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Motivation

Nothing new: material here goes back 20-30 years.

There are two classic cookbook
Dynamic Programming Speedups in the literature:
Knuth-Yao technique & SMAWK algorithm.

They “feel” similar. Are they related?

Knuth-Yao predates online algorithms.
Can the KY speedup be maintained online?

Answers to the two questions turned out to be related.

Note: major confusion arises in the analysis because
certain essential terms, e.g., quadrangle-inequality,
monotone and online-algorithm have been used in very
different ways in the two techniques’ literature.
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Outline

Background
Knuth-Yao (KY) Quadrangle Inequality (QI) Speedup

SMAWK Algorithm for finding
Row Minima of Totally Monotone (TM) Matrices

The Dd Decomposition
A transformation from QI to TM such that

SMAWK solves KY problem as quickly as KY.

The Lm and Rm Decompositions
Another transformation from QI to TM that

(1) implies KY speedup and (2) enables online solution.

Extensions
Applying the technique to known generalizations of KY.
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Background

Knuth-Yao Quadrangle Inequality Speedup
D. E. Knuth (1971) and F. F. Yao (1980,1982)

Θ(n) speedup: O(n3) down to O(n2)

SMAWK Algorithm for finding
Row Minima of Totally Monotone Matrices
A. Aggarwal, M. M. Klawe, S. Moran, P. Shor, R. Wilber (1986)

Θ(n) speedup: O(n2) down to O(n)

Both techniques are often used to speed up DPs.

How are the two techniques related?
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Quadrangle Inequality

Original Motivation
Computing Optimal Binary Search Trees (Optimal BST)

[Gilbert and Moore (1959)]

Optimal BST
Construct a search tree for n keys

n internal nodes corresponds to successful search
pl, (l = 1 . . . n) is the weight that search-key = Keyl

n+ 1 external nodes corresponds to unsuccessful search
ql, (l = 0 . . . n) is the weight that Keyl < search-key < Keyl+1

Minimize the number of comparisons
∑

1≤l≤n

pl · (1 + d(pl)
︸ ︷︷ ︸

depth

) +
∑

0≤l≤n

ql · d(ql)
︸︷︷︸

depth
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Optimal BST

Minimize
∑

1≤l≤n

pl · (1 + d(pl)) +
∑

0≤l≤n

ql · d(ql)

An example
n = 2 p = (19, 12), q = (36, 20, 11)

Cost = 141 Cost = 173
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Optimal BST

Solution: Dynamic Programming (DP)

Bi,j the optimal BST for the subproblem Keyi+1, . . . , Keyj

DP recurrence

Bi,j =
∑j

l=i+1 pl +
∑j

l=i ql +mini<t≤j{Bi,t−1 +Bt,j}

Bt,j

pt

Bi,t−1
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Optimal BST

DP: Straightforward Calculation

Bi,j =
∑j

l=i+1 pl +
∑j

l=i ql +mini<t≤j{Bi,t−1 +Bt,j}

An example
n = 6 p = (88, 21, 19, 12, 14, 18) q = (53, 89, 36, 20, 11, 19, 15)

0 1 2 3 4 5 6

0 0 230 433 586 698 862 1002

1 0 146 260 349 491 624

2 0 75 141 250 357

3 0 43 119 204

4 0 44 121

5 0 52

6 0
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Optimal BST

Naive: O(n3) =
∑n

i=1

∑n
j=iΘ(j − i)

Bi,j =
∑j

l=i+1 pl +
∑j

l=i ql +mini<t≤j{Bi,t−1 +Bt,j}

Speedup: O(n2) [Knuth (1971)]

KB(i, j) the largest index t that achieves the minimum.

Theorem in [Knuth (1971)]

KB(i, j) ≤ KB(i, j + 1) ≤ KB(i+ 1, j + 1)

i i + 1

j KB(i, j) KB(i, j + 1)

j + 1 KB(i + 1, j + 1)

Quadrangle-Inequality and Total-Monotonicity – p.10/52



Optimal BST

Naive: O(n3) =
∑n

i=1

∑n
j=iΘ(j − i)

Bi,j =
∑j

l=i+1 pl +
∑j

l=i ql +mini<t≤j{Bi,t−1 +Bt,j}

Speedup: O(n2) [Knuth (1971)]

KB(i, j) the largest index t that achieves the minimum.

Theorem in [Knuth (1971)]

KB(i, j) ≤ KB(i, j + 1) ≤ KB(i+ 1, j + 1)

i i + 1

j KB(i, j) KB(i, j + 1)

j + 1 KB(i + 1, j + 1)

Quadrangle-Inequality and Total-Monotonicity – p.10/52



Optimal BST

Naive: O(n3) =
∑n

i=1

∑n
j=iΘ(j − i)

Bi,j =
∑j

l=i+1 pl +
∑j

l=i ql +mini<t≤j{Bi,t−1 +Bt,j}

Speedup: O(n2) [Knuth (1971)]

KB(i, j) the largest index t that achieves the minimum.

Theorem in [Knuth (1971)]

KB(i, j) ≤ KB(i, j + 1) ≤ KB(i+ 1, j + 1)

i i + 1

j KB(i, j) KB(i, j + 1)

j + 1 KB(i + 1, j + 1)

Quadrangle-Inequality and Total-Monotonicity – p.10/52



Optimal BST

Naive: O(n3) =
∑n

i=1

∑n
j=iΘ(j − i)

Bi,j =
∑j

l=i+1 pl +
∑j

l=i ql +mini<t≤j{Bi,t−1 +Bt,j}

Speedup: O(n2) [Knuth (1971)]

KB(i, j) the largest index t that achieves the minimum.

Theorem in [Knuth (1971)]

KB(i, j) ≤ KB(i, j + 1) ≤ KB(i+ 1, j + 1)

i i + 1

j KB(i, j) KB(i, j + 1)

j + 1 KB(i + 1, j + 1)

Quadrangle-Inequality and Total-Monotonicity – p.10/52



Optimal BST

Naive: O(n3) =
∑n

i=1

∑n
j=iΘ(j − i)

Bi,j =
∑j

l=i+1 pl +
∑j

l=i ql +mini<t≤j{Bi,t−1 +Bt,j}

Speedup: O(n2) [Knuth (1971)]

KB(i, j) the largest index t that achieves the minimum.

Theorem in [Knuth (1971)]

KB(i, j) ≤ KB(i, j + 1) ≤ KB(i+ 1, j + 1)

i i + 1

j KB(i, j) KB(i, j + 1)

j + 1 KB(i + 1, j + 1)

Quadrangle-Inequality and Total-Monotonicity – p.10/52



Optimal BST

Speedup: Bi,j =
∑j

l=i+1 pl +
∑j

l=i ql +mini<t≤j{Bi,t−1 +Bt,j}

KB(i, j) ≤ KB(i, j + 1) ≤ KB(i+ 1, j + 1)

The index table

Quadrangle-Inequality and Total-Monotonicity – p.11/52



Optimal BST

Speedup: Bi,j =
∑j

l=i+1 pl +
∑j

l=i ql +mini<t≤j{Bi,t−1 +Bt,j}

KB(i, j) ≤ KB(i, j + 1) ≤ KB(i+ 1, j + 1)

The index table

Quadrangle-Inequality and Total-Monotonicity – p.11/52



Optimal BST

Speedup: Bi,j =
∑j

l=i+1 pl +
∑j

l=i ql +mini<t≤j{Bi,t−1 +Bt,j}

KB(i, j) ≤ KB(i, j + 1) ≤ KB(i+ 1, j + 1)

The index table

0 1 2 3 4 5 6

0 0

1 1

2 2

3 3

4 4

5 5

6

Quadrangle-Inequality and Total-Monotonicity – p.11/52



Optimal BST

Speedup: Bi,j =
∑j

l=i+1 pl +
∑j

l=i ql +mini<t≤j{Bi,t−1 +Bt,j}

KB(i, j) ≤ KB(i, j + 1) ≤ KB(i+ 1, j + 1)

The index table

0 1 2 3 4 5 6

0 0 0

1 1

2 2

3 3

4 4

5 5

6

Quadrangle-Inequality and Total-Monotonicity – p.11/52



Optimal BST

Speedup: Bi,j =
∑j

l=i+1 pl +
∑j

l=i ql +mini<t≤j{Bi,t−1 +Bt,j}

KB(i, j) ≤ KB(i, j + 1) ≤ KB(i+ 1, j + 1)

The index table

0 1 2 3 4 5 6

0 0 0

1 1 1

2 2

3 3

4 4

5 5

6

Quadrangle-Inequality and Total-Monotonicity – p.11/52



Optimal BST

Speedup: Bi,j =
∑j

l=i+1 pl +
∑j

l=i ql +mini<t≤j{Bi,t−1 +Bt,j}

KB(i, j) ≤ KB(i, j + 1) ≤ KB(i+ 1, j + 1)

The index table

0 1 2 3 4 5 6

0 0 0

1 1 1

2 2 2

3 3

4 4

5 5

6

Quadrangle-Inequality and Total-Monotonicity – p.11/52



Optimal BST

Speedup: Bi,j =
∑j

l=i+1 pl +
∑j

l=i ql +mini<t≤j{Bi,t−1 +Bt,j}

KB(i, j) ≤ KB(i, j + 1) ≤ KB(i+ 1, j + 1)

The index table

0 1 2 3 4 5 6

0 0 0

1 1 1

2 2 2

3 3 4

4 4

5 5

6

Quadrangle-Inequality and Total-Monotonicity – p.11/52



Optimal BST

Speedup: Bi,j =
∑j

l=i+1 pl +
∑j

l=i ql +mini<t≤j{Bi,t−1 +Bt,j}

KB(i, j) ≤ KB(i, j + 1) ≤ KB(i+ 1, j + 1)

The index table

0 1 2 3 4 5 6

0 0 0

1 1 1

2 2 2

3 3 4

4 4 5

5 5

6

Quadrangle-Inequality and Total-Monotonicity – p.11/52



Optimal BST

Speedup: Bi,j =
∑j

l=i+1 pl +
∑j

l=i ql +mini<t≤j{Bi,t−1 +Bt,j}

KB(i, j) ≤ KB(i, j + 1) ≤ KB(i+ 1, j + 1)

The index table

0 1 2 3 4 5 6

0 0 0

1 1 1

2 2 2

3 3 4

4 4 5

5 5

6

Quadrangle-Inequality and Total-Monotonicity – p.11/52



Optimal BST

Speedup: Bi,j =
∑j

l=i+1 pl +
∑j

l=i ql +mini<t≤j{Bi,t−1 +Bt,j}

KB(i, j) ≤ KB(i, j + 1) ≤ KB(i+ 1, j + 1)

The index table

0 1 2 3 4 5 6

0 0 0 0

1 1 1 1

2 2 2 2

3 3 4 4

4 4 5

5 5

6

Quadrangle-Inequality and Total-Monotonicity – p.11/52



Optimal BST

Speedup: Bi,j =
∑j

l=i+1 pl +
∑j

l=i ql +mini<t≤j{Bi,t−1 +Bt,j}

KB(i, j) ≤ KB(i, j + 1) ≤ KB(i+ 1, j + 1)

The index table

0 1 2 3 4 5 6

0 0 0 0 0

1 1 1 1 1

2 2 2 2 4

3 3 4 4

4 4 5

5 5

6

Quadrangle-Inequality and Total-Monotonicity – p.11/52



Optimal BST

Speedup: Bi,j =
∑j

l=i+1 pl +
∑j

l=i ql +mini<t≤j{Bi,t−1 +Bt,j}

KB(i, j) ≤ KB(i, j + 1) ≤ KB(i+ 1, j + 1)

The index table

0 1 2 3 4 5 6

0 0 0 0 0 1

1 1 1 1 1 2

2 2 2 2 4

3 3 4 4

4 4 5

5 5

6

Quadrangle-Inequality and Total-Monotonicity – p.11/52



Optimal BST

Speedup: Bi,j =
∑j

l=i+1 pl +
∑j

l=i ql +mini<t≤j{Bi,t−1 +Bt,j}

KB(i, j) ≤ KB(i, j + 1) ≤ KB(i+ 1, j + 1)

The index table

0 1 2 3 4 5 6

0 0 0 0 0 1 1

1 1 1 1 1 2

2 2 2 2 4

3 3 4 4

4 4 5

5 5

6

Quadrangle-Inequality and Total-Monotonicity – p.11/52



Optimal BST

Speedup:
KB(i, j) ≤ KB(i, j + 1) ≤ KB(i+ 1, j + 1)

Each diagonal j − i = d

O(n) =
∑n−d

i=1 (KB(i+ 1, i+ d)−KB(i, i+ d− 1))

= KB(n− d+ 1, n)−KB(1, d)

O(n2) total work over all n diagonals.
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Quadrangle Inequality

Definition [Yao (1980, 1982)]

Function f(i, j), (0 ≤ i ≤ j ≤ n)

satisfies a Quadrangle Inequality (QI), if ∀i ≤ i′ ≤ j ≤ j′

f(i, j) + f(i′, j′) ≤ f(i′, j) + f(i, j′)

Function f(i, j), (0 ≤ i ≤ j ≤ n)

is Monotone over the integer lattice (MIL), if ∀[i, j] ⊆ [i′, j′]

f(i, j) ≤ f(i′, j′)
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Speedup using Quadrangle Inequality

Bi,j = w(i, j) + mini<t≤j{Bi,t−1 +Bt,j}

Lemmas from [Yao (1980)]

(A) If w(i, j) satisfies QI and is MIL,
⇒ Bi,j satisfies QI.

(B) If Bi,j satisfies QI,
⇒ KB(i, j) ≤ KB(i, j + 1) ≤ KB(i+ 1, j + 1)

In optimal BST problem,

Bi,j =
∑j

l=i+1 pl +
∑j

l=i ql
︸ ︷︷ ︸

w(i,j)

+mini<t≤j{Bi,t−1 +Bt,j}

Optimal BST w(i, j) satisfies QI as equality and is MIL.

⇒ exactly Knuth’s result.
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Online Problem

Definition: Two-sided online problem
Current step: Optimal BST for Keyl+1, . . . , Keyr

Next step: Add either Keyl or Keyr+1.

An example
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Online Problem

Definition: Two-sided online problem
Current step: Optimal BST for Keyl+1, . . . , Keyr

Next step: Add either Keyl or Keyr+1.

An example
p = (88, 21,19, 12, 14, 18) q = (53, 89,36, 20, 11, 19, 15)

1 2 3 4 5 6

1

2 0 75 141 250

3 0 43 119

4 0 44

5 0

6

36

19

14

12

20 11

19
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Online Problem

Definition: Two-sided online problem
Current step: Optimal BST for Keyl+1, . . . , Keyr

Next step: Add either Keyl or Keyr+1.

An example
p = (88, 21,19, 12, 14, 18) q = (53, 89,36, 20, 11, 19, 15)

1 2 3 4 5 6

1

2 0 75 141 250 357

3 0 43 119 204

4 0 44 121

5 0 52

6 0

36 12

19
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Online Problem

Definition: Two-sided online problem
Current step: Optimal BST for Keyl+1, . . . , Keyr

Next step: Add either Keyl or Keyr+1.

An example
p = (88,21, 19, 12, 14, 18) q = (53,89, 36, 20, 11, 19, 15)

1 2 3 4 5 6

1 0 146 260 349 491 624

2 0 75 141 250 357

3 0 43 119 204

4 0 44 121

5 0 52

6 0

19

21

89 36 12

20 11

14

18

19 15
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Outline

Background
Knuth-Yao (KY) Quadrangle Inequality (QI) Speedup

SMAWK Algorithm for finding
Row Minima of Totally Monotone (TM) Matrices

The Dd Decomposition
A transformation from QI to TM such that

SMAWK solves KY problem as quickly as KY.

The Lm and Rm Decompositions
Another transformation from QI to TM that

(1) implies KY speedup and (2) enables online solution.

Extensions
Applying the technique to known generalizations of KY.
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Totally Monotone Matrices

Definition

M is an m× n matrix

RMM (i) is column index of rightmost minimum item of row i of M .

M is Monotone if ∀i ≤ i′, RMM (i) ≤ RMM (i
′).

7 2 4 3 8 9 RMM (1) = 2

5 1 5 1 6 5 RMM (2) = 4

7 1 2 0 3 1 RMM (3) = 4

9 4 5 1 3 2 RMM (4) = 4

8 4 5 3 4 3 RMM (5) = 6

9 6 7 5 6 5 RMM (6) = 6
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Totally Monotone Matrices

Definition (Cond.)
A 2× 2 Monotone matrix

2 4

4 5

2 3

5 3

7 1

2 2

An m× n matrix M is Totally Monotone (TM)
if every 2× 2 submatrix is Monotone.

(submatrix: not necessarily contiguous in the original matrix)

Property
M is Totally Monotone ⇒ M is Monotone
M is Totally Monotone : M is Monotone
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SMAWK Algorithm

Motivation
Find all m row minima of an implicitly given m× n matrix M

Naive Algorithm: O(mn)

SMAWK Algorithm
[Aggarwal, Klawe, Moran, Shor, Wilber (1986)]

If M is Totally Monotone,
all m row minima can be found in O(m+ n) time.

Usually m = Θ(n)

Θ(n) speedup: O(n2) down to O(n).

SMAWK was culmination of decade(s) of work on similar problems;
speedups using convexity and concavity.

Has been used to speed up many DP problems, e.g., computational
geometry, bioinformatics, k-center on a line, etc.
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The Monge Property

Motivation
TM property is often established via Monge property.

Definition
An m× n matrix M is Monge if ∀i ≤ i′ and ∀j ≤ j′

Mi,j +Mi′,j′ ≤ Mi′,j +Mi,j′
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The Monge Property

Quadrangle Inequality
Function f(i, j)

∀i ≤ i′ ≤ j ≤ j′

f(i, j) + f(i′, j′) ≤ f(i′, j) + f(i, j′)

Monge
Matrix M

∀i ≤ i′ and ∀j ≤ j′

Mi,j +Mi′,j′ ≤Mi′,j +Mi,j′

QI vs. Monge
Different names for same type of inequality.

Used differently in literature.
QI: f(i, j) is function to be calculated.

Need all f(i, j) entries.
Monge: Mi,j implicitly given.

Only need the row minima, but not other entries.
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Monge Property

∀i ≤ i′ ∀j ≤ j′ Mi,j +Mi′,j′ ≤Mi′,j +Mi,j′

Theorems

M is Monge ⇒ M is Totally Monotone
M is Monge : M is Totally Monotone

If ∀i and ∀j, Mi,j +Mi+1,j+1 ≤ Mi+1,j +Mi,j+1,
then M is Monge.
⇒ Only need to prove Monge property for adjacent rows and
columns.
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Monge Property

General Scheme

1. Prove Monge Property for adjacent rows and columns

2. (Automatically implies) Monge Property

3. (Automatically implies) Totally Monotone Property

4. Use SMAWK algorithm to find row minima

5. Usually Θ(n) speedup
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Relationship?

Quadrangle Inequality

A matrix to be calculated
Need all O(n2) entries

O(n3) to O(n2) speedup

Totally Monotone (Monge)

A matrix given implicitly
Need only O(n) row minima

O(n2) to O(n) speedup

This talk
QI instance is decomposed into Θ(n) TM instances

Each TM instance requires O(n) time

⇒ QI instance requires O(n2) time in total
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Decompositions

QI instance −→ Θ(n) TM instances

Dd decomposition
Each diagonal −→ TM instance

Permits solving QI problem directly using SMAWK.
Same time bound as KY but different technique.

Lm and Rm decompositions
Lm: Each row −→ TM instance

Rm: Each column −→ TM instance

Immediately implies the original KY speedup

Permits using algorithm of [Larmore, Schieber (1990)], to get “online”
KY speedup.
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Dd Decomposition

Each diagonal d in original QI matrix
corresponds to a new Monge Matrix Dd

Entries on diagonal d are
row minima of corresponding rows in Dd.
−→
←−
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Lm and Rm Decompositions (Rm shown)

Each column (row) m in original QI matrix
corresponds to a new Monge Matrix Rm (Lm)

Entries on column (row) m are
row minima of corresponding rows in Rm (Lm).
−→
←−
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Outline

Background
Knuth-Yao (KY) Quadrangle Inequality (QI) Speedup

SMAWK Algorithm for finding
Row Minima of Totally Monotone (TM) Matrices

The Dd Decomposition
A transformation from QI to TM such that

SMAWK solves KY problem as quickly as KY.

The Lm and Rm Decompositions
Another transformation from QI to TM that

(1) implies KY speedup and (2) enables online solution.

Extensions
Applying the technique to known generalizations of KY.
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Dd Decomposition

Definition

General recurrence
Bi,j = w(i, j) + mini<t≤j{Bi,t−1 +Bt,j}

For diagonal d, (1 ≤ d < n)

Bi,i+d = w(i, i+ d) + mini<j≤i+d{Bi,j−1 +Bj,i+d}

Define (n− d+ 1)× (n+ 1) matrix Dd

Dd
i,j =







w(i, i+ d) + {Bi,j−1 +Bj,i+d} if 0 ≤ i < j ≤ i+ d ≤ n

∞ otherwise

Then,
Bi,i+d = mini<j≤i+d Dd

i,j = min0≤j≤n Dd
i,j

Lemma
Dd is Monge, for each 1 ≤ d < n.
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Dd Decomposition

Dd
i,j =
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Dd is Monge

Definition Dd
i,j = w(i, i+ d) + {Bi,j−1 +Bj,i+d}

By definition

Dd
i,j +Dd

i+1,j+1 = {w(i, i+ d) + w(i+ 1, i+ d+ 1)}+

{Bi,j−1 +Bi+1,j}+ {Bj,i+d +Bj+1,i+d+1}

Dd
i+1,j +Dd

i,j+1 = {w(i+ 1, i+ d+ 1) + w(i, i+ d)}+

{Bi+1,j−1 +Bi,j}+ {Bj,i+d+1 +Bj+1,i+d}

Since B satisfies QI,

Bi,j−1 +Bi+1,j ≤ Bi+1,j−1 +Bi,j

Bj,i+d +Bj+1,i+d+1 ≤ Bj,i+d+1 +Bj+1,i+d

Dd
i,j +Dd

i+1,j+1 ≤ Dd
i+1,j +Dd

i,j+1
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SMAWK replaces KY

We know

Dd
i,j =







w(i, i+ d) + {Bi,j−1 +Bj,i+d} if 0 ≤ i < j ≤ i+ d ≤ n

∞ otherwise

Bi,i+d = min0≤j≤n Dd
i,j = minimum of row i of Dd

Dd is Monge, for each 1 ≤ d < n.

For fixed d, SMAWK can be used to find all the Bi,i+d (row minima of
Dd) in O(n) time.

⇒ O(n2) time for all Dd.

Note: Must run SMAWK on Dd in the order d = 1, 2, 3, . . .

Entries in Dd depend upon row minima of Dd′

where d′ < d.
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Outline

Background
Knuth-Yao (KY) Quadrangle Inequality (QI) Speedup

SMAWK Algorithm for finding
Row Minima of Totally Monotone (TM) Matrices

The Dd Decomposition
A transformation from QI to TM such that

SMAWK solves KY problem as quickly as KY.

The Lm and Rm Decompositions
Another transformation from QI to TM that

(1) implies KY speedup and (2) enables online solution.

Extensions
Applying the technique to known generalizations of KY.
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Rm Decomposition

Definition

General recurrence
Bi,j = w(i, j) + mini<t≤j{Bi,t−1 +Bt,j}

For column m, (1 ≤ m ≤ n)

Bi,m = w(i, m) + mini<j≤m{Bi,j−1 +Bj,m}

Define (m+ 1)× (m+ 1) matrix Rm

Rm
i,j =







w(i, m) + {Bi,j−1 +Bj,m} if 0 ≤ i < j ≤ m

∞ otherwise

Then
Bi,m = mini<j≤m Rm

i,j = min0<j≤m Rm
i,j

Lemma

Rm is Monge, for each 1 ≤ m ≤ n.
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Rm Decomposition

Rm
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Rm is Monge

Definition Rm
i,j = w(i, m) + {Bi,j−1 +Bj,m}

By definition

Rm
i,j +Rm

i+1,j+1 = {w(i, m) + w(i+ 1, m)}+
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Since B satisfies QI,
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Outline

Background
Knuth-Yao (KY) Quadrangle Inequality (QI) Speedup

SMAWK Algorithm for finding
Row Minima of Totally Monotone (TM) Matrices

The Dd Decomposition
A transformation from QI to TM such that

SMAWK solves KY problem as quickly as KY.

The Lm and Rm Decompositions
Another transformation from QI to TM that

(1) implies KY speedup and (2) enables online solution.

Extensions
Applying the technique to known generalizations of KY.
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Lm and Rm Imply Original KY Result

KY Speedup
KB(i, j) ≤ KB(i, j + 1) ≤ KB(i+ 1, j + 1)

Rm −→ KB(i, j + 1) ≤ KB(i+ 1, j + 1)

Recall
RMRm(i) is index of rightmost minimum of row i of Rm.

From the definition
Bi,m = mini<j≤m Rm

i,j −→ KB(i, m) = RMRm(i)

So
Rm is TM −→ RMRm(i) ≤ RMRm(i+ 1)

−→ KB(i, m) ≤ KB(i+ 1, m)

Lm −→ KB(i, j) ≤ KB(i, j + 1)

Similar
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Outline

Background
Knuth-Yao (KY) Quadrangle Inequality (QI) Speedup

SMAWK Algorithm for finding
Row Minima of Totally Monotone (TM) Matrices

The Dd Decomposition
A transformation from QI to TM such that

SMAWK solves KY problem as quickly as KY.

The Lm and Rm Decompositions
Another transformation from QI to TM that

(1) implies KY speedup and (2) enables online solution.

Extensions
Applying the technique to known generalizations of KY.
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LARSCH Algorithm

Dd decomposition
Dd

i,j = w(i, i+ d) + {Bi,j−1 +Bj,i+d} (0 ≤ i < j ≤ i+ d ≤ n)

SMAWK algorithm

Lm and Rm decomposition
Rm

i,j = w(i, m) + {Bi,j−1 +Bj,m} (0 ≤ i < j ≤ m)

Can not use SMAWK algorithm:
Bj,m = mint Rm

j,t is row-minima of row j of Rm

and is therefore not known.

LARSCH algorithm [Larmore, Schieber (1990)]
permits calculating row minima of TM matrices in O(N),
even with this dependency

O(n) time for each column ⇒ O(n2) in total.
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LARSCH Algorithm

Finding row minima in totally monotone matrices with limited dependency.
This is also known as online TM problem

Entries of column j can de-
pend on the row minima of
rows i where Mi,j =∞.

Green: the column j.
Red: rows that column j

can depend on.

Rm
i,j = w(i, m) + {Bi,j−1 +Bj,m} (0 ≤ i < j ≤ m)

Rm satisfies the condition of LARSCH.
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Note

Aggarwall and Park (FOCS ’88) developed a 3-D monotone matrix
representation of the K − Y problem and then showed how to use an
algorithm due to Wilber (for online computation of maxima of certain concave
sequences) to calculate ‘‘tube-maxima” of their matrices.

Careful decomposition of their work yields a decomposition similar to Lm and
an O(n) algorithm for calculating its row-minima. This provides an alternative
derivation of the previous result (with a symmetry argument extending it to
Rm)
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Online Algorithm

Recall: Two-sided online
Current step: Optimal BST for Keyl+1, . . . , Keyr

Next step: Add either Keyl or Keyr+1.

Online algorithm: using LARSCH
Add Keyr+1

Construct Rr+1

Solve by LARSCH

O(n) time worst case
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Online Algorithm

Recall: Two-sided online
Current step: Optimal BST for Keyl+1, . . . , Keyr

Next step: Add either Keyl or Keyr+1.

1 2 3 4 5 6

1 0 146 260 349 491 624

2 0 75 141 250 357

3 0 43 119 204

4 0 44 121

5 0 52

6 0

Online algorithm: using LARSCH
Add Keyr+1

Construct Rr+1

Solve by LARSCH

O(n) time worst case
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Outline

Background
Knuth-Yao (KY) Quadrangle Inequality (QI) Speedup

SMAWK Algorithm for finding
Row Minima of Totally Monotone (TM) Matrices

The Dd Decomposition
A transformation from QI to TM such that

SMAWK solves KY problem as quickly as KY.

The Lm and Rm Decompositions
Another transformation from QI to TM that

(1) implies KY speedup and (2) enables online solution.

Extensions
Applying the technique to known generalizations of KY.
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Extensions

Some known extensions

[Michelle L. Wachs (1989)]

[Al Borchers, Prosenjit Gupta (1994)]
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Recurrence

Original Knuth-Yao
Bi,j = w(i, j) + mini<t≤j{Bi,t−1 +Bt,j}

Borchers and Gupta
Bi,j = mini<t≤j{w(i, t, j) + aBi,t−1 + bBt,j}

Quadrangle-Inequality and Total-Monotonicity – p.47/52



Recurrence

Original Knuth-Yao
Bi,j = w(i, j) + mini<t≤j{Bi,t−1 +Bt,j}

Borchers and Gupta
Bi,j = mini<t≤j{w(i, t, j) + aBi,t−1 + bBt,j}

Quadrangle-Inequality and Total-Monotonicity – p.47/52



Recurrence

Original Knuth-Yao
Bi,j = w(i, j) + mini<t≤j{Bi,t−1 +Bt,j}

Borchers and Gupta
Bi,j = mini<t≤j{w(i, t, j) + aBi,t−1 + bBt,j}

Quadrangle-Inequality and Total-Monotonicity – p.47/52



Generalization of QI

Original Knuth-Yao

Bi,j = w(i, j) + mini<t≤j{Bi,t−1 +Bt,j}

w(i, j) satisfies QI, if ∀i ≤ i′ ≤ j ≤ j′

w(i, j) + w(i′, j′) ≤ w(i′, j) + w(i, j′)

Borchers and Gupta
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w(i′, t′, j′) + w(i, t, j) ≤ w(i′, t′, j) + w(i, t, j′)

If the value of w(i, t, j) is independent of t, the Borchers and Gupta
definition becomes the original Knuth-Yao definition.
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Generalization of MIL

Original Knuth-Yao

Bi,j = w(i, j) + mini<t≤j{Bi,t−1 +Bt,j}

w(i, j) is Monotone on the integer lattice (MIL),
if ∀[i, j] ⊆ [i′, j′], w(i, j) ≤ w(i′, j′).
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Applications

[Borchers, Gupta (1994)]
Rectilinear Steiner Minimal Arborescence (RSMA) of a slide

Slide: a set of points (xi, yi) such that,
if i < j, then xi < xj and yi > yj .

RSMA: a directed tree where each edge
either goes up or to the right.

Bi,j = mini<t≤j{(xt − xi + yt−1 − yj)
︸ ︷︷ ︸

w(i,t,j)

+Bi,t−1 +Bt,j}

w(i, t, j) satisfies generalized QI and MIL.
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Outline

Background
Knuth-Yao (KY) Quadrangle Inequality (QI) Speedup

SMAWK Algorithm for finding
Row Minima of Totally Monotone (TM) Matrices

The Dd Decomposition
A transformation from QI to TM such that

SMAWK solves KY problem as quickly as KY.

The Lm and Rm Decompositions
Another transformation from QI to TM that

(1) implies KY speedup and (2) enables online solution.

Extensions
Applying the technique to known generalizations of KY.
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Questions?
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