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The Problem

Most basic Divide-and-Conquer Recurrence is in form

f(n)=2f (g) + e, f1, en given and n > 2

Well known that if

o(n)
en = { O(n)
O(n"*), k> 1

What’s left to do?




The Problem

Not so simple.When n is odd, set can't be split into two equal
subsets. Use almost equal subsets. Recurrence becomes

fn — f[n/ZJ ffn/2'| En

® Solutions can get quite complicated
Second order and sometimes even first order terms can be functions periodic in Ig n

® These periodic functions can be complicated.
Usually continuous, sometimes not differentiable.

® Same periodicity phenomenon occurs in some arithmetic functions.
®Previously, deriving periodic functions was ad-hoc and time consuming

® As a master of techniques, Philippe realized that Mellin-transform methods were
applicable. He showed how they provided an “elementary” derivation




Iwo Basic Examples

» Worst case number of comparisons used by
recursive Mergesort when sorting n items

» Total number of 1’s in binary representation
of integers less than n




Example |: Worst Case Mergesort

Worst Case # of comparisons used by recursive mergesort on n items.

Vn =2, fo=finp2 t finpe +n—1; fi=0




Example |: Worst Case Mergesort

Worst Case # of comparisons used by recursive mergesort on n items.
Vn =2, fn=finp t finpe tn—1; fi=0

Solution is

fn=nlgn+nA(lgn) +1 =Lt

Ig n =logz n

where A(u) — 1 — {u} _ 9l—{u;}




Example |: Worst Case Mergesort

Worst Case # of comparisons used by recursive mergesort on n items.
Vn =2, fn=finp t finpe tn—1; fi=0

Solution is

fn=nlgn+nA(lgn) +1 =Lt

Ig n =logz n

where  A(u) =1—{u} — ol—{u}

A(x) 1s periodic with period 1, 1.e., A(x+1) = A(x),
and continuous, with A(0) = A(1).




Example |: Worst Case Mergesort

Worst Case # of comparisons used by recursive mergesort on n items.
Vn =2, fn=finp t finpe tn—1; fi=0

Solution is

fn=nlgn+nA(lgn) +1 =Lt

Ig n =logz n

where  A(u) =1—{u} — ol—{u}

A(x) 1s periodic with period 1, 1.e., A(x+1) = A(x), Very old analysis.
and continuous, with 4(0) = A(1). Appears in Knuth,Vol |




Example |: Worst Case Mergesort

fn:an/2J -l-f[n/g] +n—1

= fn=nlgn+nA(lgn) +1

Diagram shows l (f —nlg n)
n n

for 2°<n <2¢

Can see convergence to  A(u) =1 — {u} —2171v




Example 2: Sum of Ones

v1(n) is # of 1’s in binary representation of n.

c
e
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H(n) =) wi(n) is an interesting arithmetic function.

1<n

Also arises in analysis of various algorithms.
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Example 2: Sum of Ones

v1(n) is # of 1’s in binary representation of n.

S
p—d

S
N

DO P GO NN R DN - = O/

H(n) =) wi(n) is an interesting arithmetic function.
<n

Also arises in analysis of various algorithms.

Delange (1975) proved (long, technical derivation) that

1
H(n) = inlgn +nD(lgn)

© 00 ~J O U N W = OIS

where D(n) is periodic of period 1, continuous,

but non-differentiable at points {lgn} for n € ZT.




Example 2: Sum of Ones

i\

v

|

Diagram graphs % (H(n) - %n

v1(n) is # of 1’s in binary representation of n.

H(n) =) wi(n) is an interesting arithmetic function.

1
H(n) = §nlgn +nD(lgn)

lgn> for 28<n <20

Can see periodicity of D(u).
D(u) is continuous but not continuously differentiable




General Schema & Results

» Survey of Results
» Background to Technique

» General Schema




Some Results

For these and many similar problems, Mellin techniques
can derive complete asymptotics. Some examples from
refs are:

2 2
Problem fn definition fn solution V= [n/2) (/2]

= +
n/2]+1  |[n/2]+1
Worst case Mergesort fins2] + finjop +n—1 nlgn +nA(lgn) + 1
2m(m + 1)?
m+ 2)2(m + 3)

Average Case Mergesort an/QJ - f(n/ﬂ +n— v, nlgn +nB(gn) + O (1) 52m+1 . 52m+2 = (

Variance of Mergesort Finy2) = Jinj21 + 0n n-Cllgn) +o(n) v1(n) is # of “1”s in binary representation of n

Sum of Digits Function Y ien V1(7) inlgn+nD(lgn)

Triadic Binary Numbers S k(i) n!+83B(lgn) — In h(n) evaluates a base 2 number as a base 3 number

No of odd Binary Coeff | h <Z 2€i> = 23@ e.g., h(5) = h(1012) =32+ 1 =10
in 1st n rows of >icn 9v1 (%) n'83F(lgn) i i
Pascal’s Triangle

For all of these problems, the A(x), B(x), etc., functions
are continuous and periodic with period 1.
Mellin technique outputs function in Fourier Series form.




Basic Technique

Define backward and forward differences of sequences f, g by

an :fn_fn—l

Double Difference is

Easily seen that

Agn = Gn+1 — Ggn

AVf, =V o —Vfn

-

\_

n—1
f(n)=nfi+) (n—k)AVf,
k=1

~N

J




Basic Technique |l

The Mellin-Perron Formula (special case) states :if ¢ > 0 lies in the half-plane

of absolute convergence of the Dirichlet generating function w(s) =




Basic Technique |l

The Mellin-Perron Formula (special case) states :if ¢ > 0 lies in the half-plane

of absolute convergence of the Dirichlet generating function 1w (s)




Basic Technique |l

The Mellin-Perron Formula (special case) states :if ¢ > 0 lies in the half-plane

of absolute convergence of the Dirichlet generating function 1w (s)

In particular, set w, =AVf,

Let ¢>0 lie in the half-plane of absolute convergence of W(s). Then

4 )

n—1
f(n) nfi+» (n—k)AVS,
k=1

nfi + 7 W(s)n®

20T

C—100




General Schema

(A) Set wn, =AV /[, and calculate Dirichlet Generating Function

_oow AVf
_nz::ln Z

Observation: For D & C Recurrences and arithmetic functions this can be easy.




General Schema

(A) Set w, =AVf, and calculate Dirichlet Generating Function
n=1 ne
Observation: For D & C Recurrences and arithmetic functions this can be easy.

(B) Plug into Mellin-Perron formula and evaluate

c+100
fn=mnf1- & / W(s)n®

20T J oo




General Schema

(A) Set wn, =AV /[, and calculate Dirichlet Generating Function

_oow AVf
_nz::ln Z

Observation: For D & C Recurrences and arithmetic functions this can be easy.

(B) Plug into Mellin-Perron formula and evaluate

c+100
n s das
Jn=nh+ 5 /C_,L.OO W(s)n s(s+1)

Observations: This usually reduces to computing residues.
Equally spaced residues along a vertical line yield periodic functions.




Divide & Conquer Recurrences

» When f, defined by D&C Recurrence, its
associated Dirichlet generating function has
special form

» Fully Worked Example: Worst-Case Mergesort

» Another Example: Average-Case Mergesort




Divide & Conquer Recurrences

Vn>2, fu=fin2 T Jinp2 ten

Splitting into odd and even cases yields

2fm + eam i Vme me + Veom
fm -+ fm—|—1 + €2m+1 Vf2m+1 me_|_1 + V62m+1




Divide & Conquer Recurrences

Vn>2, fn=fln/2] T Jin/2] T én eo=Jfo=e1=0

Splitting into odd and even cases yields

2fm + ea2m ; Vion Vf,. +Vean,
fm -+ fm+1 =+ €am+1 Vf2m+1 me+1 + V€2m+1

Ame + AVegm
AVeam11

for m > 0, with AV fi = fa —2f1 = ey = AVey. J




Divide & Conquer Recurrences

Vn > 2, fn:f|_n/2j+f|'n/2‘|—|—6n eo=fo=e1 =0
AV, = AVf,  + AVegy, .
[{ AV fom1r = AVeonm i1 for m > 0, with fi=lf—2fi=e 1 ]




Divide & Conquer Recurrences

\V/7’L227 ntan/QJ +f|—n/2-| —I—Gn eozfozelzo
AV fy = AVf, + AVey, .
- " > AV f, = fo —2f1 = ey = AVe;.
[{ AV fomi1 = AVegnq, OFM> O with  AVSi=/f2 =2/ =e2 1 ]
- wn .
Setting wn = AVf, and Wis)=)_ gives
n=1

oo

00 Ame 0O AVe, W(s) AVe,
W(S) — Z (Qm)s + AVfl + s — 5 + Z —
n=2 n=1

m=1



Divide & Conquer Recurrences

Vn =2, fu=fins2 T Jinp2] Ten eo=Jfo=e1=0

{ AVme
AVf2fm—i—1

Ame + AVegm
AVeam+1

for m > 0,with AVf, = fo—2f1 =ey = AVe,. ]

Setting w, =AVf, and W(s) = n—? gives
n=1
= AVF,, . AVe, W(s) <= AVe,
e e
( (5 S \
. =(s _ AVe,,
yielding W(s) = s where Z(s) = nz_:l .




Divide & Conquer Recurrences

Vn =2, fu=fins2 T Jinp2] Ten eo=Jfo=e1=0

We have just seen that f can be recovered via

n

Jn=nh+ 5 . s(s + 1)

AVe,
> AV

n=1

Observations: e, are known so W(s) can be calculated.
If en=0(n), then W(s) is absolutely convergent for R(s)>2,
and we may let ¢=3.




Simple Worked Example

fi=0 and  Vn2>2, f,=flnp)t finptn—1

= e,=n—1 = AVe;=ey=1 and Vn>2, AVe, =0.

This gives Dirichlet Generating Functions

_ . AVe, =(s) 1
:(s)zz — =1 and Wi(s) = o9 1 9

n=1




Simple Worked Example

fi=0 and  Vn2>2, f,=flnp)t finptn—1

= e,=n—1 = AVe;=ey=1 and Vn>2, AVe, =0.

This gives Dirichlet Generating Functions

_ . AVe, =(s) 1
:(S)ZZ — =1 and Wi(s) = o9 1 9

n=1

Plugging into Mellin-Perron Formula yields

34100
f(n) =nfi- 22; ,/3+oo Wis)n® s(sdj 1)
or - ~N
fn 1 ST s ds
n o 2 Jo_.o 1—2-5 s(s+1)

\- J




Simple Worked Example (cont)

f'n, 1 34100 ns 1 (a, R) I
n o % J5_ i [(s)ds  where (o) =75 s(s+1)

I's

Fix x<-1 and set R>0. Construct counterclockwise
contour I' =11y UI'y UI'3 UI'y and observe that




Simple Worked Example (cont)

f'n, 1 34100 ns 1 (a, R) I
n o % J5_ i [(s)ds  where (o) =75 s(s+1)

I's
Fix x<-1 and set R>0. Construct counterclockwise

contour I' =1y UI's UI's UI'y and observe that




Simple Worked Example (cont)

f'n, 1 34100 ns 1 (a, R) I
no % Ja i [(s)ds  where (o) =75 s(s+1)

I's
Fix x<-1 and set R>0. Construct counterclockwise

contour I' =1y UI's UI's UI'y and observe that

lim L/F I(s)ds = O(n“)

R—o0 217




Simple Worked Example (cont)

f'n, 1 34100 ns 1 (a, R) I
no % Ja i [(s)ds  where (o) =75 s(s+1)

I's
Fix x<-1 and set R>0. Construct counterclockwise

contour I' =1y UI's UI's UI'y and observe that

lim L/F I(s)ds = O(n“)

R—o0 217

1
lim —/ I(s)ds
I'y

R—o00 207




Simple Worked Example (cont)

f'n 1 34100 n’® 1 (a, R) I's (3, R)
n o ), Als)ds o where ) = 9= 55 +1)

Pg [ Pl
Fix x<-1 and set R>0. Construct counterclockwise

contour I' =1y UI's UI's UI'y and observe that

R=o0 20T R—oo 207

. m o
5 /FQI(S)dSZ lim f/ml(s)ds:o lim /F3 I(S)dS O(n )

1
R—oo 207 Iy

= lim L/I(S)Cl3+0(7zo‘)

n R—so00 207




Simple Worked Example (cont)

fn 1 S+ n’ 1 (o, R) (3, R)
L wh I(s) =
2in ). I(s)ds ere  I(s) 12 s(s+1)

Fg [ Pl
Fix x<-1 and set R>0. Construct counterclockwise

contour I' =11y UI's UI's UI'y and observe that

L m 2
5 /FQI(S)dS: lim f/ml(s)ds:o lim /F3 I(S)dS O(n )

R=o0 20T R—oo 207

1
R—oo 207 Iy

— = lim L/I(s)dsqLO(nO‘)

n R—so00 207

This can be evaluated by adding up values of residues
of I(s) within ['!




Simple Worked Example (cont)

f'n, 1 34100 ns 1 (a, R) I
n o % J5_ i [(s)ds  where (o) =75 s(s+1)

I's
Fix x<-1 and set R>0. Construct counterclockwise

contour I' =11y UI's UI's UI'y and observe that

lim L/F I(s)ds = O(n“)

R—o0 217

R—o00 207

1
lim —/ I(s)ds
I'y

— = lim L/I(S)dsqLO(nO‘)

n R—so00 207

This can be evaluated by adding up values of residues
of I(s) within ['!

1

Note: This is true for all &<-1I, so we actually get - R”i”oo 2im /p I(s)ds




Simple Worked Example (cont)

1 n’® 1 (a, R) (3, R)
li — [ I(s)d h Il =
Rlyoc 2i7r/p (5)ds where  I(s) 1—2-% s(s+1)

Fg ! F1




Simple Worked Example (cont)

1 n’ 1 (o, R) Iy
lim — [ I(s)d h I(s) =
Roroc 2i7T/F (s)ds where - I(s) 1—275 s(s+1)

I's
The singularities of I(s) are

1

1. A double pole at s = 0 with residue Ign + % ~ Togz-

2. A simple pole at s = —1 with residue %

3. Simple poles at s = 2kim/log2, k € Z \ {0} with residues aye?**™e",

1 1 “h 2ikT
log 2 xk(xk +1) X

I log2




Simple Worked Example (cont)

1 n’ 1 (o, R) Iy
lim — [ I(s)d h I(s) =
Roroc 2i7T/F (s)ds where - I(s) 1—275 s(s+1)

I's
The singularities of I(s) are

1

1. A double pole at s = 0 with residue Ign + % ~ Togz-

2. A simple pole at s = —1 with residue %

3. Simple poles at s = 2kim/log2, k € Z \ {0} with residues aye?**™e",

1 1 “h 2ikT
log 2 xk(xk +1) X

I log2

.
In _ nlgn +nA(lgn) + 1+ O(n®)
n

where A(u) has explicit Fourier expansion

- 1 1
Alu) = Z ape®F™  with ag = 2 " Tow?
keZ &

J




Another Example: Average Case Mergesort

/2] /2] )

n — J|n n n h n — 't —
Ju= Jins2)  Jiny2) Fen where en =n ([n/2]+1+Ln/2J+1

-

fn=nlgn+nB(lgn)+ O (1)

B(u) = Y,z bee* ™ is given by uniformly convergent Fourier Series,

1 1+ U(xk) , 2k
= with vy =
log 2 Xk(Xk + 1)

b
g log2’

o0 2 —1 1
Vis) =2, (m+1)(m+2) | (2m)? ! (2m+1)* |

m=1

\_

Note: B(u) is continuous, periodic with period 1, but
non-differentiable at all values {logzn}, for integers n.




Another Example: Average Case Mergesort

) (2,
fn — f[n/2J ‘|‘f|'n/2'| ten where e, =mn— ([n/ﬂ + 1 i I_n/2J _I_l)

fn=nlgn+nB(lgn)+ O (1)

(fa- n lg n)/n plotted for 2°<n<2°¢
on logarithmic scale

Can see convergence to B(lg n),
periodicity and continuity of B(u),
and non-differentiability of B(u).




Arithmetic Functions

» Counting Number of 1’s

New Derivation; much “easier” than Delange (1975)

» Relationship with Reimann Zeta Function




c
o

/N

n)

fn (% (n)

Example: Sum of Digits

0

01
10
11
100
101
110
111
1000
1001

Recall the Reimann Zeta function ¢(s) =)

© 00O Ui WhN K~ OIS

N R W NN~ RF=O

O WO L ONO O

v1(n) is # of “1”s in binary representation of n

Jn = Zvl(n)

n>1

va(n) is exponent of 2 in prime decomposition of n

Vin=fn— foc1=v1(n—1)
AV = Vfoir =V = 01(n) — 010 — 1) = 1 — u3(n)

Known that 2_ vifn ) Qg(i)l

1
S
n n>1




Example: Sum of Digits

n) fn 2 (n)

c
—t
Y

v1(n) is # of “1”s in binary representation of n

fn — Zvl(n)

n>1

— AV 28
W)= Sdn = 2q(s)

n=1

© 00~ U R WD~ OIS

N — W NN FNRFRFO
© U N~ O

O WO R ONORFRO

n 2-+1200

M-P: fn = W(s)n?

27/7'(- 2500

—_
w Do

Evaluating by integrating over appropriate contour and taking residues yields
4 )

1
fr, = §nlgn +nF(lgn)

lgmw 1 1

2 2log2 4

_ 1 C(xk)
* 7 log 2 xr(xx + 1)

fo




Example: Sum of Digits

v1(n) is # of “1”s in binary representation of n

1 1
Diagram graphs (fn — §nlgn) for 28 <n< 20

Can see continuity and periodicity of F(u),
as well as fact that it is not continuously differentiable




Reprise

To calculate f,

(A) Set wn =AVf,  and calculate Dirichlet Generating Function

o0 N ooA .
(CEPM DN

Observation: For D&C Recurrences and arithmetic functions this can be straightforward.

(B) Plug into Mellon-Perron formula and evaluate

c+100
n ds
W 5 .
sin . VI T

Jn=nf1

Observations: Done by showing this is equivalent to computing integral on contour
and then calculating residues.
Equally spaced residues along a vertical line yield periodic functions.




Some lIssues

General technique is very applicable but this presentation glossed over
complications that sometimes arise.

» Proving convergence of Fourier series can be tricky. Sometimes don’t have
uniform convergence. (In those cases moving to triple summation occasionally works.)

» Only used special case of Mellin-Perron Formula that applied to double-

summation. There are other versions that can be used for single summation,

triple summation, etc.

» Showing that integral along other three sides of contour is negligible is not

always easy.




