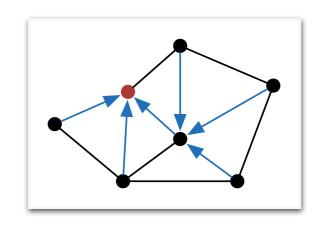
- In Flow, different people from same vertex can follow different paths
- In Evacuation, want signs at vertices pointing this way out =>
 - Each vertex has unique evacuation edge.
 - Every person reaching that vertex must follow the evacuation edge to next vertex
 - Evacuation edges partition vertices into directed forests moving toward sinks

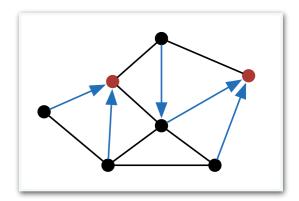




- In Flow, different people from same vertex can follow different paths
- In Evacuation, want signs at vertices pointing this way out =>
 - Each vertex has unique **evacuation edge**.
 - Every person reaching that vertex must follow the evacuation edge to next vertex
 - Evacuation edges partition vertices into directed forests moving toward sinks







Graph Evacuation Problems

Graph Evacuation Problems

- Input: Graph G=(V,E)
 - τ_{e, C_e} : transit times and capacities for each edge
 - W_{v} : # of people starting on vertex v
 - Sinks: Either fixed set $K \subseteq V$ of sinks or a number k of sinks allowed

Graph Evacuation Problems

- Input: Graph G=(V,E)
 - τ_{e, C_e} : transit times and capacities for each edge
 - W_{v} : # of people starting on vertex v
 - Sinks: Either fixed set $K \subseteq V$ of sinks or a number k of sinks allowed
- Output: An Evacuation Protocol that minimizes maximum evacuation time
 - Evacuation Protocol
 - A unique evacuation edge for each vertex
 - If input is k, a set $K \subseteq V$ of sinks with |K| = k
 - Maximum Evacuation time
 - The evacuation time of a vertex is the earliest time by which ALL items from that vertex have reached a sink.
 - Maximum evacuation time is the maximum evacuation time over all vertices

- Type of graph G: Path, Tree, General,
 - For general G and k>1 problem is NP-Complete because it solves k-Center (if c_e set to be large)

- For general G and k>1 problem is NP-Complete because it solves k-Center (if c_e set to be large)
- Sink Input: Actual Sinks vs # of sinks

- For general G and k>1 problem is NP-Complete because it solves k-Center (if c_e set to be large)
- Sink Input: Actual Sinks vs # of sinks
- Discrete vs Continuous flow
 - Fleischer, Tardos (1998). D and C Dynamic Flow problems can often be solved using same algorithm

- For general G and k>1 problem is NP-Complete because it solves k-Center (if c_e set to be large)
- Sink Input: Actual Sinks vs # of sinks
- Discrete vs Continuous flow
 - Fleischer, Tardos (1998). D and C Dynamic Flow problems can often be solved using same algorithm
- Sink locations: anywhere or only on vertices

- For general G and k>1 problem is NP-Complete because it solves k-Center (if c_e set to be large)
- Sink Input: Actual Sinks vs # of sinks
- Discrete vs Continuous flow
 - Fleischer, Tardos (1998). D and C Dynamic Flow problems can often be solved using same algorithm
- Sink locations: anywhere or only on vertices
- *c_e*: uniform (all the same) vs general (arbitrary)

- For general G and k>1 problem is NP-Complete because it solves k-Center (if c_e set to be large)
- Sink Input: Actual Sinks vs # of sinks
- Discrete vs Continuous flow
 - Fleischer, Tardos (1998). D and C Dynamic Flow problems can often be solved using same algorithm
- Sink locations: anywhere or only on vertices
- *c_e*: uniform (all the same) vs general (arbitrary)
- Min-Max vs Min-Max Regret
 - Robust solutions. MMR allows w_v , # of people on vertex, to be a range rather than a number. Find "best" solution for all allowable scenarios

<u>Outline</u>

- Dynamic Flow Networks
- Congestion in Dynamic Flows
- Evacuation Flows
 - Problem Definitions
 - Known Results
- Example Algorithm 1: k-Sink Evacuation on a Path
- Example Algorithm 2: 1-sink Min-Max Regret Evacuation on a Path with uniform capacity
- Open Problems

Known Results

	Min-max cost (DISCRETE/CONTINUOUS)				
	General capacity		Uniform capacity		
	1-sink	k-sink	1-sink	k-sink	
Path	O(n) [2]	O(kn log ² n) [2]	O(n)	O(kn) [6]	
Tree	O(n log ² n) [7]	O(k ² n log ⁴ n) [3]	O(n log n) [4]	O(k ² n log ³ n) [3]	
General graph	Poly?	NP-Hard	Poly?	NP-Hard	

	Min-max regret cost (DISCRETE/CONTINUOUS)			
	General capacity		Uniform capacity	
	1-sink	k-sink	1-sink	k-sink
Path	None		O(n log n) [5,9]	O(kn ³ log n) [1]
Tree			O(n ² log ² n) [4]	None
General graph			None	

References

[1] G.P. Arumugam, J. Augustine, M.J. Golin and P. Srikanthan, "A Polynomial Time Algorithm for Minimax-Regret Evacuation on a Dynamic Path", arXiv:1404.5448, 2014

[2] G.P. Arumugam, J. Augustine, M.J. Golin and P. Srikanthan, "Evacuation on Dynamic Paths with General Edge Capacities", document in preparation (2015)

[3] Di Chen and M.J. Golin, "Optimal Sink Location Problems in Dynamic Tree Networks", document in preparation (2015)

[4] Y. Higashikawa, M. J. Golin and N. Katoh, "Minimax Regret Sink Location Problem in Dynamic Tree Networks with Uniform Capacity", *Proc. WALCOM 2014*, LNCS 8344, pp. 125-137, 2014.

[5] Y. Higashikawa, J. Augustine, S. W. Cheng, N. Katoh, G. Ni, B. Su and Y. Xu, "Minimax Regret 1-Sink Location Problem in Dynamic Path Networks", *Theoretical Computer Science*, 2014.

[6] Y. Higashikawa, M. J. Golin and N. Katoh, "Multiple Sink Location Problems in Dynamic Path Networks", *Theoretical Computer Science* (to appear) 2015.

[7] S. Mamada, T. Uno, K. Makino and S. Fujishige, "An O(n log² n) Algorithm for the Optimal Sink Location Problem in Dynamic Tree Networks", *Discrete Applied Mathematics*, 154(16), pp. 2387-2401, 2006.

[8] G. Ni, Y. Xu and Y. Dong, "Minimax regret k-sink location problem in dynamic path networks", *Proc. AAIM* 2014

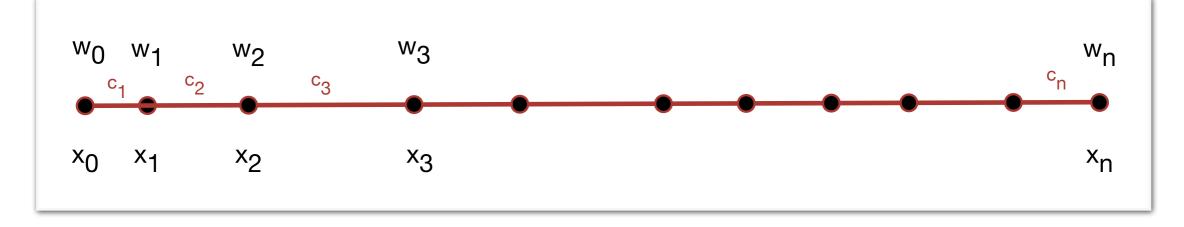
[9] H. Wang, "Minmax Regret 1-Facility Location on Uncertain Path Networks", *Proc. ISAAC 2013*, LNCS 8283, pp. 733-743, 2013.

<u>Outline</u>

- Dynamic Flow Networks
- Congestion in Dynamic Flows
- Evacuation Flows
 - Problem Definitions
 - Known Results
- Example Algorithm 1: k-Sink Evacuation on a Path
- Example Algorithm 2: 1-sink Min-Max Regret Evacuation on a Path with uniform capacity
- Open Problems

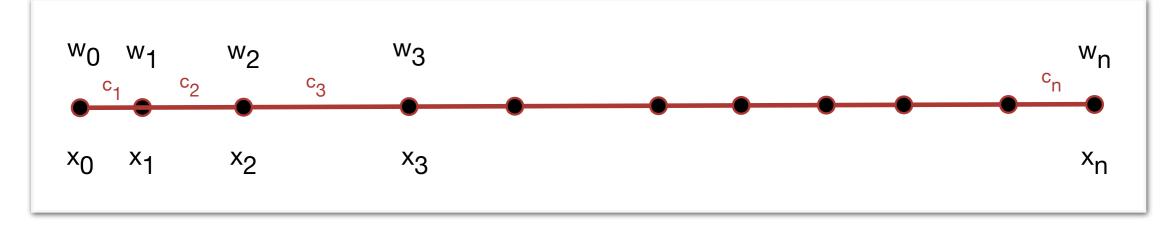
K-Sink Evacuation on a Path

Given a path, associated values $C_{e, VV}$ and k, # of sinks,



K-Sink Evacuation on a Path

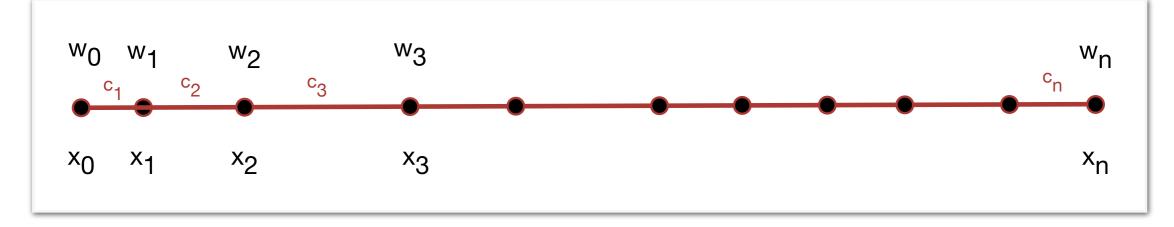
Given a path, associated values $C_{e, VV}$ and k, # of sinks,



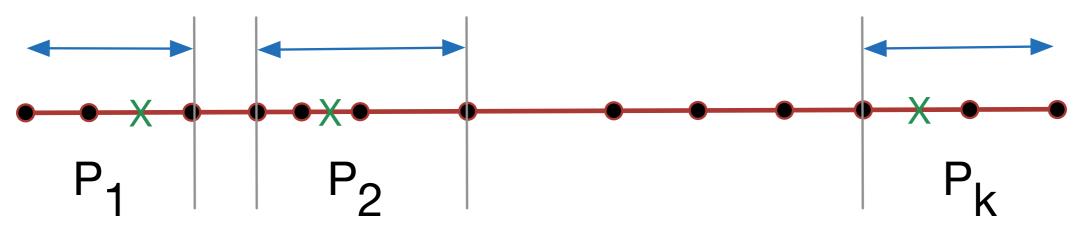
Find a partition into k-subpaths and a sink for each subpath, that minimizes the maximum evacuation time over all subpaths.

K-Sink Evacuation on a Path

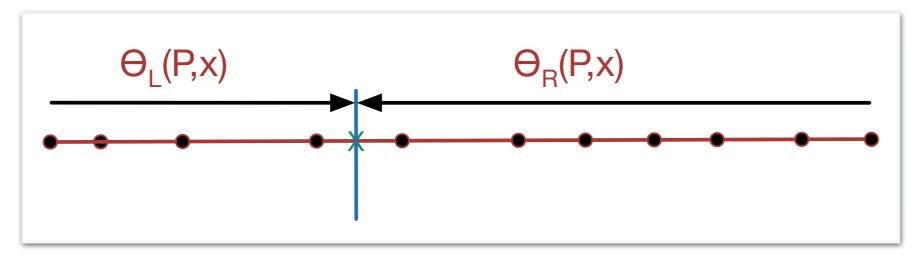
Given a path, associated values $C_{e, VV}$ and k, # of sinks,

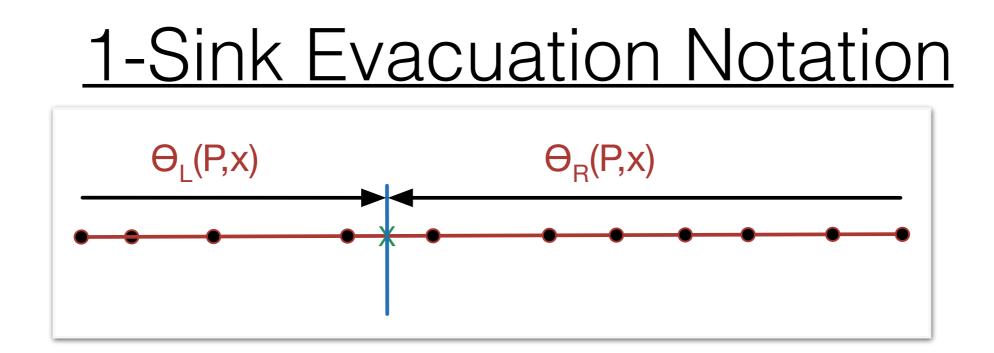


Find a partition into k-subpaths and a sink for each subpath, that minimizes the maximum evacuation time over all subpaths.



1-Sink Evacuation Notation





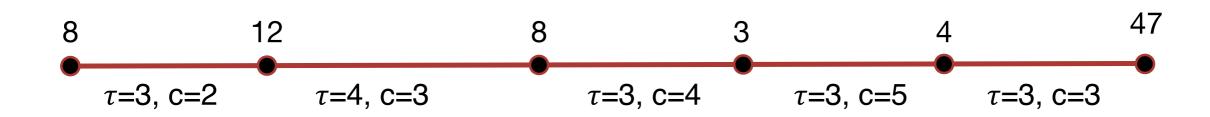
 $\Theta_{L}(P,x) = Time to evacuate all nodes to left of x on P to x$

 $\Theta_{R}(P,x) = Time to evacuate all nodes to right of x on P to x$

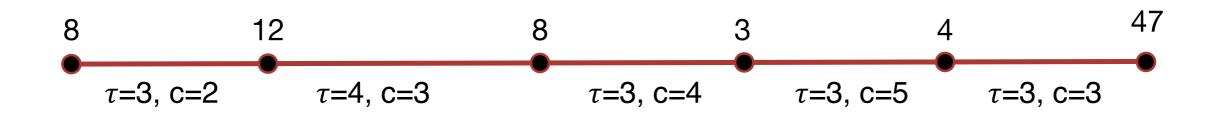
$\Theta(P,x) = \max(\Theta_L(P,x), \Theta_R(P,x))$

- = Time to evacuate all nodes on P to x
- $\Theta^{1}(P) = \min_{\{x \in P\}} \Theta(P,x)$
 - = min evacuation time for P with one sink

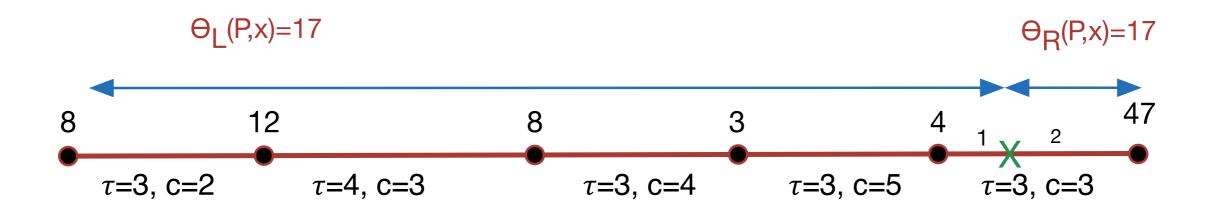
Original Input:



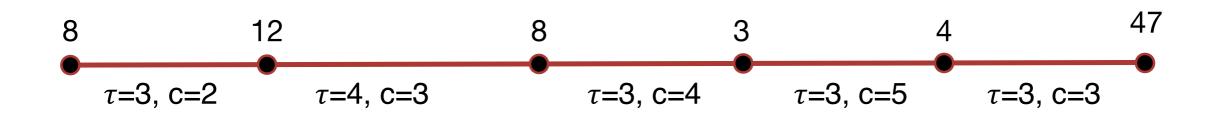
Original Input:



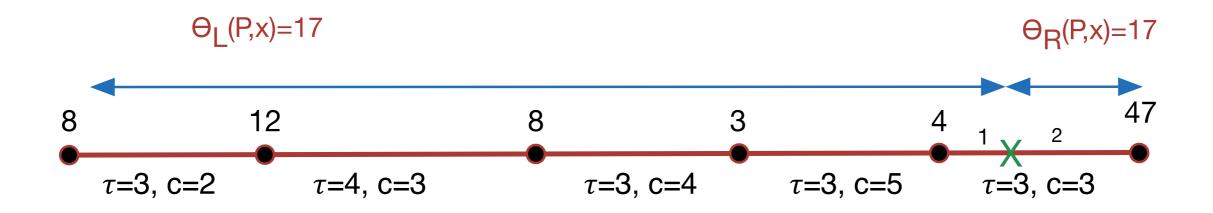
X is the sink location that minimizes Maximum Evacuation Time



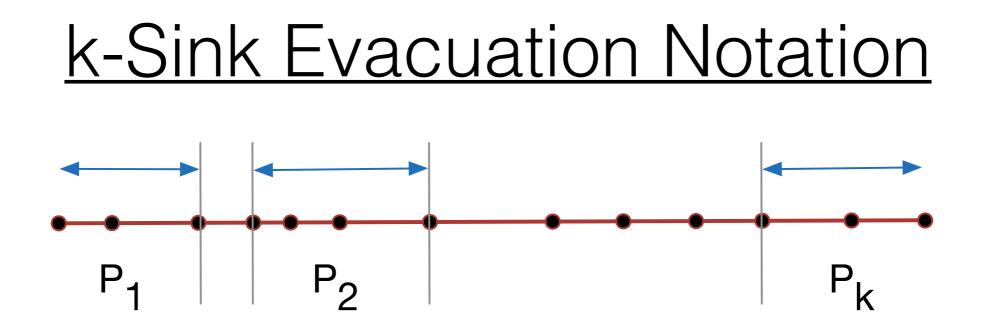
Original Input:



X is the sink location that minimizes Maximum Evacuation Time



Note: Min evac-time sink location is NOT an original vertex. Can modify problem definition to require sink to be a vertex Algorithms remain almost the same

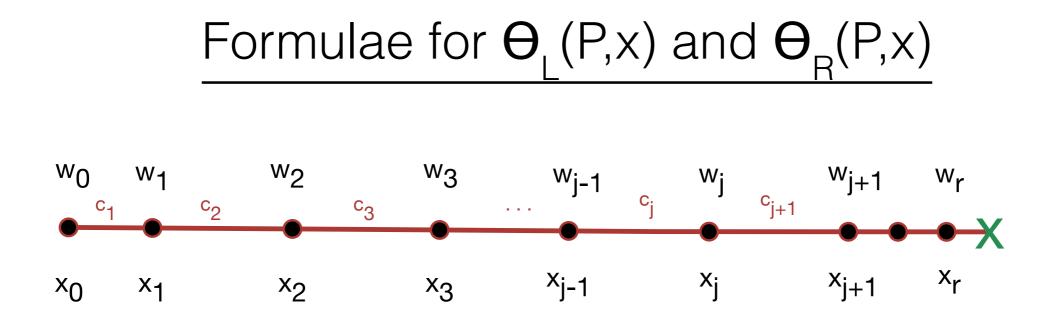


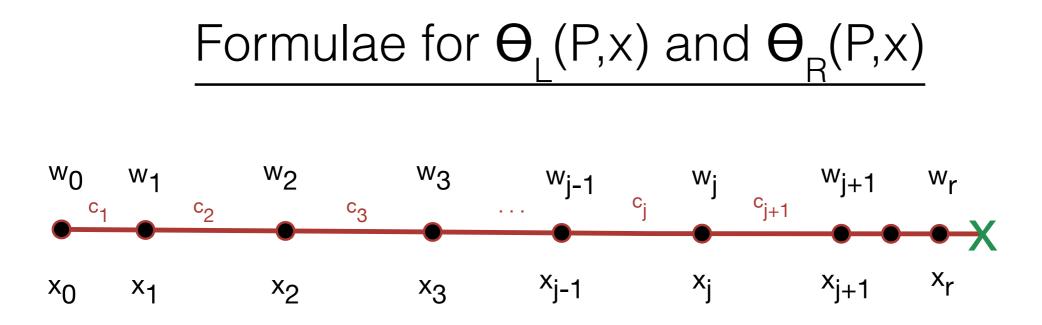
- Given Path P and integer k
- $\mathbb{P} = \{P_1, P_2, \dots, P_k\}$ is a partition of P into k-subpaths
- Given P, the evacuation time of P is max ($\Theta^1(P_1), \Theta^1(P_2), \dots, \Theta^1(P_k)$)
- Want to find

 $\Theta^{k}(P) = \min_{\mathbb{P}} \left(\max \left(\Theta^{1}(P_{1}), \Theta^{1}(P_{2}), \dots, \Theta^{1}(P_{k}) \right) \right)$ = Min k-sink evacuation time for P

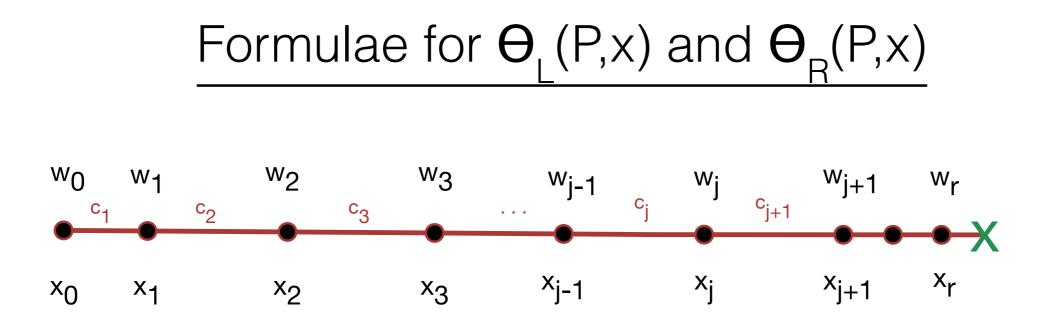
Algorithm Development Sketch

- 1. Formulae for $\Theta_L(P,x)$ and $\Theta_L(P,x)$
- 2. => O(|P|) Algorithm for $\Theta_L(P,x)$, $\Theta_L(P,x)$
- 3. => O($|P| \log |P|$) Algorithm for $\Theta^{1}(P)$
- 4. => O(|P| log |P|) Algorithm that $\forall \alpha > 0$ tests whether $\Theta^{k}(P) \le \alpha$
- 5. => O(k|P| log² |P|) Algorithm for $\Theta^{k}(P)$

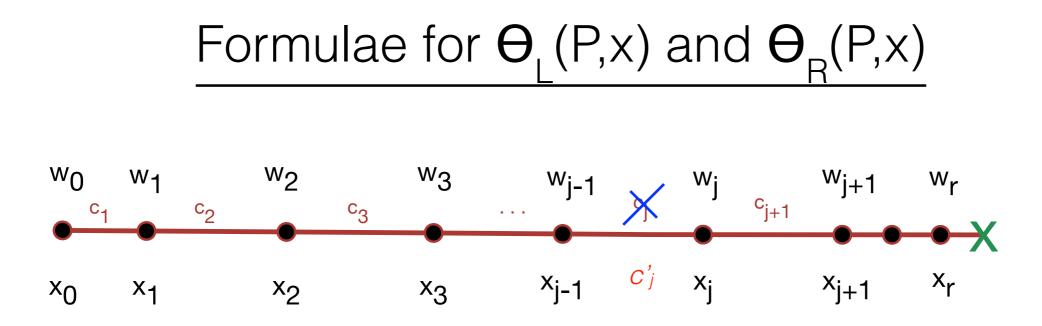




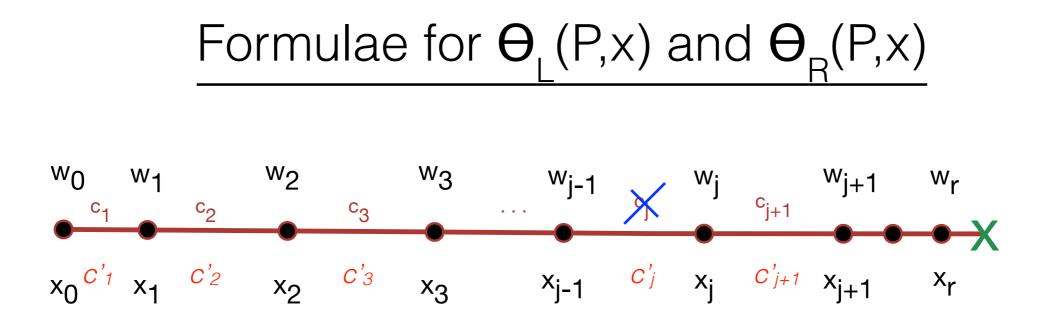
• Consider $\Theta_L(P,x)$ with sink at right



- Consider $\Theta_{L}(P,x)$ with sink at right
- Lemma: Suppose $C_j > C_{j+1}$. Create P' by replacing C_j with $C'_j = C_{j+1}$. =>Then $\Theta_L(P,x) = \Theta_L(P',x)$



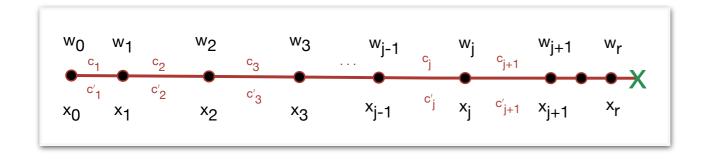
- Consider $\Theta_{L}(P,x)$ with sink at right
- Lemma: Suppose $C_j > C_{j+1}$. Create P' by replacing C_j with $C'_j = C_{j+1}$. =>Then $\Theta_L(P,x) = \Theta_L(P',x)$



- Consider $\Theta_L(P,x)$ with sink at right
- Lemma: Suppose $C_j > C_{j+1}$. Create P' by replacing C_j with $C'_j = C_{j+1}$. =>Then $\Theta_L(P,x) = \Theta_L(P',x)$
- Corollary: May replace capacities by

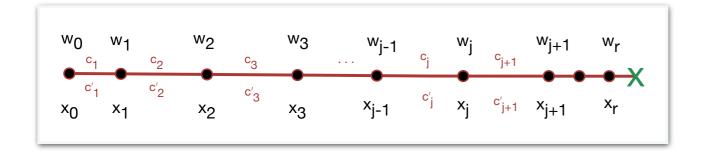
 $C'_{1} \leq C'_{2} \leq C'_{3} \leq ... \leq C'_{n}$

 $c_i' = \min_{i \le j \le r+1} c_j$



x_r is last vertex to right of x

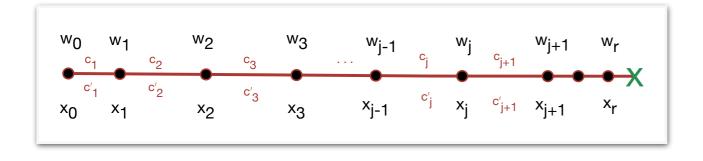
Path with c_i has same evac time as Path with $c'_i = \min_{i \le j \le r+1} c_j$



x_r is last vertex to right of x

Path with c_i has same evac time as Path with $c'_i = \min_{i \le j \le r+1} c_j$

$$\Theta_L(P, x) = \max_{0 \le t \le r} \left(\left(\left(x - x_t \right) + \left\lceil \frac{W_t}{c'_{t+1}} \right\rceil - 1 \right) \right) \qquad W_t = \sum_{0 \le j \le t} w_j$$

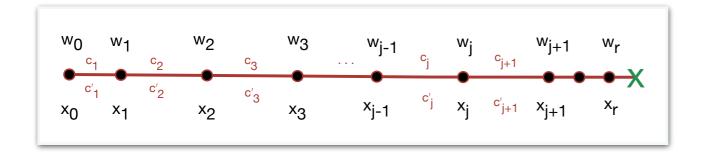


x_r is last vertex to right of x

Path with c_i has same evac time as Path with $c'_i = \min_{i \le j \le r+1} c_j$

Lemma:

$$\Theta_L(P, x) = \max_{0 \le t \le r} \left(\left(\left(x - x_t \right) + \left\lceil \frac{W_t}{c'_{t+1}} \right\rceil - 1 \right) \right) \qquad W_t = \sum_{0 \le j \le t} w_j$$



x_r is last vertex to right of x

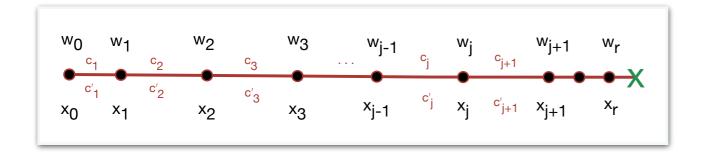
Path with c_i has same evac time as Path with $c'_i = \min_{i \le j \le r+1} c_j$

Lemma:

$$\Theta_L(P, x) = \max_{0 \le t \le r} \left(\left(\left(x - x_t \right) + \left\lceil \frac{W_t}{c'_{t+1}} \right\rceil - 1 \right) \right) \qquad W_t = \sum_{0 \le j \le t} w_j$$

Intuition: Analysis is on path P'

• Fix x_t . $x-x_t$ is uncongested travel time from x_t to x



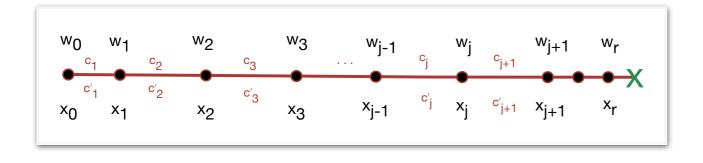
x_r is last vertex to right of x

Path with c_i has same evac time as Path with $c'_i = \min_{i \le j \le r+1} c_j$

Lemma:

$$\Theta_L(P, x) = \max_{0 \le t \le r} \left(\left(\left(x - x_t \right) + \left\lceil \frac{W_t}{c'_{t+1}} \right\rceil - 1 \right) \right) \qquad W_t = \sum_{0 \le j \le t} w_j$$

- Fix x_t . $x-x_t$ is uncongested travel time from x_t to x
- Remove all items to right of x_t.
 Move all items to left of x_t onto x_t. x_t's new weight is W_t



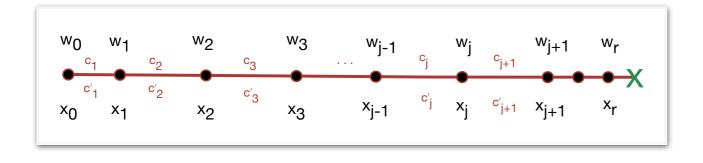
x_r is last vertex to right of x

Path with c_i has same evac time as Path with $c'_i = \min_{i \le j \le r+1} c_j$

Lemma:

$$\Theta_L(P, x) = \max_{0 \le t \le r} \left(\left(\left(x - x_t \right) + \left\lceil \frac{W_t}{c'_{t+1}} \right\rceil - 1 \right) \right) \qquad W_t = \sum_{0 \le j \le t} w_j$$

- Fix x_t . x_t is uncongested travel time from x_t to x
- Remove all items to right of xt.
 Move all items to left of xt onto xt. xt's new weight is Wt
- # of groups leaving x_t is $g = \Gamma W_t / c'_{t+1}$. No congestion on path to x.



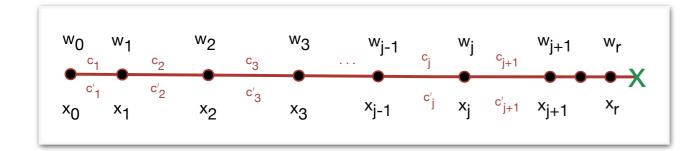
x_r is last vertex to right of x

Path with c_i has same evac time as Path with $c'_i = \min_{i \le j \le r+1} c_j$

Lemma:

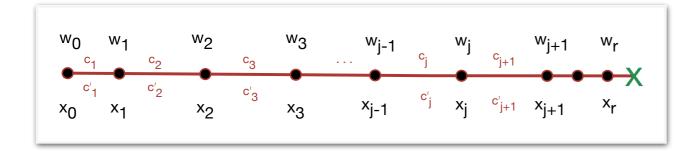
$$\Theta_L(P, x) = \max_{0 \le t \le r} \left(\left(\left(x - x_t \right) + \left\lceil \frac{W_t}{c'_{t+1}} \right\rceil - 1 \right) \right) \qquad W_t = \sum_{0 \le j \le t} w_j$$

- Fix x_t . $x-x_t$ is uncongested travel time from x_t to x
- Remove all items to right of x_t.
 Move all items to left of x_t onto x_t. x_t's new weight is W_t
- # of groups leaving x_t is $g = \Gamma W_t / c'_{t+1} \gamma$. No congestion on path to x.
- => $x-x_t+g-1$ is the exact evacuation time for items on x_t



Path with c_i has same evac time as Path with $c'_i = \min_{i \le j \le r+1} c_j$

$$\Theta_L(P, x) = \max_{0 \le t \le r} \left(\left(\left(x - x_t \right) + \left\lceil \frac{W_t}{c'_{t+1}} \right\rceil - 1 \right) \right) \qquad W_t = \sum_{0 \le j \le t} w_j$$

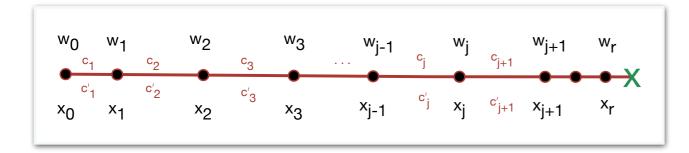


Path with c_i has same evac time as Path with $c'_i = \min_{i \le j \le r+1} c_j$

Lemma:

$$\Theta_L(P, x) = \max_{0 \le t \le r} \left(\left(\left(x - x_t \right) + \left\lceil \frac{W_t}{c'_{t+1}} \right\rceil - 1 \right) \right) \qquad W_t = \sum_{0 \le j \le t} w_j$$

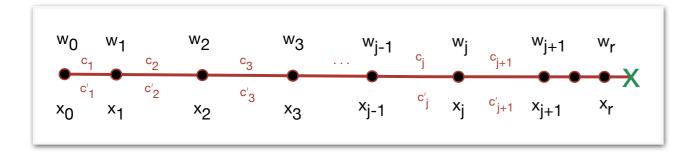
• Fix vertex x_t and consider the W_t items passing through x_t



Path with c_i has same evac time as Path with $c'_i = \min_{i \le j \le r+1} c_j$

$$\Theta_L(P, x) = \max_{0 \le t \le r} \left(\left(\left(x - x_t \right) + \left\lceil \frac{W_t}{c'_{t+1}} \right\rceil - 1 \right) \right) \qquad W_t = \sum_{0 \le j \le t} w_j$$

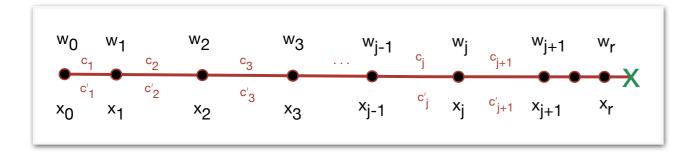
- Fix vertex x_t and consider the W_t items passing through x_t
- => These W_t items leave x_t in $g \ge \Gamma W_t/c'_{t+1}$ groups => Last group leaves x_t at time $\ge g-1$.



Path with c_i has same evac time as Path with $c'_i = \min_{i \le j \le r+1} c_j$

$$\Theta_L(P, x) = \max_{0 \le t \le r} \left(\left(\left(x - x_t \right) + \left\lceil \frac{W_t}{c'_{t+1}} \right\rceil - 1 \right) \right) \qquad W_t = \sum_{0 \le j \le t} w_j$$

- Fix vertex x_t and consider the W_t items passing through x_t
- => These W_t items leave x_t in $g \ge \Gamma W_t/c'_{t+1}$ groups => Last group leaves x_t at time $\ge g-1$.
- Last item in last group requires at least x- x_t time to move from x_t to x => final evacuation time $\ge x x_t + g 1$



Path with c_i has same evac time as Path with $c'_i = \min_{i \le j \le r+1} c_j$

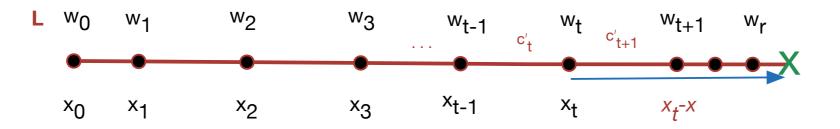
$$\Theta_L(P, x) = \max_{0 \le t \le r} \left(\left(\left(x - x_t \right) + \left\lceil \frac{W_t}{c'_{t+1}} \right\rceil - 1 \right) \right) \qquad W_t = \sum_{0 \le j \le t} w_j$$

- Fix vertex x_t and consider the W_t items passing through x_t
- => These W_t items leave x_t in $g \ge \Gamma W_t/c'_{t+1}$ groups => Last group leaves x_t at time $\ge g-1$.
- Last item in last group requires at least x- x_t time to move from x_t to x => final evacuation time $\ge x x_t + g 1$
- This is true for every t
 => have just proven ≥ direction of lemma

Lemma:
$$\Theta_L(P, x) = \max_{0 \le t \le r} \left(\left(\left(x - x_t \right) + \left\lceil \frac{W_t}{c'_{t+1}} \right\rceil - 1 \right) \right) \quad W_t = \sum_{0 \le j \le t} w_j$$

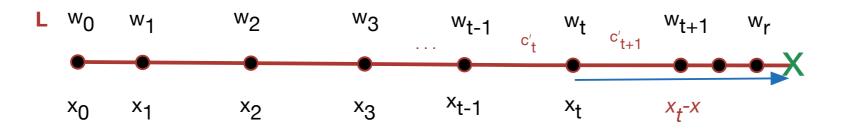


Lemma:
$$\Theta_L(P, x) = \max_{0 \le t \le r} \left(\left(\left(x - x_t \right) + \left\lceil \frac{W_t}{c'_{t+1}} \right\rceil - 1 \right) \right) \quad W_t = \sum_{0 \le j \le t} w_j$$



• Note: # people arriving at x_t at any time T is $\leq c'_t \leq c'_{t+1}$

Lemma:
$$\Theta_L(P, x) = \max_{0 \le t \le r} \left(\left(\left(x - x_t \right) + \left\lceil \frac{W_t}{c'_{t+1}} \right\rceil - 1 \right) \right) \quad W_t = \sum_{0 \le j \le t} w_j$$

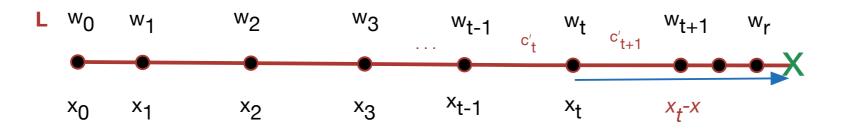


- Note: # people arriving at x_t at any time T is $\leq c'_t \leq c'_{t+1}$
- Suppose \exists timestep T>0 at which $< C'_{t+1}$ items leave x_t .
 - = no one is left waiting at x_t .

=> at T+1 the $\leq c'_{t+1}$ people arriving at x_t all pass through without waiting at x_t => repeating; no one left waiting at x_t at T+2, T+3, etc.

= L passes through x_t without waiting, contradicting choice of t.

Lemma:
$$\Theta_L(P, x) = \max_{0 \le t \le r} \left(\left(\left(x - x_t \right) + \left\lceil \frac{W_t}{c'_{t+1}} \right\rceil - 1 \right) \right) \quad W_t = \sum_{0 \le j \le t} w_j$$

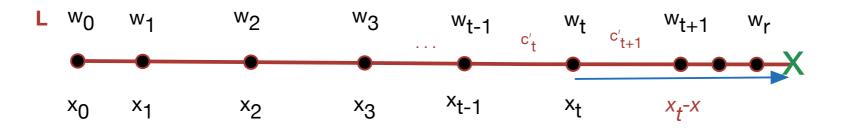


- Note: # people arriving at x_t at any time T is $\leq c'_t \leq c'_{t+1}$
- Suppose \exists timestep T>0 at which $< C'_{t+1}$ items leave x_t .
 - = no one is left waiting at x_t .

=> at T+1 the $\leq C'_{t+1}$ people arriving at x_t all pass through without waiting at x_t

- => repeating; no one left waiting at x_t at T+2, T+3, etc.
- = L passes through x_t without waiting, contradicting choice of t.
- => At every time step exactly c'_{t+1} people leave x_t

Lemma:
$$\Theta_L(P, x) = \max_{0 \le t \le r} \left(\left(\left(x - x_t \right) + \left\lceil \frac{W_t}{c'_{t+1}} \right\rceil - 1 \right) \right) \quad W_t = \sum_{0 \le j \le t} w_j$$



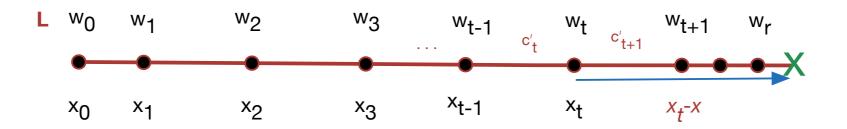
- Note: # people arriving at x_t at any time T is $\leq c'_t \leq c'_{t+1}$
- Suppose \exists timestep T ≥ 0 at which $< C'_{t+1}$ items leave x_t .

= no one is left waiting at x_t .

=> at T+1 the $\leq c'_{t+1}$ people arriving at x_t all pass through without waiting at x_t => repeating; no one left waiting at x_t at T+2, T+3, etc.

- = L passes through x_t without waiting, contradicting choice of t.
- => At every time step exactly c'_{t+1} people leave x_t
- => L leaves x_t in group $g = \Gamma W_t / c'_{t+1} T$ at time g-1

Lemma:
$$\Theta_L(P, x) = \max_{0 \le t \le r} \left(\left(\left(x - x_t \right) + \left\lceil \frac{W_t}{c'_{t+1}} \right\rceil - 1 \right) \right) \quad W_t = \sum_{0 \le j \le t} w_j$$



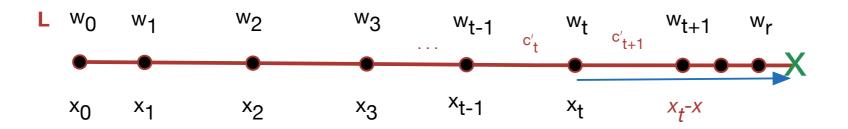
- Note: # people arriving at x_t at any time T is $\leq c'_t \leq c'_{t+1}$
- Suppose \exists timestep T>0 at which < C'_{t+1} items leave x_t .

= no one is left waiting at x_t .

=> at T+1 the $\leq c'_{t+1}$ people arriving at x_t all pass through without waiting at x_t => repeating; no one left waiting at x_t at T+2, T+3, etc.

- = L passes through x_t without waiting, contradicting choice of t.
- => At every time step exactly c'_{t+1} people leave x_t
- => L leaves x_t in group $g = \Gamma W_t / c'_{t+1} T$ at time g-1
- => L arrives at x at time x- x_t + g-1

Lemma:
$$\Theta_L(P, x) = \max_{0 \le t \le r} \left(\left(\left(x - x_t \right) + \left\lceil \frac{W_t}{c'_{t+1}} \right\rceil - 1 \right) \right) \quad W_t = \sum_{0 \le j \le t} w_j$$



- Note: # people arriving at x_t at any time T is $\leq c'_t \leq c'_{t+1}$
- Suppose \exists timestep T ≥ 0 at which $< C'_{t+1}$ items leave x_t .

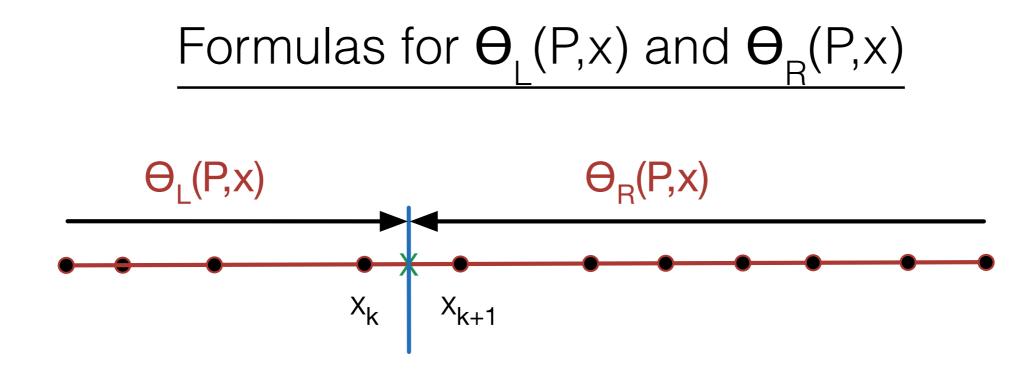
= no one is left waiting at x_t .

=> at T+1 the $\leq c'_{t+1}$ people arriving at x_t all pass through without waiting at x_t => repeating; no one left waiting at x_t at T+2, T+3, etc.

- = L passes through x_t without waiting, contradicting choice of t.
- => At every time step exactly c'_{t+1} people leave x_t
- => L leaves x_t in group $g = \Gamma W_t / c'_{t+1} T$ at time g-1
- => L arrives at x at time x- x_t + g-1
- => have just proven ≤ direction of lemma

Algorithm Development Sketch

- 1. Formulae for $\Theta_L(P,x)$ and $\Theta_L(P,x)$
- 2. => O(|P|) Algorithm for $\Theta_L(P,x)$, $\Theta_L(P,x)$
- 3. => O($|P| \log |P|$) Algorithm for $\Theta^{1}(P)$
- 4. => O(|P| log |P|) Algorithm that $\forall \alpha > 0$ tests whether $\Theta^{k}(P) \le \alpha$
- 5. => O(k|P| log² |P|) Algorithm for $\Theta^{k}(P)$

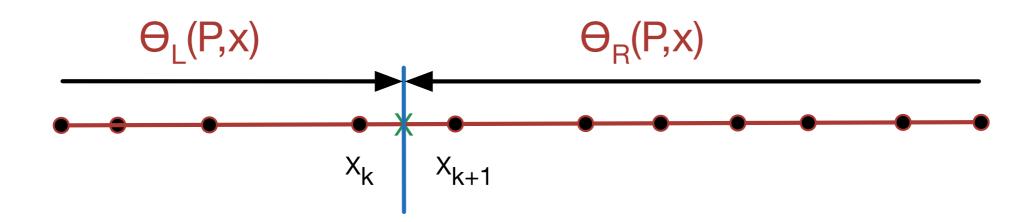


Theorem: Let k be s.t. $x_k < x \le x_{k+1}$. Then

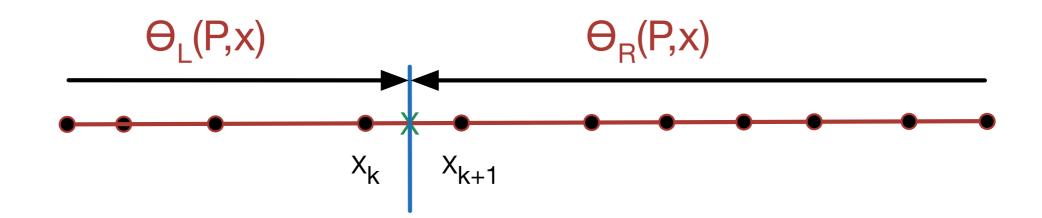
$$\Theta_L(P,x) = \max_{x_i < x} \left((x - x_i) + \left\lceil \frac{\sum_{0 \le j \le t} w_j}{\min_{i+1 \le j \le k+1} c_j} \right\rceil + 1 \right) \qquad \Theta_R(P,x) = \max_{x_i > x} \left((x_i - x) + \left\lceil \frac{\sum_{i \le j \le n} w_j}{\min_{k+1 \le j \le n} c_j} \right\rceil + 1 \right)$$

Corollary: $\Theta_L(P,x)$ and $\Theta_R(P,x)$ can be computed in O(|P|) time

Formulas for $\Theta_{L}(P,x)$ and $\Theta_{R}(P,x)$

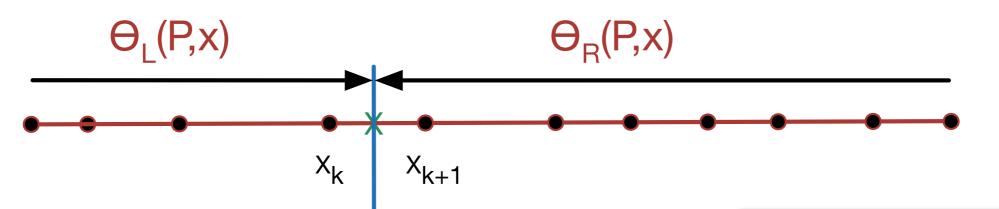


Formulas for $\Theta_{L}(P,x)$ and $\Theta_{R}(P,x)$

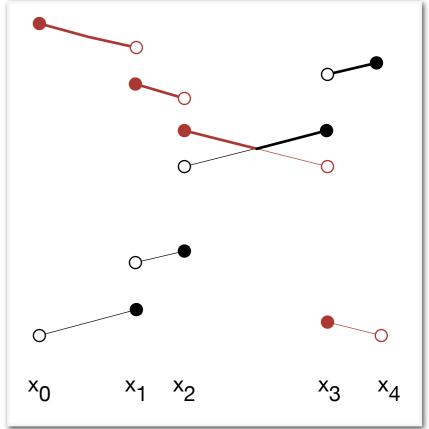


Claim 1: $\Theta_L(P,x)$ ($\Theta_R(P,x)$) is a monotonically increasing (decreasing) piecewise linear function in x.

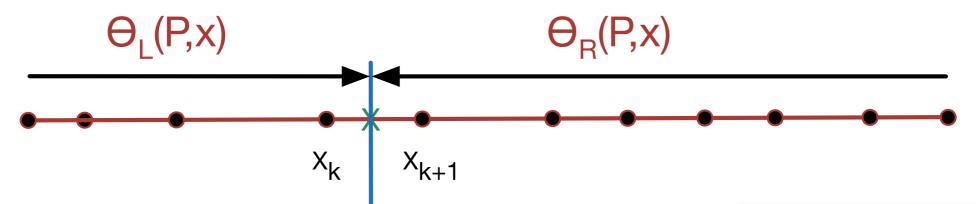
Formulas for $\Theta_{P,x}$ and $\Theta_{R}(P,x)$



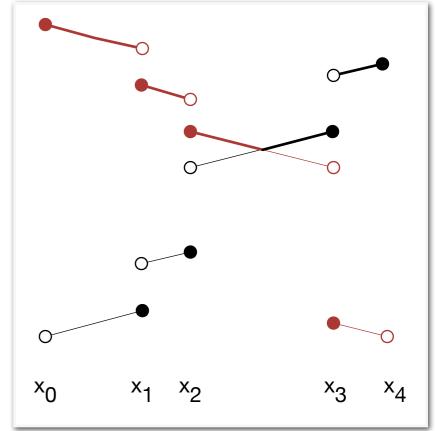
Claim 1: $\Theta_L(P,x) (\Theta_R(P,x))$ is a monotonically increasing (decreasing) piecewise linear function in x.



Formulas for $\Theta_{P,x}$ and $\Theta_{R}(P,x)$



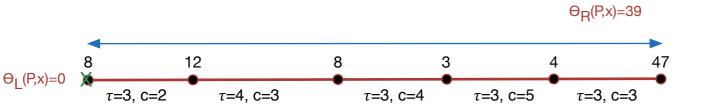
- Claim 1: $\Theta_L(P,x)$ ($\Theta_R(P,x)$) is a monotonically increasing (decreasing) piecewise linear function in x.
- Claim 2: $\Theta(P,x) = \max(\Theta_L(P,x), \Theta_R(P,x))$ is a unimodal function. It decreases, achieves a unique minimum and then increases

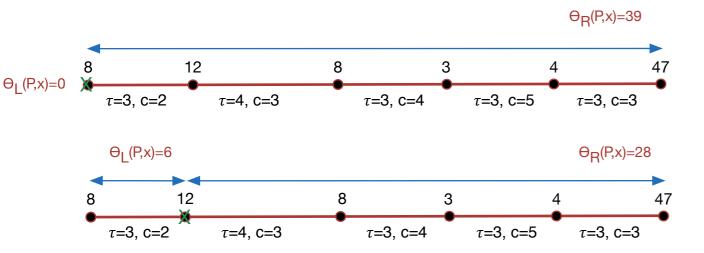


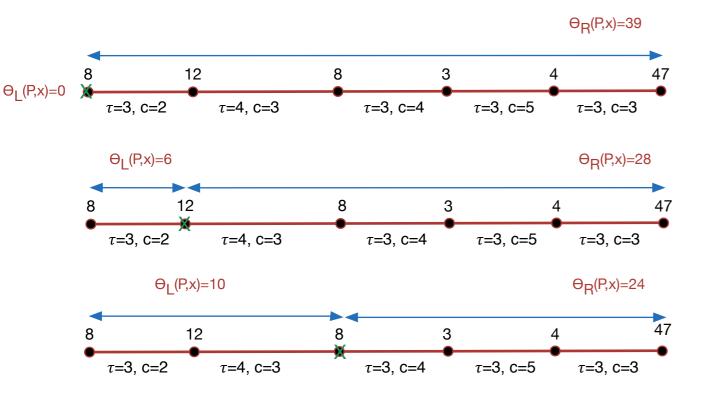
Algorithm Development Sketch

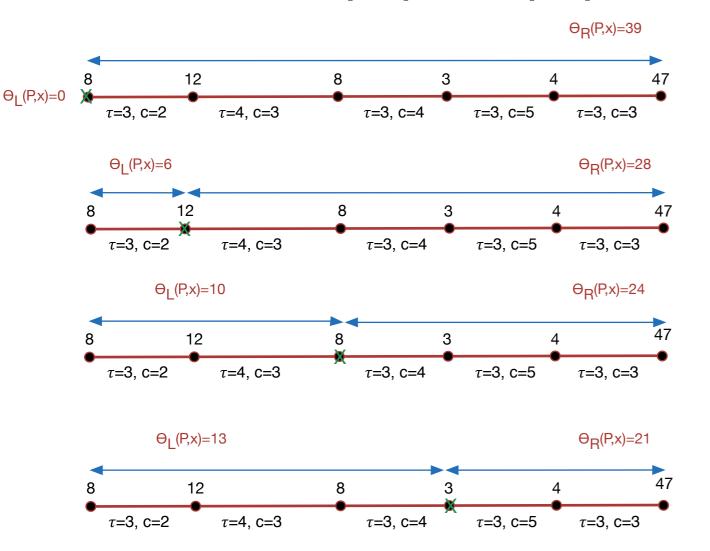
- 1. Formulae for $\Theta_L(P,x)$ and $\Theta_L(P,x)$
- 2. => O(|P|) Algorithm for $\Theta_L(P,x)$, $\Theta_L(P,x)$
- 3. => O($|P| \log |P|$) Algorithm for $\Theta^{1}(P)$
- 4. => O(|P| log |P|) Algorithm that $\forall \alpha > 0$ tests whether $\Theta^{k}(P) \le \alpha$
- 5. => O(k|P| log² |P|) Algorithm for $\Theta^{k}(P)$

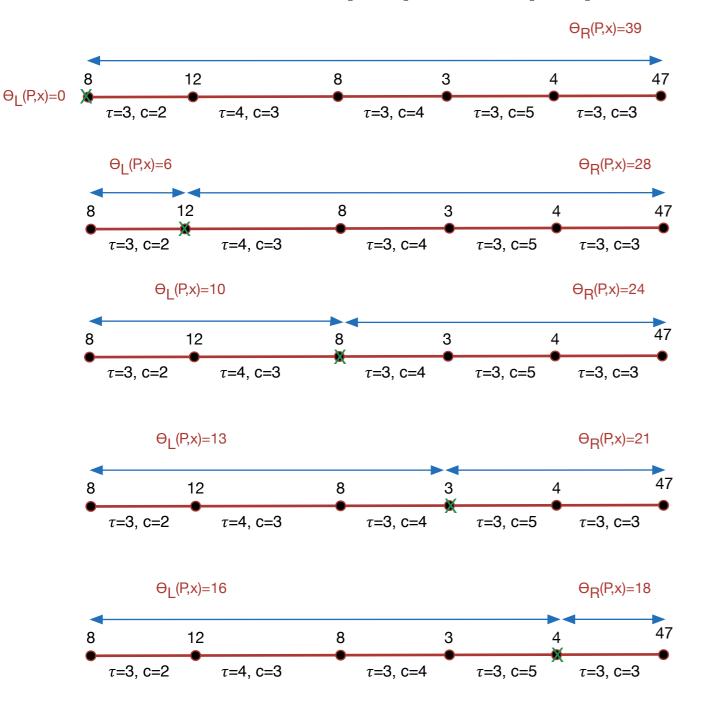
An O($|P| \log |P|$) Algorithm for $\Theta^{1}(P)$



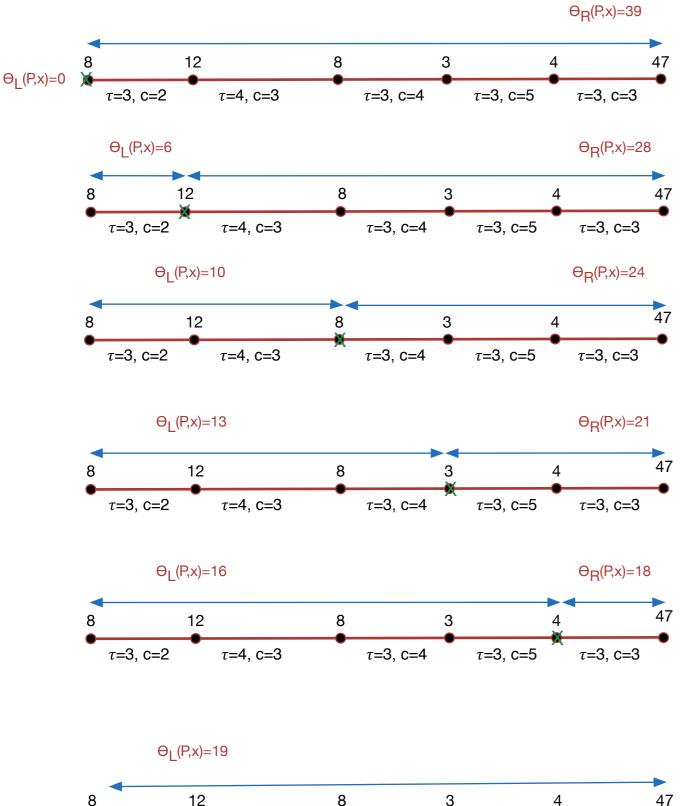


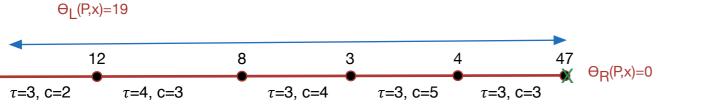


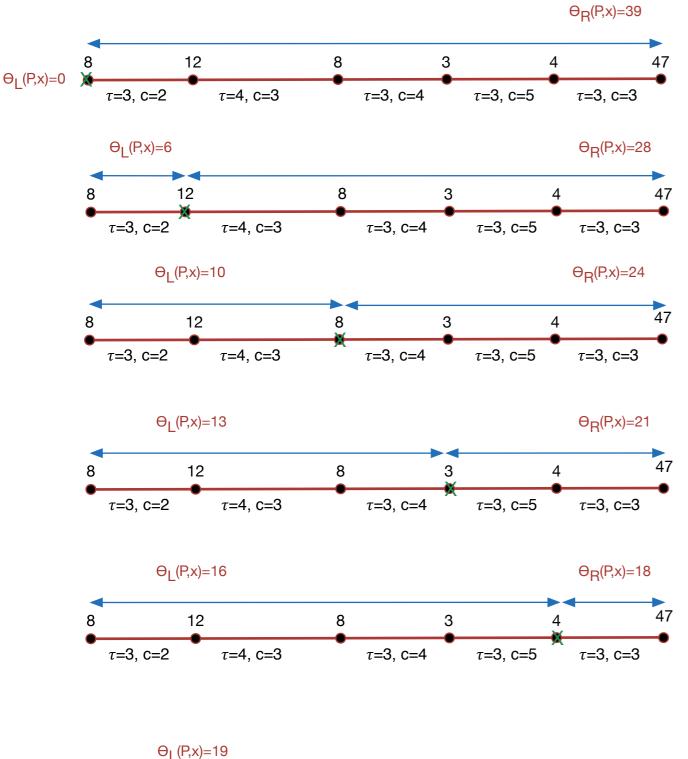




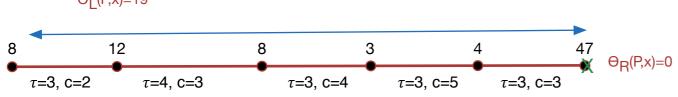
P) Algorithm for $\Theta^{1}(P)$ An

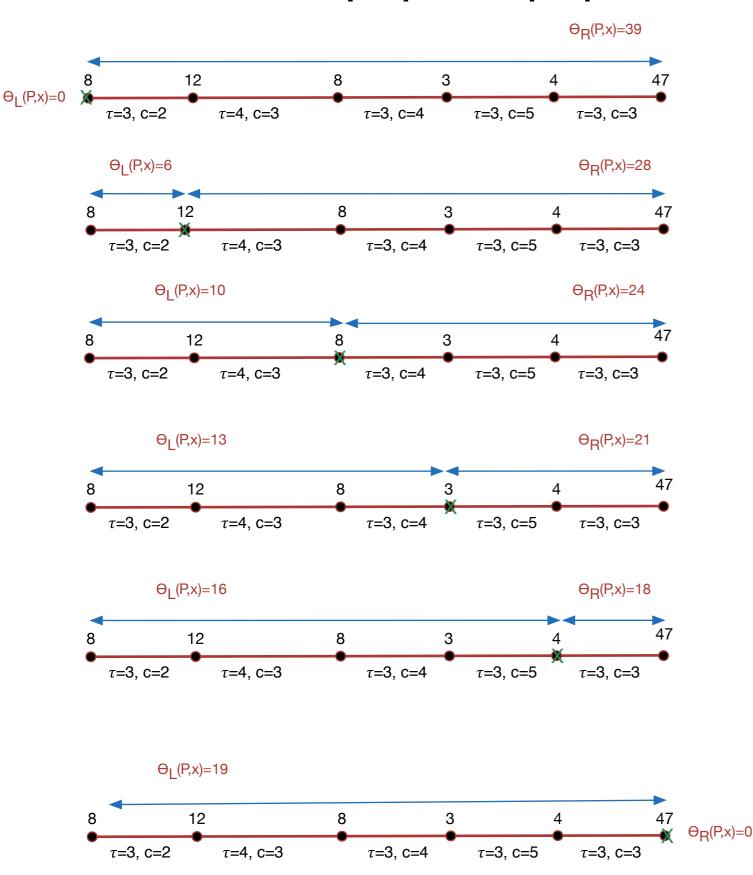




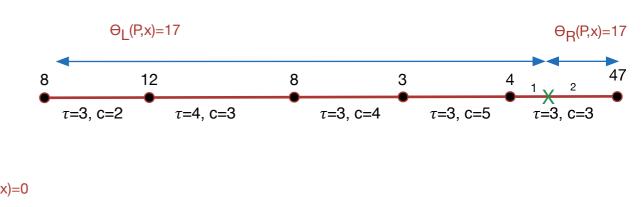


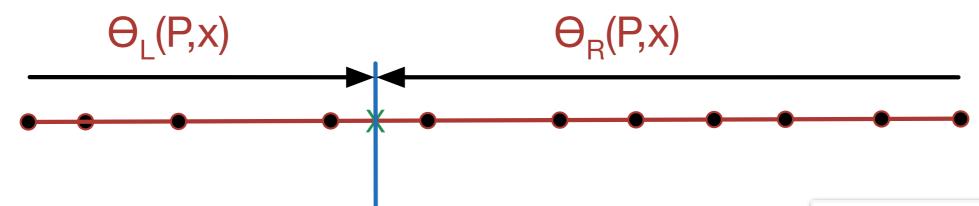
Search for where $\Theta_L(P, X_i) < \Theta_R(P, X_i)$ switches to $\Theta_L(P, X_i) > \Theta_R(P, X_i)$. Optimum sink x is in the interval where the switch occurs



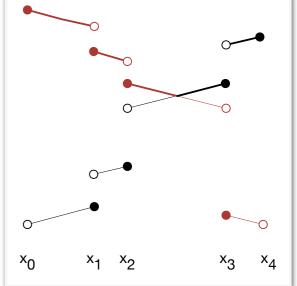


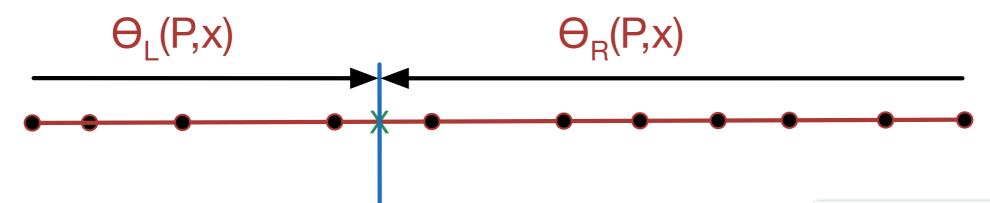
Search for where $\Theta_L(P,x_i) < \Theta_R(P,x_i)$ switches to $\Theta_L(P,x_i) > \Theta_R(P,x_i)$. Optimum sink x is in the interval where the switch occurs





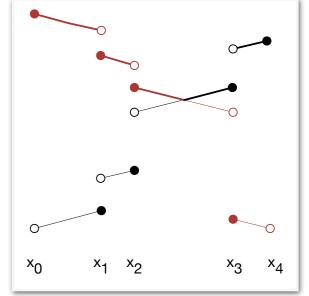
- **Corollary:** For fixed x, $\Theta_L(P,x)$, $\Theta_R(P,x)$ can be computed in O(|P|) time
- **Claim 2:** $\Theta(P,x) = \max(\Theta_L(P,x), \Theta_R(P,x))$ is a unimodal function.





Corollary: For fixed x, $\Theta_L(P,x)$, $\Theta_R(P,x)$ can be computed in O(|P|) time

Claim 2: $\Theta(P,x) = \max(\Theta_L(P,x), \Theta_R(P,x))$ is a unimodal function.



Algorithm: Using O(|P| log|P|) time binary search Find x_t s.t $\Theta^1(P) = \Theta(P,x)$ satisfying x_t < x ≤ x_{t+1}. Gives $\Theta_L(P, x_t)$, $\Theta_R(P, x_t)$, $\Theta_L(P, x_{t+1})$, $\Theta_R(P, x_{t+1})$ In O(1) time do a linear interpolation to find x.

Algorithm Development Sketch

- 1. Formulae for $\Theta_L(P,x)$ and $\Theta_L(P,x)$
- 2. => O(|P|) Algorithm for $\Theta_L(P,x)$, $\Theta_L(P,x)$
- 3. => O($|P| \log |P|$) Algorithm for $\Theta^{1}(P)$
- 4. => O(|P| log |P|) Algorithm that $\forall \alpha > 0$ tests whether $\Theta^{k}(P) \le \alpha$
- 5. => O(k|P| log² |P|) Algorithm for $\Theta^{k}(P)$

An O($|P| \log |P|$) Testing Algorithm for $\Theta^{k}(P)$ [1]

Set $P_{i,j}$ to be path from x_i to x_j and $P_{i,x}$ path from x_i to x. Set |P| to be # of vertices in P. An O($|P| \log |P|$) Testing Algorithm for $\Theta^{k}(P)$ [1]

Set $P_{i,j}$ to be path from x_i to x_j and $P_{i,x}$ path from x_i to x. Set |P| to be # of vertices in P.

<u>Thm:</u> $\forall \alpha > 0$, k>0 and i,j can test if $\Theta^{k}(P_{i,n}) \leq \alpha$ in $O(|P_{i,n}| | Og | P_{i,n}|)$ time An O($|P| \log |P|$) Testing Algorithm for $\Theta^{k}(P)$ [1] Set P_{i,i} to be path from x_i to x_i and P_{i,x} path from x_i to x.

Set |P| to be # of vertices in P.

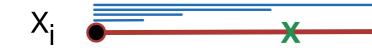
<u>Thm:</u> $\forall \alpha > 0$, k>0 and i,j can test if $\Theta^{k}(P_{i,n}) \leq \alpha$ in $O(IP_{i,n} I I Og IP_{i,n} I)$ time

<u>Lemma:</u> $\forall \alpha > 0$, and i can find maximum j s.t. $\Theta^1(P_{i,j}) \le \alpha$ in $O(|P_{i,j}| | \log |P_{i,j}|)$ time An O($|P| \log |P|$) Testing Algorithm for $\Theta^{k}(P)$ [1] Set P_{i,j} to be path from x_i to x_j and P_{i,x} path from x_i to x. Set |P| to be # of vertices in P.

<u>Thm:</u> $\forall \alpha > 0$, k>0 and i,j can test if $\Theta^{k}(P_{i,n}) \leq \alpha$ in $O(IP_{i,n} I I Og IP_{i,n} I)$ time

<u>Lemma:</u> $\forall \alpha > 0$, and i can find maximum j s.t. $\Theta^1(P_{i,j}) \le \alpha$ in $O(IP_{i,j} | Iog | P_{i,j} |)$ time

Proof Idea (Lemma): In $O(IP_{i,x} I \text{ log } I P_{i,x} I)$ use linear formula for $\Theta_L(P_{i,n},x) \&$ doubling search technique to find max x s.t. $\Theta_L(P_{i,n},x) \leq \alpha$.



An O($|P| \log |P|$) Testing Algorithm for $\Theta^{k}(P)$ [2] Set P_{i,i} to be path from x_i to x_i and P_{i,x} path from x_i to x.

Set |P| to be # of vertices in P.

<u>Thm:</u> $\forall \alpha > 0$, k>0 and i,j can test if $\Theta^{k}(P_{i,n}) \leq \alpha$ in $O(|P_{i,n}| | Og | P_{i,n}|)$ time

<u>Lemma:</u> $\forall \alpha > 0$, and i can find maximum j s.t. $\Theta^{1}(P_{i,j}) \leq \alpha$ in $O(IP_{i,j} | Iog | P_{i,j} |)$ time

 $\begin{array}{l} \underline{Proof \ Idea \ (Lemma):} \\ \text{In } \textit{O(IP}_{i,x} \ \textit{I} \ \textit{Iog \ I} \ \textit{P}_{i,x} \ \textit{I}) \\ \text{use linear formula for } \varTheta_L(\mathsf{P}_{i,n},\mathsf{x}) & \& \\ \text{doubling search technique to find max x s.t. } \varTheta_L(\mathsf{P}_{i,n},\mathsf{x}) \leq \mathfrak{a}. \\ \text{Similarly, in } \textit{O(IP}_{x,j} \ \textit{I \ Iog \ I} \ \textit{P}_{x,j} \ \textit{I}), \\ \end{array}$

An O($|P| \log |P|$) Testing Algorithm for $\Theta^{k}(P)$ [3]

Set $P_{i,j}$ to be path from x_i to x_j and $P_{i,x}$ path from x_i to x. Set |P| to be # of vertices in P.

- <u>Thm:</u> $\forall \alpha > 0$, k>0 and i,j can test if $\Theta^{k}(P_{i,n}) \leq \alpha$ in $O(|P_{i,n}| | Og | P_{i,n}|)$ time
- <u>Lemma:</u> $\forall \alpha > 0$, and i can find maximum j s.t. $\Theta^1(P_{i,j}) \leq \alpha$ in O(I P_{i,j} | log | P_{i,j} |) time

An O($|P| \log |P|$) Testing Algorithm for $\Theta^{k}(P)$ [3]

Set $P_{i,j}$ to be path from x_i to x_j and $P_{i,x}$ path from x_i to x. Set |P| to be # of vertices in P.

<u>Thm:</u> $\forall \alpha > 0$, k>0 and i,j can test if $\Theta^{k}(P_{i,n}) \leq \alpha$ in $O(|P_{i,n}| | Og | P_{i,n}|)$ time

<u>Lemma:</u> $\forall \alpha > 0$, and i can find maximum j s.t. $\Theta^1(P_{i,j}) \le \alpha$ in O(I P_{i,j} I log I P_{i,j} I) time

An O($|P| \log |P|$) Testing Algorithm for $\Theta^{k}(P)$ [3]

Set $P_{i,j}$ to be path from x_i to x_j and $P_{i,x}$ path from x_i to x. Set |P| to be # of vertices in P.

<u>Thm:</u> $\forall \alpha > 0$, k>0 and i,j can test if $\Theta^{k}(P_{i,n}) \leq \alpha$ in $O(|P_{i,n}| | Og | P_{i,n}|)$ time

<u>Lemma:</u> $\forall \alpha > 0$, and i can find maximum j s.t. $\Theta^1(P_{i,j}) \le \alpha$ in O(I P_{i,j} I log I P_{i,j} I) time

An O($|P| \log |P|$) Testing Algorithm for $\Theta^{k}(P)$ [4]

Set $P_{i,j}$ to be path from x_i to x_j and $P_{i,x}$ path from x_i to x. Set |P| to be # of vertices in P.

<u>Thm:</u> $\forall \alpha > 0$, k>0 and i,j can test if $\Theta^{k}(P_{i,n}) \leq \alpha$ in $O(|P_{i,n}| | Og | P_{i,n}|)$ time

X_i a evac X_j X_{j+1}

a evac

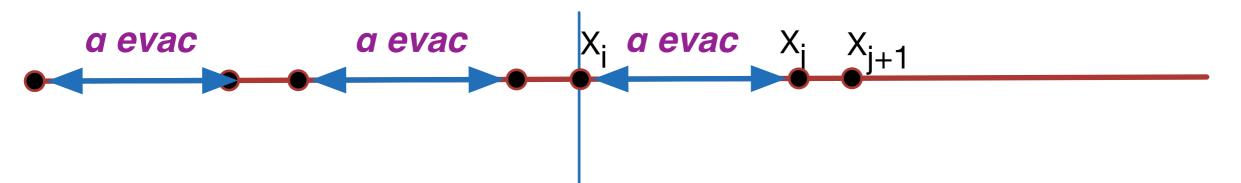
<u>Lemma:</u> $\forall \alpha > 0$, and i can find maximum j s.t. $\Theta^1(P_{i,j}) \le \alpha$ in O(I P_{i,j} I log I P_{i,j} I) time

An O($|P| \log |P|$) Testing Algorithm for $\Theta^{k}(P)$ [5]

Set $P_{i,j}$ to be path from x_i to x_j and $P_{i,x}$ path from x_i to x. Set |P| to be # of vertices in P.

<u>Thm:</u> $\forall \alpha > 0$, k>0 and i,j can test if $\Theta^{k}(P_{i,n}) \leq \alpha$ in $O(|P_{i,n}| | Og | P_{i,n}|)$ time

<u>Lemma:</u> $\forall \alpha > 0$, and i can find maximum j s.t. $\Theta^1(P_{i,j}) \le \alpha$ in O(I P_{i,j} I log I P_{i,j} I) time



Algorithm Development Sketch

- 1. Formulae for $\Theta_L(P,x)$ and $\Theta_L(P,x)$
- 2. => O(|P|) Algorithm for $\Theta_L(P,x)$, $\Theta_L(P,x)$
- 3. => O($|P| \log |P|$) Algorithm for $\Theta^{1}(P)$
- 4. => O(|P| log |P|) Algorithm that $\forall \alpha > 0$ tests whether $\Theta^{k}(P) \le \alpha$
- 5. => O(k|P| log² |P|) Algorithm for $\Theta^{k}(P)$

- $\Theta^{1}(P_{0,j})$ ($\Theta^{k-1}(P_{j+1,n})$) is non decreasing (increasing) in j
- $\Theta_{j^k} = is$ "unimodal" in j

- $\Theta^{1}(P_{0,j})$ ($\Theta^{k-1}(P_{j+1,n})$) is non decreasing (increasing) in j
- $\Theta_{j^k} = is$ "unimodal" in j
- $\Theta^{k-1}(P_{j+1,n}) \le \Theta^{1}(P_{0,j})$ can be tested in *O(IPI log IPI)* time

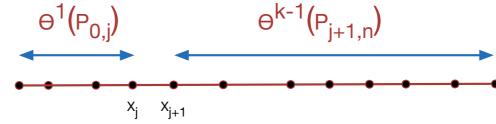
- $\Theta^{1}(P_{0,j})$ ($\Theta^{k-1}(P_{j+1,n})$) is non decreasing (increasing) in j
- $\Theta_{j^k} = is$ "unimodal" in j
- $\Theta^{k-1}(P_{j+1,n}) \le \Theta^{1}(P_{0,j})$ can be tested in *O(IPI log IPI)* time
 - Using previous algorithms for k=1 and testing

- $\Theta^{1}(P_{0,j})$ ($\Theta^{k-1}(P_{j+1,n})$) is non decreasing (increasing) in j
- $\Theta_{j^k} = is$ "unimodal" in j
- $\Theta^{k-1}(P_{j+1,n}) \le \Theta^{1}(P_{0,j})$ can be tested in *O(IPI log IPI)* time
 - Using previous algorithms for k=1 and testing
 - $O(|P_{0,j}| \log |P_{0,j}|) + O(|P_{j+1,n}| \log |P_{j+1,n}|) = O(|P| \log |P|)$

- $\Theta^{1}(P_{0,j})$ ($\Theta^{k-1}(P_{j+1,n})$) is non decreasing (increasing) in j
- $\Theta_{j^k} = is$ "unimodal" in j
- $\Theta^{k-1}(P_{j+1,n}) \le \Theta^{1}(P_{0,j})$ can be tested in *O(IPI log IPI)* time
 - Using previous algorithms for k=1 and testing
 - $O(|P_{0,j}| \log |P_{0,j}|) + O(|P_{j+1,n}| \log |P_{j+1,n}|) = O(|P| \log |P|)$
- Binary search to find largest j s.t. $\Theta^{k-1}(P_{j+1,n}) > \Theta^{1}(P_{0,j})$ • O(IPI log²IPI) time

An O(k $|P| \log^2 |P|$) Algorithm for $\Theta^k(P)$ [2]

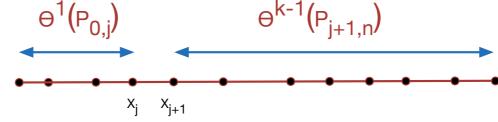
• $\Theta^{k}(P) = \Theta^{k_{j}} = \min_{j} (\Theta^{1}(P_{0,j}), \Theta^{k-1}(P_{j+1,n}))$ $\Theta^{1}(P_{0,j}), \Theta^{k-1}(P_{j+1,n})$ increase/decrease in j $\Theta^{k_{j}}$ "unimodal" in j



• => O(IPI log²IPI) time Binary search to find largest j s.t $\Theta^{k-1}(P_{j+1,n}) > \Theta^{1}(P_{0,j})$

An O(k $|P| \log^2 |P|$) Algorithm for $\Theta^k(P)$ [2]

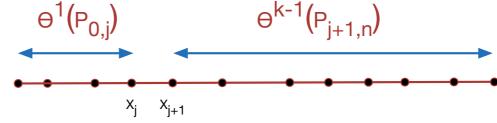
• $\Theta^{k}(P) = \Theta^{k_{j}} = \min_{j} (\Theta^{1}(P_{0,j}), \Theta^{k-1}(P_{j+1,n}))$ $\Theta^{1}(P_{0,j}), \Theta^{k-1}(P_{j+1,n})$ increase/decrease in j $\Theta^{k_{j}}$ "unimodal" in j



- => O(IPI log²IPI) time Binary search to find largest j s.t $\Theta^{k-1}(P_{j+1,n}) > \Theta^{1}(P_{0,j})$
 - $\Theta^{k}(P)$ is min of $\Theta^{1}(P_{0,j+1})$ and $\Theta^{k-1}(P_{j+1,n})$

An O(k $|P| \log^2 |P|$) Algorithm for $\Theta^k(P)$ [2]

• $\Theta^{k}(P) = \Theta^{k_{j}} = \min_{j} (\Theta^{1}(P_{0,j}), \Theta^{k-1}(P_{j+1,n}))$ $\Theta^{1}(P_{0,j}), \Theta^{k-1}(P_{j+1,n})$ increase/decrease in j $\Theta^{k_{j}}$ "unimodal" in j

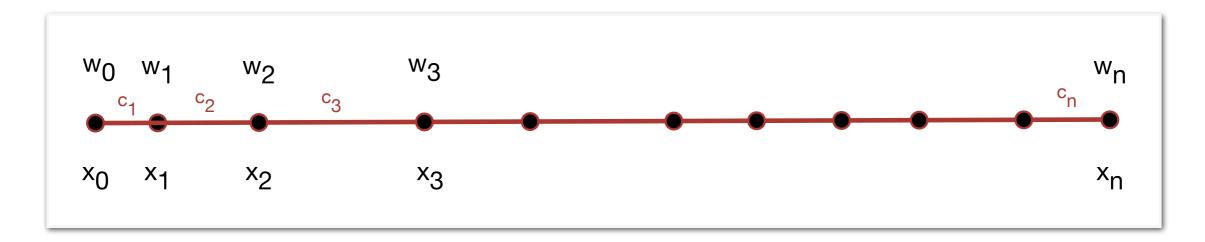


- => O(IPI log²IPI) time Binary search to find largest j s.t $\Theta^{k-1}(P_{j+1,n}) > \Theta^{1}(P_{0,j})$
 - $\Theta^{k}(P)$ is min of $\Theta^{1}(P_{0,j+1})$ and $\Theta^{k-1}(P_{j+1,n})$
 - • $\Theta^{k-1}(P_{j+1,n})$ can be found recursively
 - stop when k=1 (know how to solve)
 - Total algorithm is k O(IPI log² IPI) = O(k IPI log² IPI)

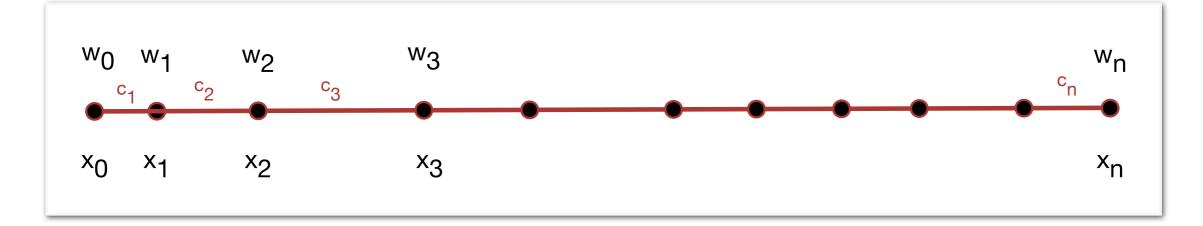
<u>Outline</u>

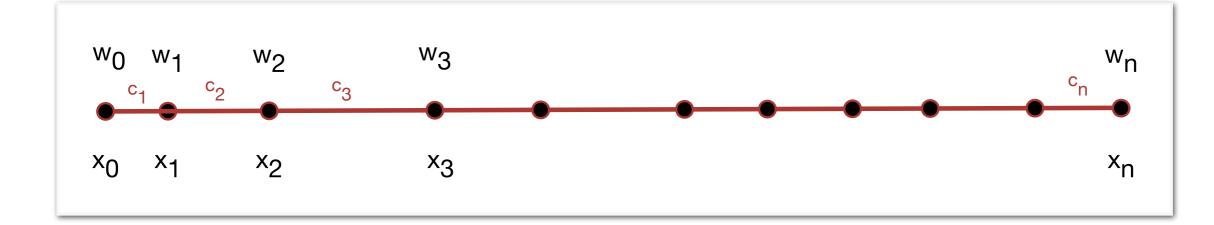
- Dynamic Flow Networks
- Congestion in Dynamic Flows
- Evacuation Flows
 - Problem Definitions
 - Known Results
- Example Algorithm 1: k-Sink Evacuation on a Path
- Example Algorithm 2: 1-sink Min-Max Regret Evacuation on a Path with uniform capacity
- Open Problems

In the regret version of the problem, input still provides $C_{e_{i}} \tau_{e_{i}} k$

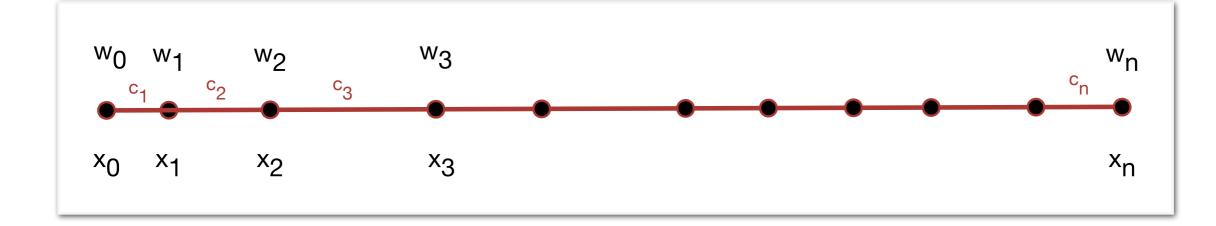


- •But W_{ν} is no longer explicitly input. Instead, each vertex has an input range $W_{\nu} \in [W'_{\nu}, W'_{\nu}]$
- Algorithm needs to find robust evacuation protocol that works least badly against adversarial input.
- Min-Max Regret is one standard way of modelling robustness

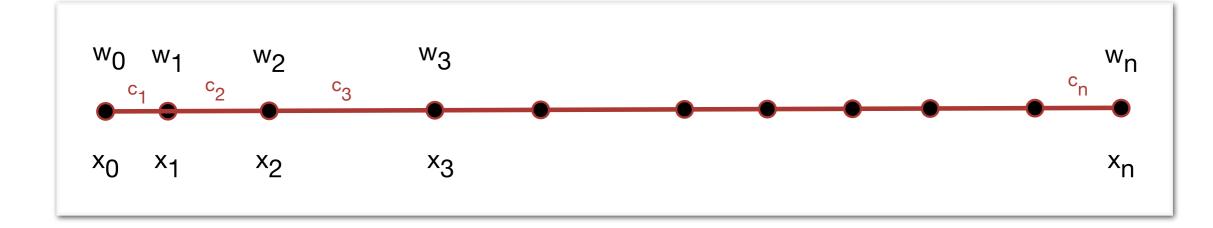




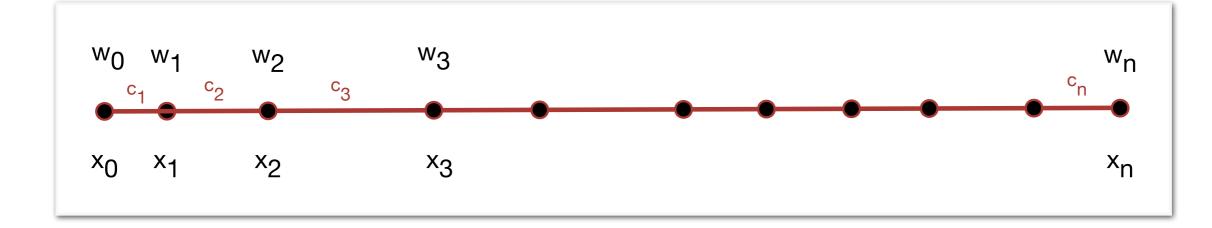
S = ∏_v[w'_v,W'_v] is the set of all feasible scenarios.
 An s ∈ S is of the form s= (w₁, ..., w_n)



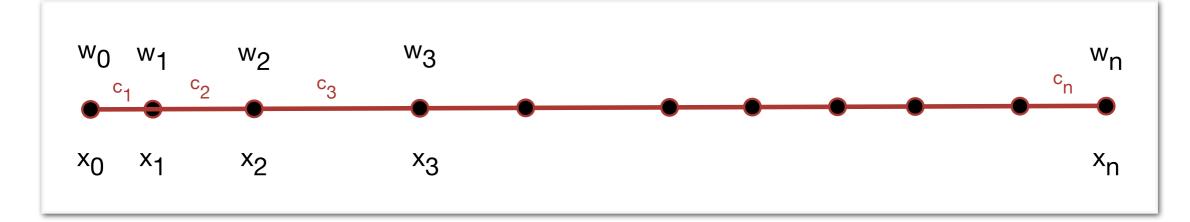
- S = ∏_v[w'_v,W'_v] is the set of all feasible scenarios.
 An s ∈ S is of the form s= (w₁, ..., w_n)
- • $\Theta(P,x,s)$ = evacuation time of P to x in scenario s
- • $\Theta^{1}(P,s)$ = min evacuation time of P in scenario s



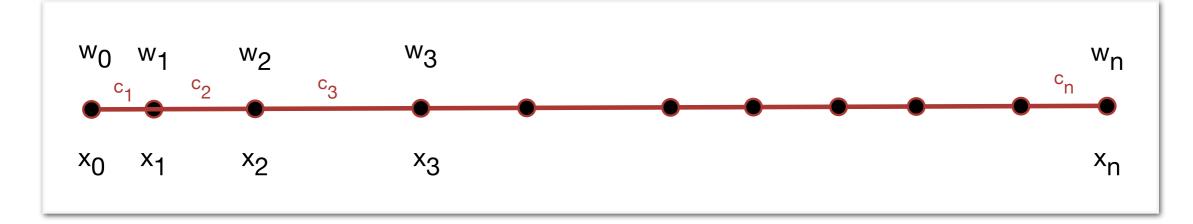
- S = ∏_v[w'_v,W'_v] is the set of all feasible scenarios.
 An s ∈ S is of the form s= (w₁, ..., w_n)
- • $\Theta(P,x,s)$ = evacuation time of P to x in scenario s
- • $\Theta^{1}(P,s) = min \text{ evacuation time of P in scenario s}$
- $R(x,s) = Regret of x under scenario s = \Theta(P,x,s) \Theta^{1}(P,s)$
- $R(x) = Max regret of x = max_s R(x,s)$



- S = ∏_v[w'_v,W'_v] is the set of all feasible scenarios.
 An s ∈ S is of the form s= (w₁, ..., w_n)
- • $\Theta(P,x,s)$ = evacuation time of P to x in scenario s
- • $\Theta^{1}(P,s) = min \text{ evacuation time of P in scenario s}$
- $R(x,s) = Regret of x under scenario s = \Theta(P,x,s) \Theta^{1}(P,s)$
- $R(x) = Max regret of x = max_s R(x,s)$
- •The Min-max regret of P is minimum regret over all x $MMR(P) = Min_x R(x)$

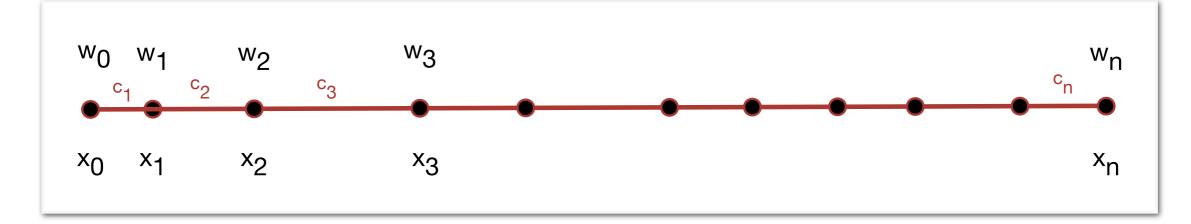


 $R(x,s) = \Theta(P,x,s) - \Theta^{1}(P,s) \qquad R(x) = Max_{s} R(x,s)$ $MMR(P) = Min_{x} R(x) = Min_{x} Max_{s} \{\Theta(P,x,s) - \Theta^{1}(P,s)\}$



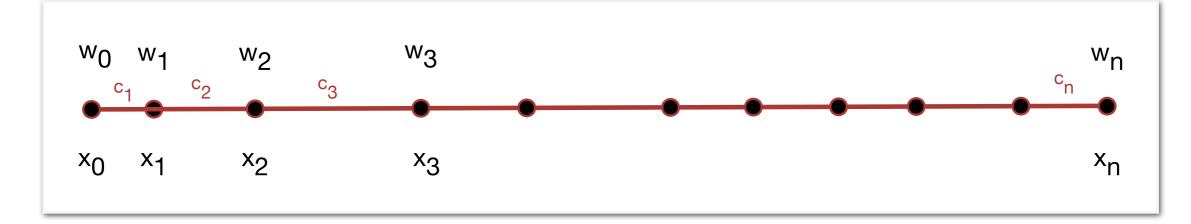
 $R(x,s) = \Theta(P,x,s) - \Theta^{1}(P,s) \qquad R(x) = Max_{s} R(x,s)$ $MMR(P) = Min_{x} R(x) = Min_{x} Max_{s} \{\Theta(P,x,s) - \Theta^{1}(P,s)\}$

• A-Priori, it isn't obvious that this can be calculated efficiently.



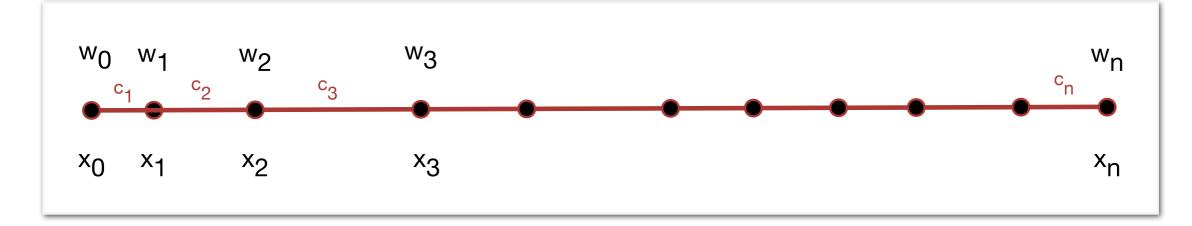
 $\begin{aligned} \mathsf{R}(\mathsf{x},\mathsf{s}) &= \Theta(\mathsf{P},\mathsf{x},\mathsf{s}) - \Theta^{1}(\mathsf{P},\mathsf{s}) & \mathsf{R}(\mathsf{x}) &= \mathsf{Max}_{\mathsf{s}} \ \mathsf{R}(\mathsf{x},\mathsf{s}) \\ \mathsf{MMR}(\mathsf{P}) &= \mathsf{Min}_{\mathsf{x}} \ \mathsf{R}(\mathsf{x}) &= \mathsf{Min}_{\mathsf{x}} \ \mathsf{Max}_{\mathsf{s}} \ \{\Theta(\mathsf{P},\mathsf{x},\mathsf{s}) - \Theta^{1}(\mathsf{P},\mathsf{s})\} \end{aligned}$

- A-Priori, it isn't obvious that this can be calculated efficiently.
- Can show that, for uniform capacities, there are only O(n) scenarios s at which any R(x) attains maximum



 $R(x,s) = \Theta(P,x,s) - \Theta^{1}(P,s) \qquad R(x) = Max_{s} R(x,s)$ $MMR(P) = Min_{x} R(x) = Min_{x} Max_{s} \{\Theta(P,x,s) - \Theta^{1}(P,s)\}$

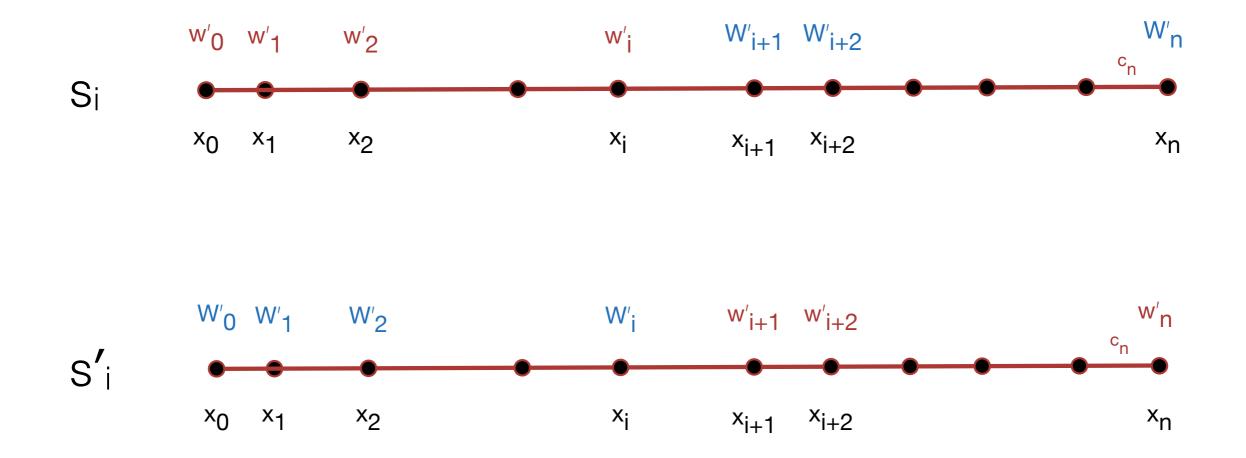
- A-Priori, it isn't obvious that this can be calculated efficiently.
- Can show that, for uniform capacities, there are only O(n) scenarios s at which any R(x) attains maximum
- This, permits evaluating MMR(P) in polynomial time
 - further observations reduce this to O(n log n)



 $R(x,s) = \Theta(P,x,s) - \Theta^{1}(P,s) \qquad R(x) = Max_{s} R(x,s)$ $MMR(P) = Min_{x} R(x) = Min_{x} Max_{s} \{\Theta(P,x,s) - \Theta^{1}(P,s)\}$

- A-Priori, it isn't obvious that this can be calculated efficiently.
- Can show that, for uniform capacities, there are only O(n) scenarios s at which any R(x) attains maximum
- This, permits evaluating MMR(P) in polynomial time
 - further observations reduce this to O(n log n)
- Existence of O(n) scenarios not totally surprising
 - Same phenomenon arises in MMR for medians on a line

 $\begin{array}{l} \underline{\text{Min-Max Regret Evacuation on a Path}}\\ R(x,s) = \Theta(P,x,s) - \Theta^{1}(P,s) & R(x) = Max_{s} R(x,s)\\ \underline{\text{MMR}(P)} = Min_{x} R(x) = Min_{x} Max_{s} \left\{\Theta(P,x,s) - \Theta^{1}(P,s)\right\}\\ \end{array}$ There are 2n scenarios at which R(s,x) attains max. These are s_i in which w_j = w'_j for j ≤ i & w_j = W'_j for i > j and s'_i in which w_j = W'_j for j ≤ i & w'_j = w'_j for i > j



 $\begin{array}{l} \underline{\text{Min-Max Regret Evacuation on a Path}}\\ R(s,x) = \Theta(P,x,s) - \Theta^{1}(P,s) & R(x) = Max_{s} R(s,x)\\ \underline{\text{MMR}(P)} = Min_{x} R(x) = Min_{x} Max_{s} \left\{\Theta(P,x,s) - \Theta^{1}(P,s)\right\}\\ \end{array}$ There are 2n scenarios at which R(s,x) attains max.

These are s_i in which $w_j = w'_j$ for $j < i \& w_j = W'_j$ for i > jand s'_i in which $w_j = W'_j$ for $j < i \& w'_j = w'_j$ for i > j

- k-sink uniform capacity on path have O(n³) worst case
 scenarios => O(kn³logn) time time algorithm
- •1-sink uniform capacity on tree have $O(n^2)$ worst case MMR scenarios => $O(n^2 \log^2 n)$ time algorithm
- NOTHING is known about any other cases.
 In particular, even on path no structure for MMR solution for 1-sink gen cap problem => no polynomial time alg

<u>Outline</u>

- Dynamic Flow Networks
- Congestion in Dynamic Flows
- Evacuation Flows
 - Problem Definitions
 - Known Results
- Example Algorithm 1: k-Sink Evacuation on a Path
- Example Algorithm 2: 1-sink Min-Max Regret Evacuation on a Path with uniform capacity
- Open Problems

<u>Open Frontier Problems</u>

- G a General Graph, k>1 (NP Hard)
 - Find approximation algorithm or PTAS
- G a General Graph, k=1
 - Solve exactly or prove NP-Hard
 - Even if the one sink is given
- G a tree with uniform capacities, k>1
 - solve min-max regret k-sink problem
- G a path (tree) tree with general capacities, k=1
 - solve min-max regret 1-sink problem
- For Robust Computation
 - Replace Min-Max-Regret by size distribution on nodes and find sink(s) that minimize expected evacuation time.