
Chapter 2: Application Layer 1Comp361 Spring 2004

Chapter 2: Application Layer

Chapter goals:
❒ conceptual +

implementation
aspects of network
application protocols
❍ client server

paradigm
❍ service models

❒ learn about protocols
by examining popular
application-level
protocols

More chapter goals
❒ specific protocols:

❍ http
❍ ftp
❍ smtp
❍ pop
❍ dns

❒ programming network
applications

❍ socket programming

Chapter 2: Application Layer 2Comp361 Spring 2004

Chapter 2 outline

❒ 2.1 Principles of app
layer protocols

❒ 2.2 Web and HTTP
❒ 2.3 FTP
❒ 2.4 Electronic Mail

❍ SMTP, POP3, IMAP
❒ 2.5 DNS

❒ 2.6 Socket programming
with TCP

❒ 2.7 Socket programming
with UDP

❒ 2.8 Building a Web
server

❒ 2.9 Content distribution
❍ Content distribution

networks vs. Web
Caching

Chapter 2: Application Layer 3Comp361 Spring 2004

Applications and application-layer protocols

Applications: communicating, distributed processes
❍ running the “user space” of network hosts
❍ which exchange messages among themselves
❍ Network Applications are applications which involves interactions

of processes implemented in multiple hosts connected by a
network. Examples: the web, email, file transfer

❍ Within the same host, processes communicate with interprocess
communication defined by the OS (Operating System).

❍ Processes running in different hosts communicate with an
application-layer protocol

Application-layer protocols
❍ are a “piece” of Application (apps)
❍ define messages exchanged by apps and actions taken
❍ use services provided by lower layer protocols

Chapter 2: Application Layer 4Comp361 Spring 2004

Client-server paradigm

Typical network app has two
pieces: client and server

application
transport
network
data link
physical

application
transport
network
data link
physical

Client:
❒ initiates contact with server

(“speaks first”)
❒ typically requests service from server
❒ for Web, client is implemented in

browser; for e-mail, in mail reader
Server:
❒ provides requested service to client
❒ e.g., Web server sends requested Web

page, mail server delivers e-mail

request

reply

Server

Client

Chapter 2: Application Layer 5Comp361 Spring 2004

Application-layer protocols (cont).

Q: how does a process
“identify” the other
process with which it
wants to communicate?
❍ IP address of host

running other process
❍ “port number” - allows

receiving host to
determine to which local
process the message
should be delivered

API: application
programming
interface

❒ defines interface
between application
and transport layer

❒ socket: Internet API
❍ two processes

communicate by
sending data into
socket, reading data
out of socket

… lots more on this later.

Chapter 2: Application Layer 6Comp361 Spring 2004

What transport service does an app need?
Data loss
❒ some apps (e.g., audio) can

tolerate some loss
❒ other apps (e.g., file

transfer, telnet) require
100% reliable data transfer

Timing
❒ some apps (e.g., Internet

telephony, interactive
games) require low delay
to be “effective”

Bandwidth
❒ some apps (e.g., multimedia) require

minimum amount of bandwidth to
be “effective”

❒ other apps (“elastic apps”) make
use of whatever bandwidth they
get

Chapter 2: Application Layer 7Comp361 Spring 2004

Transport service requirements of common apps

Application

file transfer
e-mail

Web documents
real-time audio/video

stored audio/video
interactive games

financial apps

Data loss

no loss
no loss
no loss
loss-tolerant

loss-tolerant
loss-tolerant
no loss

Bandwidth

elastic
elastic
elastic
audio: 5Kb-1Mb
video:10Kb-5Mb
same as above
few Kbps up
elastic

Time Sensitive

no
no
no
yes, 100’s msec

yes, few secs
yes, 100’s msec
yes and no

Chapter 2: Application Layer 8Comp361 Spring 2004

Services provided by Internet
transport protocols

TCP service:
❒ connection-oriented: setup

required between client, server
❒ reliable transport between

sending and receiving process
❒ flow control: sender won’t

overwhelm receiver
❒ congestion control: throttle

sender when network overloaded
❒ does not provide: timing,

minimum bandwidth guarantees

UDP service:
❒ unreliable data transfer

between sending and
receiving process

❒ does not provide:
connection setup, reliable
transport, flow control,
congestion control, timing,
or bandwidth guarantee

Chapter 2: Application Layer 9Comp361 Spring 2004

Internet apps: their protocols and transport
protocols

Application

e-mail
remote terminal access

Web
file transfer

streaming multimedia

remote file server
Internet telephony

Application
layer protocol

smtp [RFC 821]
telnet [RFC 854]
http [RFC 2068]
ftp [RFC 959]
proprietary
(e.g. RealNetworks)
NFS
proprietary
(e.g., Vocaltec)

Underlying
transport protocol

TCP
TCP
TCP
TCP
TCP or UDP

TCP or UDP
typically UDP

Chapter 2: Application Layer 10Comp361 Spring 2004

Chapter 2 outline

❒ 2.1 Principles of app
layer protocols

❒ 2.2 Web and HTTP
❒ 2.3 FTP
❒ 2.4 Electronic Mail

❍ SMTP, POP3, IMAP
❒ 2.5 DNS

❒ 2.6 Socket programming
with TCP

❒ 2.7 Socket programming
with UDP

❒ 2.8 Building a Web
server

❒ 2.9 Content distribution
❍ Content distribution

networks vs. Web
Caching

Chapter 2: Application Layer 11Comp361 Spring 2004

The Web: some jargon

❒ Web page:
❍ consists of “objects”
❍ addressed by a URL

❒ Most Web pages consist
of:

❍ base HTML page, and
❍ several referenced

objects.
❒ URL has two components:

host name and path
name:

❒ User agent for Web is
called a browser:

❍ MS Internet Explorer
❍ Netscape Communicator

❒ Server for Web is
called Web server:

❍ Apache (public domain)
❍ MS Internet

Information Server

www.someSchool.edu/someDept/pic.gif

Chapter 2: Application Layer 12Comp361 Spring 2004

The Web: the http protocol

http: hypertext transfer
protocol

❒ Web’s application layer
protocol

❒ client/server model
❍ client: browser that

requests, receives,
“displays” Web objects

❍ server: Web server sends
objects in response to
requests

❒ http1.0: RFC 1945
❒ http1.1: RFC 2068

PC running
Explorer

Server
running

NCSA Web
server

http request

http request

http response

http
 response

Mac running
Navigator

Chapter 2: Application Layer 13Comp361 Spring 2004

The http protocol: more
http: TCP transport

service:
❒ client initiates TCP

connection (creates
socket) to server, port 80

❒ server accepts TCP
connection from client

❒ http messages
(application-layer protocol
messages) exchanged
between browser (http
client) and Web server
(http server)

❒ TCP connection closed

http is “stateless”
❒ server maintains no

information about
past client requests

Protocols that maintain
“state” are complex!

❒ past history (state) must
be maintained

❒ if server/client crashes,
their views of “state” may
be inconsistent, must be
reconciled

aside

Chapter 2: Application Layer 14Comp361 Spring 2004

http example

1a. http client initiates TCP
connection to http server
(process) at
www.someSchool.edu. Port 80 is
default for http server.

2. http client sends http request
message (containing URL) into
TCP connection socket

1b. http server at host
www.someSchool.edu waiting
for TCP connection at port 80.
“accepts” connection, notifying
client

3. http server receives request
message, forms response
message containing requested
object
(someDepartment/home.index),
sends message into socket

time

(contains text,
references to 10

jpeg images)

Suppose user enters URL
www.someSchool.edu/someDepartment/home.index

Chapter 2: Application Layer 15Comp361 Spring 2004

http example (cont.)

4. http server closes TCP
connection. 5. http client receives response

message containing html file,
displays html. Parsing html
file, finds 10 referenced jpeg
objects

time
6. Steps 1-5 repeated for

each of 10 jpeg objects

Chapter 2: Application Layer 16Comp361 Spring 2004

Non-persistent and persistent connections

Non-persistent
❒ HTTP/1.0
❒ server parses request,

responds, and closes
TCP connection

❒ At least 2 RTTs (Round
Trip Time) to fetch
each object

❒ Repeated 10 times for
10 objects. Each object
transfer suffers from
slow start

Persistent
❒ default for HTTP/1.1
❒ on same TCP

connection: server,
parses request,
responds, parses new
request,..

❒ Client sends requests
for all referenced
objects as soon as it
receives base HTML.

❒ Fewer RTTs and less
slow start.But most 1.0 browsers use

parallel TCP connections.

Chapter 2: Application Layer 17Comp361 Spring 2004

http message format: request

❒ two types of http messages: request, response
❒ http request message:

❍ ASCII (human-readable format)

GET /somedir/page.html HTTP/1.0
User-agent: Mozilla/4.0
Accept: text/html, image/gif,image/jpeg
Accept-language:fr

(extra carriage return, line feed)

request line
(GET, POST,

HEAD commands)

header
lines

Carriage return,
line feed

indicates end
of message

Chapter 2: Application Layer 18Comp361 Spring 2004

http request message: general format

Chapter 2: Application Layer 19Comp361 Spring 2004

http request message: more info

❒ http/1.0 has only three request methods
❍ GET:
❍ POST: for forms. Uses Entity Body to transfer

form info
❍ HEAD: Like GET but response does not actually

return any info. This is used for debugging/test
purposes

❒ http/1.1 has two additional request methods
❍ PUT: Allows uploading object to web server
❍ DELETE: Allows deleting object from web server

Chapter 2: Application Layer 20Comp361 Spring 2004

http message format: respone

HTTP/1.0 200 OK
Date: Thu, 06 Aug 1998 12:00:15 GMT
Server: Apache/1.3.0 (Unix)
Last-Modified: Mon, 22 Jun 1998 …...
Content-Length: 6821
Content-Type: text/html

data data data data data ...

status line
(protocol

status code
status phrase)

status code

header
lines

data, e.g.,
requested
html file

Chapter 2: Application Layer 21Comp361 Spring 2004

http response status codes

200 OK
❍ request succeeded, requested object later in this message

301 Moved Permanently
❍ requested object moved, new location specified later in

this message (Location:)
400 Bad Request

❍ request message not understood by server
404 Not Found

❍ requested document not found on this server
505 HTTP Version Not Supported

In first line in server->client response message.
A few sample codes:

Chapter 2: Application Layer 22Comp361 Spring 2004

Trying out http (client side) for yourself

1. Telnet to your favorite Web server:
telnet cis.poly.edu 80 Opens TCP connection to port 80

(default http server port) at cis.poly.edu.
Anything typed in sent
to port 80 at cis.poly.edu.

2. Type in a GET http request:
GET /~ross/index.html HTTP/1.0 By typing this in (hit carriage

return twice), you send
this minimal (but complete)
GET request to http server

3. Look at response message sent by http server!
Try telnet www.cs.ust.hk 80

http://www.cs.ust.hk/

Chapter 2: Application Layer 23Comp361 Spring 2004

User-server interaction: authentication

Authentication goal: control
access to server documents

❒ stateless: client must present
authorization in each request

❒ authorization: typically name,
password

❍ authorization: header
line in request

❍ if no authorization
presented, server refuses
access, sends
WWW authenticate:

header line in response

serverclient
usual http request msg
401: authorization req.
WWW authenticate:

+ Authorization:line
usual http request msg

usual http response msg

usual http request msg
+ Authorization:line

usual http response msg time
Browser caches name & password so
that user does not have to repeatedly enter it.

Chapter 2: Application Layer 24Comp361 Spring 2004

User-server interaction: cookies

serverclient❒ server sends “cookie” to
client in response msg
Set-cookie: 1678453

❒ client stores & presents
cookie in later requests
cookie: 1678453

❒ server matches
presented-cookie with
server-stored info

❍ authentication
❍ remembering user

preferences, previous
choices

usual http request msg
usual http response +
Set-cookie: #

usual http request msg
cookie: #

usual http response msg

cookie-
spectific

action

usual http request msg
cookie: #

usual http response msg

cookie-
spectific

action

Chapter 2: Application Layer 25Comp361 Spring 2004

Cookie example

telnet www.google.com 80

Trying 216.239.33.99...
Connected to www.google.com.
Escape character is '^]'.

GET /index.html HTTP/1.0

HTTP/1.0 200 OK
Date: Wed, 10 Sep 2003 08:58:55 GMT
Set-Cookie:

PREF=ID=43bd8b0f34818b58:TM=1063184203:LM=1063184203:
S=DDqPgTb56Za88O2y; expires=Sun, 17-Jan-2038 19:14:07 GMT;
path=/; domain=.google.com

.

.

Chapter 2: Application Layer 26Comp361 Spring 2004

User-server interaction: conditional GET

❒ Goal: don’t send object if
client has up-to-date stored
(cached) version

❒ client: specify date of
cached copy in http request
If-modified-since:

<date>

❒ server: response contains
no object if cached copy up-
to-date:
HTTP/1.0 304 Not

Modified

client server

http request msg
If-modified-since:

<date>

http response
HTTP/1.0

304 Not Modified

object
not

modified

http request msg
If-modified-since:

<date>

http response
HTTP/1.1 200 OK

…
<data>

object
modified

Chapter 2: Application Layer 27Comp361 Spring 2004

Web Caches (proxy server)
Goal: satisfy client request without involving origin server

❒ user sets browser: Web
accesses via web cache

❒ client sends all http
requests to web cache

❍ if object at web cache,
web cache immediately
returns object in http
response

❍ else requests object
from origin server, then
returns http response
to client

origin
server

client

Proxy
server

http request

http request

http response

http
 response

http request

http
 response

http requesthttp response

client
origin
server

Chapter 2: Application Layer 28Comp361 Spring 2004

More about Web caching
❒ Cache acts as both client

and server
❒ Cache can do up-to-date

check using
If-modified-since

HTTP header
❍ Issue: should cache take

risk and deliver cached
object without checking?

❍ Heuristics are used.
❒ Typically cache is

installed by ISP
(university, company,
residential ISP)

Why Web caching?
❒ Reduce response time

for client request.
❒ Reduce traffic on an

institution’s access link.
❒ Internet dense with

caches enables “poor”
content providers to
effectively deliver
content

Chapter 2: Application Layer 29Comp361 Spring 2004

Caching example (1)
Assumptions
❒ average object size = 100,000

bits
❒ avg. request rate from

institution’s browser to origin
serves = 15/sec

❒ delay from institutional router to
any origin server and back to
router = 2 sec

Consequences
❒ utilization on LAN = 15%
❒ utilization on access link = 100%
❒ total delay = Internet delay +

access delay + LAN delay
= 2 sec + minutes + milliseconds

public
Internet

origin
servers

institutional
network 10 Mbps LAN

institutional
cache

1.5 Mbps
access link

Chapter 2: Application Layer 30Comp361 Spring 2004

Caching example (2)

public
Internet

origin
serversPossible solution

❒ increase bandwidth of
access link to, say, 10
Mbps

Consequences
❒ utilization on LAN = 15%
❒ utilization on access link = 15%
❒ Total delay = Internet delay

+ access delay + LAN delay
= 2 sec + msecs + msecs

❒ often a costly upgrade

institutional
network 10 Mbps LAN

institutional
cache

10 Mbps
access link

Chapter 2: Application Layer 31Comp361 Spring 2004

Caching example (3)

public
Internet

origin
serversInstall cache

❒ suppose hit rate is .4
Consequence
❒ 40% requests will be satisfied

almost immediately
❒ 60% requests satisfied by

origin server
❒ utilization of access link

reduced to 60%, resulting in
negligible delays (say 10 msec)

❒ total delay = Internet delay +
access delay + LAN delay

= .6*2 sec + .6*.01 secs +
milliseconds < 1.3 secs

institutional
network 10 Mbps LAN

institutional
cache

1.5 Mbps
access link

Chapter 2: Application Layer 32Comp361 Spring 2004

Chapter 2 outline

❒ 2.1 Principles of app
layer protocols

❒ 2.2 Web and HTTP
❒ 2.3 FTP
❒ 2.4 Electronic Mail

❍ SMTP, POP3, IMAP
❒ 2.5 DNS

❒ 2.6 Socket programming
with TCP

❒ 2.7 Socket programming
with UDP

❒ 2.8 Building a Web
server

❒ 2.9 Content distribution
❍ Content distribution

networks vs. Web
Caching

Chapter 2: Application Layer 33Comp361 Spring 2004

ftp: the file transfer protocol

❒ transfer file to/from remote host
❒ client/server model

❍ client: side that initiates transfer (either to/from
remote)

❍ server: remote host
❒ ftp: RFC 959
❒ ftp server: port 21

file transfer FTP
server

FTP
user

interface

FTP
client

local file
system

remote file
system

user
at host

Chapter 2: Application Layer 34Comp361 Spring 2004

ftp: separate control, data connections

❒ ftp client contacts ftp server at
port 21, specifying TCP as
transport protocol

❒ two parallel TCP connections
opened:

❍ control: exchange commands,
responses between client,
server.

“out of band control”
❍ data: file data to/from

server
❒ ftp server maintains “state”:

current directory, earlier
authentication

FTP
client

FTP
server

TCP control connection
port 21

TCP data connection
port 20

Chapter 2: Application Layer 35Comp361 Spring 2004

ftp: separate control, data connections

❒ When server receives
request for file transfer it
opens a TCP data
connection to client on
port 20.

❒ After transferring one
file, server closes
connection

❒ When next request for file
transfer arrives server
opens new TCP data
connection on port 20

FTP
client

FTP
server

TCP control connection
port 21

TCP data connection
port 20

Chapter 2: Application Layer 36Comp361 Spring 2004

ftp commands, responses

Sample commands:
❒ sent as ASCII text over

control channel
❒ USER username
❒ PASS password
❒ LIST return list of file

in current directory
❒ RETR filename

retrieves (gets) file
❒ STOR filename stores

(puts) file onto remote
host

Sample return codes
❒ status code and phrase

(as in http)
❒ 331 Username OK,
password required

❒ 125 data connection
already open;
transfer starting

❒ 425 Can’t open data
connection

❒ 452 Error writing
file

Chapter 2: Application Layer 37Comp361 Spring 2004

Chapter 2 outline

❒ 2.1 Principles of app
layer protocols

❒ 2.2 Web and HTTP
❒ 2.3 FTP
❒ 2.4 Electronic Mail

❍ SMTP, POP3, IMAP
❒ 2.5 DNS

❒ 2.6 Socket programming
with TCP

❒ 2.7 Socket programming
with UDP

❒ 2.8 Building a Web
server

❒ 2.9 Content distribution
❍ Content distribution

networks vs. Web
Caching

Chapter 2: Application Layer 38Comp361 Spring 2004

Electronic Mail

Three major components:
❒ user agents
❒ mail servers
❒ simple mail transfer protocol:

smtp

User Agent
❒ a.k.a. “mail reader”
❒ composing, editing, reading mail

messages
❒ e.g., Eudora, Outlook, elm,

Netscape Messenger
❒ outgoing, incoming messages

stored on server

user mailbox

outgoing
message queue

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

Chapter 2: Application Layer 39Comp361 Spring 2004

Electronic Mail: mail servers
Mail “Servers”
❒ mailbox contains incoming

messages (yet to be read)
for user

❒ message queue of outgoing
(to be sent) mail messages

❒ smtp protocol between
mail servers to send email
messages
❍ client: sending mail

server
❍ “server”: receiving mail

server

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

Chapter 2: Application Layer 40Comp361 Spring 2004

Electronic Mail: smtp [RFC 821]

❒ uses tcp to reliably transfer email msg from client
to server, port 25

❒ direct transfer: sending server to receiving server
❒ three phases of transfer

❍ handshaking (greeting)
❍ transfer of messages
❍ closure

❒ command/response interaction
❍ commands: ASCII text
❍ response: status code and phrase

❒ messages must be in 7-bit ASCII

Chapter 2: Application Layer 41Comp361 Spring 2004

Scenario: Alice sends message to Bob
1) Alice uses UA to compose

message and “to”
bob@someschool.edu

2) Alice’s UA sends message
to her mail server; message
placed in message queue

3) Client side of SMTP opens
TCP connection with Bob’s
mail server

4) SMTP client sends Alice’s
message over the TCP
connection

5) Bob’s mail server places the
message in Bob’s mailbox

6) Bob invokes his user agent
to read message

user
agent

mail
server

mail
server user

agent

1

3 4 5
62

Chapter 2: Application Layer 42Comp361 Spring 2004

Sample smtp interaction

S: 220 hamburger.edu
C: HELO crepes.fr
S: 250 Hello crepes.fr, pleased to meet you
C: MAIL FROM: <alice@crepes.fr>
S: 250 alice@crepes.fr... Sender ok
C: RCPT TO: <bob@hamburger.edu>
S: 250 bob@hamburger.edu ... Recipient ok
C: DATA
S: 354 Enter mail, end with "." on a line by itself
C: Do you like ketchup?
C: How about pickles?
C: .
S: 250 Message accepted for delivery
C: QUIT
S: 221 hamburger.edu closing connection

Chapter 2: Application Layer 43Comp361 Spring 2004

Try SMTP interaction for yourself:

❒ telnet servername 25
❒ see 220 reply from server
❒ enter HELO, MAIL FROM, RCPT TO, DATA,

QUIT commands
above lets you send email without using email

client (reader)

Chapter 2: Application Layer 44Comp361 Spring 2004

smtp: final words

❒ smtp uses persistent
connections

❒ smtp requires that message
(header & body) be in 7-bit
ascii

❒ certain character strings are
not permitted in message
(e.g., CRLF.CRLF). Thus
message has to be encoded
(usually into either base-64 or
quoted printable)

❒ smtp server uses CRLF.CRLF
to determine end of message

Comparison with http
❒ http: pull
❒ email: push

❒ both have ASCII
command/response
interaction, status codes

❒ http: each object is
encapsulated in its own
response message

❒ smtp: multiple objects
message sent in a multipart
message

Chapter 2: Application Layer 45Comp361 Spring 2004

!Mail message format
smtp: protocol for exchanging

email msgs
RFC 822: standard for text

message format:
❒ header lines, e.g.,

❍ To:
❍ From:
❍ Subject:
different from smtp

commands!
❒ body

❍ the “message”, ASCII
characters only

header

body

blank
line

Chapter 2: Application Layer 46Comp361 Spring 2004

Message format: multimedia extensions

❒ MIME: (Multipurpose Internet Mail Extensions)
multimedia mail extension, RFC 2045, 2056

❒ additional lines in msg header declare MIME content
type

From: alice@crepes.fr
To: bob@hamburger.edu
Subject: Picture of yummy crepe.
MIME-Version: 1.0
Content-Transfer-Encoding: base64
Content-Type: image/jpeg

base64 encoded data
.........................
......base64 encoded data

multimedia data
type, subtype,

parameter declaration

encoded data

MIME version

method used
to encode data

Chapter 2: Application Layer 47Comp361 Spring 2004

MIME types
Content-Type: type/subtype; parameters

Text
❒ example subtypes: plain,

html

Image
❒ example subtypes: jpeg, gif

Audio
❒ exampe subtypes: basic (8-

bit mu-law encoded),
32kadpcm (32 kbps coding)

Video
❒ example subtypes: mpeg,

quicktime

Application
❒ other data that must be

processed by reader before
“viewable”

❒ example subtypes: msword,
octet-stream

Chapter 2: Application Layer 48Comp361 Spring 2004

Multipart Type
From: alice@crepes.fr
To: bob@hamburger.edu
Subject: Picture of yummy crepe.
MIME-Version: 1.0
Content-Type: multipart/mixed; boundary=StartOfNextPart

--StartOfNextPart
Dear Bob, Please find a picture of a crepe.
--StartOfNextPart
Content-Transfer-Encoding: base64
Content-Type: image/jpeg
base64 encoded data
.........................
......base64 encoded data
--StartOfNextPart
Do you want the recipe?

Chapter 2: Application Layer 49Comp361 Spring 2004

Mail access protocols

❒ SMTP: delivery/storage to receiver’s server
❒ Mail access protocol: retrieval from server

❍ POP: Post Office Protocol [RFC 1939]
• authorization (agent <-->server) and download

❍ IMAP: Internet Mail Access Protocol [RFC 1730]
• more features (more complex)
• manipulation of stored msgs on server

❍ HTTP: Hotmail , Yahoo! Mail, etc.

user
agent

sender’s mail
server

user
agent

SMTP SMTP POP3 or
IMAP

receiver’s mail
server

Chapter 2: Application Layer 50Comp361 Spring 2004

POP3 protocol

authorization phase
❒ client commands:

❍ user: declare username
❍ pass: password

❒ server responses
❍ +OK
❍ -ERR

transaction phase, client:
❒ list: list message numbers
❒ retr: retrieve message by

number
❒ dele: delete
❒ quit

C: list
S: 1 498
S: 2 912
S: .
C: retr 1
S: <message 1 contents>
S: .
C: dele 1
C: retr 2
S: <message 1 contents>
S: .
C: dele 2
C: quit
S: +OK POP3 server signing off

S: +OK POP3 server ready
C: user alice
S: +OK
C: pass hungry
S: +OK user successfully logged on

Chapter 2: Application Layer 51Comp361 Spring 2004

POP3 (more) and IMAP

More about POP3
❒ Previous example uses

“download and delete”
mode.

❒ Bob cannot re-read e-
mail if he changes
client

❒ “Download-and-keep”:
copies of messages on
different clients

❒ POP3 is stateless
across sessions

IMAP
❒ Keep all messages in

one place: the server
❒ Allows user to

organize messages in
folders

❒ IMAP keeps user state
across sessions:

❍ names of folders and
mappings between
message IDs and folder
name

Chapter 2: Application Layer 52Comp361 Spring 2004

Chapter 2 outline

❒ 2.1 Principles of app
layer protocols

❒ 2.2 Web and HTTP
❒ 2.3 FTP
❒ 2.4 Electronic Mail

❍ SMTP, POP3, IMAP
❒ 2.5 DNS

❒ 2.6 Socket programming
with TCP

❒ 2.7 Socket programming
with UDP

❒ 2.8 Building a Web
server

❒ 2.9 Content distribution
❍ Content distribution

networks vs. Web
Caching

Chapter 2: Application Layer 53Comp361 Spring 2004

DNS: Domain Name System

People: many identifiers:
❍ SSN, name, Passport #

Internet hosts, routers:
❍ IP address (32 bit) - used

for addressing datagrams
❍ “name”, e.g.,

gaia.cs.umass.edu - used by
humans

Q: map between IP
addresses and name ?

Domain Name System:
❒ distributed database

implemented in hierarchy of
many name servers

❒ application-layer protocol
host, routers, name servers to
communicate to resolve names
(address/name translation)

❍ note: core Internet
function implemented as
application-layer protocol

❍ complexity at network’s
“edge”

Chapter 2: Application Layer 54Comp361 Spring 2004

DNS name servers

❒ no server has all name-
to-IP address mappings

local name servers:
❍ each ISP, company has

local (default) name server
❍ host DNS query first goes

to local name server
authoritative name server:

❍ for a host: stores that
host’s IP address, name

❍ can perform name/address
translation for that host’s
name

Why not centralize
DNS?

❒ single point of failure
❒ traffic volume
❒ distant centralized

database
❒ maintenance

doesn’t scale!

Chapter 2: Application Layer 55Comp361 Spring 2004

DNS: Root name servers

❒ contacted by local name
server that can not
resolve name

❒ root name server:
❍ contacts authoritative

name server if name
mapping not known

❍ gets mapping
❍ returns mapping to

local name server
❒ ~ dozen root name

servers worldwide

Chapter 2: Application Layer 56Comp361 Spring 2004

2. DNS
❍ Defined in RFCs 1034 and 1035.
❍ Hierarchical, domain-based naming scheme, and

uses distributed database system.
Illustration from Tanenbaum

Chapter 2: Application Layer 57Comp361 Spring 2004

Simple DNS example
root name servers

host surf.eurecom.fr
wants IP address of
gaia.cs.umass.edu

1. Contacts its local DNS
server,
dns.eurecom.fr

2. dns.eurecom.fr
contacts root name
server, if necessary

3. root name server
contacts authoritative
name server,
dns.umass.edu, if
necessary

2
5 3

4

local name server
dns.eurecom.fr

authorititive name server
dns.umass.edu

1 6

requesting host
surf.eurecom.fr

gaia.cs.umass.edu

Chapter 2: Application Layer 58Comp361 Spring 2004

DNS example root name server

Root name
server:

❒ may not know
authoritative
name server

❒ may know
intermediate
name server: who
to contact to find
authoritative
name server

2
7 3

6

4 5

authoritative name server
dns.cs.umass.edu

intermediate name server
dns.umass.edu

local name server
dns.eurecom.fr

1 8

requesting host
surf.eurecom.fr

gaia.cs.umass.edu

Chapter 2: Application Layer 59Comp361 Spring 2004

DNS: iterated queries
root name server

2
3

iterated query
recursive query:
❒ puts burden of

name resolution on
contacted name
server

❒ heavy load?

iterated query:
❒ contacted server

replies with name
of server to
contact

❒ “I don’t know this
name, but ask this
server”

4

7

5 6

authoritative name server
dns.cs.umass.edu

intermediate name server
dns.umass.edu

local name server
dns.eurecom.fr

1 8

requesting host
surf.eurecom.fr

gaia.cs.umass.edu

Chapter 2: Application Layer 60Comp361 Spring 2004

DNS: caching and updating records

❒ once (any) name server learns mapping, it
caches mapping
❍ cache entries timeout (disappear)

after some time
❒ update/notify mechanisms under design

by IETF
❍ RFC 2136
❍ http://www.ietf.org/html.charters/dnsind-

charter.html

Chapter 2: Application Layer 61Comp361 Spring 2004

DNS records

DNS: distributed db storing resource records (RR)

RR format: (name, value, type,ttl)

❒ Type=CNAME
❍ name is an alias name

for some “cannonical”
(the real) name

❍ value is cannonical
name

❒ Type=NS
❍ name is domain (e.g.

foo.com)
❍ value is IP address of

authoritative name server
for this domain

❒ Type=A
❍ name is hostname
❍ value is IP address

❒ Type=MX
❍ value is hostname of

mailserver associated with
name

Chapter 2: Application Layer 62Comp361 Spring 2004

2. Resource Record
From Tanenbaum

Chapter 2: Application Layer 63Comp361 Spring 2004

DNS protocol, messages

DNS protocol : query and reply messages, both with
same message format

msg header
❒ identification: 16 bit # for

query, reply to query uses
same #

❒ flags:
❍ query or reply
❍ recursion desired
❍ recursion available
❍ reply is authoritative

Chapter 2: Application Layer 64Comp361 Spring 2004

DNS protocol, messages

Name, type fields
for a query

RRs in reponse
to query

records for
authoritative servers

additional “helpful”
info that may be used

Chapter 2: Application Layer 65Comp361 Spring 2004

Chapter 2 outline

❒ 2.1 Principles of app
layer protocols

❒ 2.2 Web and HTTP
❒ 2.3 FTP
❒ 2.4 Electronic Mail

❍ SMTP, POP3, IMAP
❒ 2.5 DNS

❒ 2.6 Socket programming
with TCP

❒ 2.7 Socket programming
with UDP

❒ 2.8 Building a Web
server

❒ 2.9 Content distribution
❍ Content distribution

networks vs. Web
Caching

Chapter 2: Application Layer 66Comp361 Spring 2004

Socket programming
Goal: learn how to build client/server

application that communicate using sockets
Socket API
❒ introduced in BSD4.1

UNIX, 1981
❒ explicitly created, used,

released by apps
❒ client/server paradigm
❒ two types of transport

service via socket API:
❍ unreliable datagram
❍ reliable, byte stream-

oriented

a host-local,
application-created,

OS-controlled interface
(a “door”) into which

application process can
both send and

receive messages to/from
another application

process

socket

Chapter 2: Application Layer 67Comp361 Spring 2004

Socket-programming using TCP
Socket: a door between application process

and end-end-transport protocol (UCP or
TCP)

TCP service: reliable transfer of bytes from
one process to another

process

TCP with
buffers,
variables

socket

controlled by
application
developerprocess

TCP with
buffers,
variables

socket

controlled by
application
developer

internet

controlled by
operating
system

controlled by
operating

system

host or
server

host or
server

Chapter 2: Application Layer 68Comp361 Spring 2004

Socket programming with TCP

Client must contact server
❒ server process must first

be running
❒ server must have created

socket (door) that
welcomes client’s contact

Client contacts server by:
❒ creating client-local TCP

socket
❒ specifying IP address, port

number of server process
❒ When client creates

socket: client TCP
establishes connection to
server TCP

❒ When contacted by client,
server TCP creates new
socket for server process to
communicate with client

❍ allows server to talk with
multiple clients

❍ source port numbers
used to distinguish
clients (more in Chap 3)

TCP provides reliable, in-order
transfer of bytes (“pipe”)
between client and server

application viewpoint

Chapter 2: Application Layer 69Comp361 Spring 2004

Stream jargon

❒ A stream is a sequence
of characters that flow
into or out of a process.

❒ An input stream is
attached to some input
source for the process,
eg, keyboard or socket.

❒ An output stream is
attached to an output
source, eg, monitor or
socket.

Chapter 2: Application Layer 70Comp361 Spring 2004

Socket programming with TCP

ou
tT

oS
er

ve
r

to network from network

in
Fr

om
S

er
ve

r

in
Fr

om
U

se
r

keyboard monitor

Process

clientSocket

input
stream

input
stream

output
stream

TCP
socket

Client
process

client TCP
socket

Example client-server app:
1) client reads line from

standard input (inFromUser
stream) , sends to server via
socket (outToServer
stream)

2) server reads line from socket
3) server converts line to

uppercase, sends back to
client

4) client reads, prints modified
line from socket
(inFromServer stream)

Chapter 2: Application Layer 71Comp361 Spring 2004

Client/server socket interaction: TCP
Server (running on hostid) Client

wait for incoming
connection request
connectionSocket =
welcomeSocket.accept()

create socket,
port=x, for
incoming request:
welcomeSocket =

ServerSocket()

create socket,
connect to hostid, port=x
clientSocket =

Socket()

close
connectionSocket

read reply from
clientSocket

close
clientSocket

send request using
clientSocketread request from

connectionSocket

write reply to
connectionSocket

TCP
connection setup

Chapter 2: Application Layer 72Comp361 Spring 2004

Example: Java client (TCP)

import java.io.*;
import java.net.*;
class TCPClient {

public static void main(String argv[]) throws Exception
{

String sentence;
String modifiedSentence;

BufferedReader inFromUser =
new BufferedReader(new InputStreamReader(System.in));

Socket clientSocket = new Socket("hostname", 6789);

DataOutputStream outToServer =
new DataOutputStream(clientSocket.getOutputStream());

Create
input stream

Create
client socket,

connect to server
Create

output stream
attached to socket

Chapter 2: Application Layer 73Comp361 Spring 2004

Example: Java client (TCP), cont.

BufferedReader inFromServer =
new BufferedReader(new
InputStreamReader(clientSocket.getInputStream()));

sentence = inFromUser.readLine();

outToServer.writeBytes(sentence + '\n');

modifiedSentence = inFromServer.readLine();

System.out.println("FROM SERVER: " + modifiedSentence);

clientSocket.close();

}
}

Create
input stream

attached to socket

Send line
to server

Read line
from server

Chapter 2: Application Layer 74Comp361 Spring 2004

Example: Java server (TCP)
import java.io.*;
import java.net.*;

class TCPServer {

public static void main(String argv[]) throws Exception
{

String clientSentence;
String capitalizedSentence;

ServerSocket welcomeSocket = new ServerSocket(6789);

while(true) {

Socket connectionSocket = welcomeSocket.accept();

BufferedReader inFromClient =
new BufferedReader(new
InputStreamReader(connectionSocket.getInputStream()));

Create
welcoming socket

at port 6789

Wait, on welcoming
socket for contact

by client

Create input
stream, attached

to socket

Chapter 2: Application Layer 75Comp361 Spring 2004

Example: Java server (TCP), cont

DataOutputStream outToClient =
new DataOutputStream(connectionSocket.getOutputStream());

clientSentence = inFromClient.readLine();

capitalizedSentence = clientSentence.toUpperCase() + '\n';

outToClient.writeBytes(capitalizedSentence);
}

}
}

Read in line
from socket

Create output
stream, attached

to socket

Write out line
to socket

End of while loop,
loop back and wait for
another client connection

Chapter 2: Application Layer 76Comp361 Spring 2004

Chapter 2 outline

❒ 2.1 Principles of app
layer protocols

❒ 2.2 Web and HTTP
❒ 2.3 FTP
❒ 2.4 Electronic Mail

❍ SMTP, POP3, IMAP
❒ 2.5 DNS

❒ 2.6 Socket programming
with TCP

❒ 2.7 Socket programming
with UDP

❒ 2.8 Building a Web
server

❒ 2.9 Content distribution
❍ Content distribution

networks vs. Web
Caching

Chapter 2: Application Layer 77Comp361 Spring 2004

Socket programming with UDP
UDP: no “connection”

between client and
server

❒ no handshaking
❒ sender explicitly

attaches IP address and
port of destination to
each packet

❒ server must extract IP
address, port of sender
from received packet

UDP: transmitted data may be
received out of order, or lost

application viewpoint

UDP provides unreliable transfer
of groups of bytes (“datagrams”)

between client and server

Chapter 2: Application Layer 78Comp361 Spring 2004

Client/server socket interaction: UDP

close
clientSocket

Server (running on hostid)

read reply from
clientSocket

create socket,
clientSocket =
DatagramSocket()

Client

Create, address (hostid, port=x,
send datagram request
using clientSocket

create socket,
port=x, for
incoming request:
serverSocket =
DatagramSocket()

read request from
serverSocket

write reply to
serverSocket
specifying client
host address,
port number

Chapter 2: Application Layer 79Comp361 Spring 2004

TCP vs. UDP

TCP
1. Socket()

❒ Connection steam
established: Data goes in
one end of pipe and out
the other. Pipe stays
open until it is closed.

2. ServerSocket()
❒ A special type of socket

that sits waiting for a
knock from a client to
open connection. Leads to
handshaking.

UDP
1. DatagramSocket()

❒ Data sent as individual
packets of bytes. Each
packet contains all
addressing info. No
concept of open “pipe”.

2. No handshaking!
❒ A DatagramSocket waits

to receive each packet

Chapter 2: Application Layer 80Comp361 Spring 2004

Example: Java client (UDP)

se
nd

P
ac

ke
t

to network from network

re
ce

iv
eP

ac
ke

t

in
Fr

om
U

se
r

keyboard monitor

Process

clientSocket

UDP
packet

input
stream

UDP
packet

UDP
socket

Output: sends
packet (TCP sent
“byte stream”)

Input: receives
packet (TCP
received “byte
stream”)

Client
process

client UDP
socket

Chapter 2: Application Layer 81Comp361 Spring 2004

Example: Java client (UDP)

import java.io.*;
import java.net.*;

class UDPClient {
public static void main(String args[]) throws Exception
{

BufferedReader inFromUser =
new BufferedReader(new InputStreamReader(System.in));

DatagramSocket clientSocket = new DatagramSocket();

InetAddress IPAddress = InetAddress.getByName("hostname");

byte[] sendData = new byte[1024];
byte[] receiveData = new byte[1024];

String sentence = inFromUser.readLine();

sendData = sentence.getBytes();

Create
input stream

Create
client socket

Translate
hostname to IP

address using DNS

Chapter 2: Application Layer 82Comp361 Spring 2004

Example: Java client (UDP), cont.

DatagramPacket sendPacket =
new DatagramPacket(sendData, sendData.length, IPAddress, 9876);

clientSocket.send(sendPacket);

DatagramPacket receivePacket =
new DatagramPacket(receiveData, receiveData.length);

clientSocket.receive(receivePacket);

String modifiedSentence =
new String(receivePacket.getData());

System.out.println("FROM SERVER:" + modifiedSentence);
clientSocket.close();
}

}

Create datagram
with data-to-send,

length, IP addr, port

Send datagram
to server

Read datagram
from server

Chapter 2: Application Layer 83Comp361 Spring 2004

Example: Java server (UDP)

import java.io.*;
import java.net.*;

class UDPServer {
public static void main(String args[]) throws Exception

{

DatagramSocket serverSocket = new DatagramSocket(9876);

byte[] receiveData = new byte[1024];
byte[] sendData = new byte[1024];

while(true)
{

DatagramPacket receivePacket =
new DatagramPacket(receiveData, receiveData.length);

serverSocket.receive(receivePacket);

Create
datagram socket

at port 9876

Create space for
received datagram

Receive
datagram

Chapter 2: Application Layer 84Comp361 Spring 2004

Example: Java server (UDP), cont

String sentence = new String(receivePacket.getData());

InetAddress IPAddress = receivePacket.getAddress();

int port = receivePacket.getPort();

String capitalizedSentence = sentence.toUpperCase();

sendData = capitalizedSentence.getBytes();

DatagramPacket sendPacket =
new DatagramPacket(sendData, sendData.length, IPAddress,

port);

serverSocket.send(sendPacket);
}

}

}

Get IP addr
port #, of

sender

Write out
datagram
to socket

End of while loop,
loop back and wait for
another datagram

Create datagram
to send to client

Chapter 2: Application Layer 85Comp361 Spring 2004

Chapter 2 outline

❒ 2.1 Principles of app
layer protocols

❒ 2.2 Web and HTTP
❒ 2.3 FTP
❒ 2.4 Electronic Mail

❍ SMTP, POP3, IMAP
❒ 2.5 DNS

❒ 2.6 Socket programming
with TCP

❒ 2.7 Socket programming
with UDP

❒ 2.8 Building a Web
server

❒ 2.9 Content distribution
❍ Content distribution

networks vs. Web
Caching

Chapter 2: Application Layer 86Comp361 Spring 2004

Building a simple Web server
❒ handles one HTTP

request
❒ accepts the request
❒ parses header
❒ obtains requested file

from server’s file
system

❒ creates HTTP
response message:
❍ header lines + file

❒ sends response to
client

❒ after creating
server, you can
request file using a
browser (e.g. IE
explorer)

❒ see text for
details

Chapter 2: Application Layer 87Comp361 Spring 2004

Chapter 2 outline

❒ 2.1 Principles of app
layer protocols

❒ 2.2 Web and HTTP
❒ 2.3 FTP
❒ 2.4 Electronic Mail

❍ SMTP, POP3, IMAP
❒ 2.5 DNS

❒ 2.6 Socket programming
with TCP

❒ 2.7 Socket programming
with UDP

❒ 2.8 Building a Web
server

❒ 2.9 Content distribution
❍ Content distribution

networks vs. Web
Caching

Chapter 2: Application Layer 88Comp361 Spring 2004

Content distribution networks (CDNs)
origin server
in North America❒ The content providers are the

CDN customers

Content replication
❒ CDN company installs hundreds

of CDN servers throughout
Internet

❍ in lower-tier ISPs, close to
users

❒ CDN replicates its customers’
content in CDN servers. When
provider updates content, CDN
updates servers

CDN distribution node

CDN server
in S. America CDN server

in AsiaCDN server
in Europe

Chapter 2: Application Layer 89Comp361 Spring 2004

CDN example

origin server
❒ www.foo.com
❒ distributes HTML
❒ Replaces:

http://www.foo.com/sports.ruth.gif
with
http://www.cdn.com/www.foo.com/sports/ruth.gif

HTTP request for
www.foo.com/sports/sports.html

DNS query for www.cdn.com

HTTP request for
www.cdn.com/www.foo.com/sports/ruth.gif

1

2

3

Origin server

CDNs authoritative
DNS server

Nearby
CDN server

CDN company
❒ cdn.com
❒ distributes gif files
❒ uses its authoritative DNS

server to route redirect
requests

Chapter 2: Application Layer 90Comp361 Spring 2004

More about CDNs

routing requests
❒ CDN creates a “map”,

indicating distances from
leaf ISPs and CDN nodes

❒ when query arrives at
authoritative DNS server:

❍ server determines ISP
from which query
originates

❍ uses “map” to determine
best CDN server

not just Web pages
❒ streaming stored

audio/video
❒ streaming real-time

audio/video

Chapter 2: Application Layer 91Comp361 Spring 2004

Web Caching vs. CDN

Both Web Caching and CDN replicate content

❒ Web Caching: Content replicated on
demand as function of user requests

❒ CDN: Content replicated by content
provider

Chapter 2: Application Layer 92Comp361 Spring 2004

P2P

As well as retrieving objects from content
providers/proxy caches/CDNs it is also
possible for edge-machines to retrieve
content from other edge-machines. This
approach is known as Peer-To-Peer (P2P).

For more on P2P see textbook.

Chapter 2: Application Layer 93Comp361 Spring 2004

Chapter 2: Summary
Our study of network apps now complete!

❒ specific protocols:
❍ HTTP
❍ FTP
❍ SMTP, POP, IMAP
❍ DNS

❒ socket programming
❒ content distribution

❍ Caches
❍ CDNs

❒ application service
requirements:

❍ reliability, bandwidth,
delay

❒ client-server paradigm
❒ Internet transport service

model
❍ connection-oriented,

reliable: TCP
❍ unreliable, datagrams: UDP

Chapter 2: Application Layer 94Comp361 Spring 2004

Chapter 2: Summary
Most importantly: learned about protocols

❒ typical request/reply message
exchange:

❍ client requests info or service
❍ server responds with data,

status code
❒ message formats:

❍ headers: fields giving info
about data

❍ data: info being
communicated

❒ control vs. data msgs
❍ in-based, out-of-band

❒ centralized vs. decentralized
❒ stateless vs. stateful
❒ reliable vs. unreliable msg

transfer
❒ “complexity at network

edge”
❒ security: authentication

	Chapter 2: Application Layer
	Chapter 2 outline
	Applications and application-layer protocols
	Client-server paradigm
	Application-layer protocols (cont).
	What transport service does an app need?
	Transport service requirements of common apps
	Services provided by Internet transport protocols
	Internet apps: their protocols and transport protocols
	Chapter 2 outline
	The Web: some jargon
	The Web: the http protocol
	The http protocol: more
	http example
	http example (cont.)
	Non-persistent and persistent connections
	http message format: request
	http request message: general format
	http request message: more info
	http message format: respone
	http response status codes
	Trying out http (client side) for yourself
	User-server interaction: authentication
	User-server interaction: cookies
	Cookie example
	User-server interaction: conditional GET
	Web Caches (proxy server)
	More about Web caching
	Caching example (1)
	Caching example (2)
	Caching example (3)
	Chapter 2 outline
	ftp: the file transfer protocol
	ftp: separate control, data connections
	ftp: separate control, data connections
	ftp commands, responses
	Chapter 2 outline
	Electronic Mail
	Electronic Mail: mail servers
	Electronic Mail: smtp [RFC 821]
	Scenario: Alice sends message to Bob
	Sample smtp interaction
	Try SMTP interaction for yourself:
	smtp: final words
	Mail message format
	Message format: multimedia extensions
	MIME typesContent-Type: type/subtype; parameters
	Multipart Type
	Mail access protocols
	POP3 protocol
	POP3 (more) and IMAP
	Chapter 2 outline
	DNS: Domain Name System
	DNS name servers
	DNS: Root name servers
	2. DNS
	Simple DNS example
	DNS example
	DNS: iterated queries
	DNS: caching and updating records
	DNS records
	2. Resource Record
	DNS protocol, messages
	DNS protocol, messages
	Chapter 2 outline
	Socket programming
	Socket-programming using TCP
	Socket programming with TCP
	Stream jargon
	Socket programming with TCP
	Client/server socket interaction: TCP
	Example: Java client (TCP)
	Example: Java client (TCP), cont.
	Example: Java server (TCP)
	Example: Java server (TCP), cont
	Chapter 2 outline
	Socket programming with UDP
	Client/server socket interaction: UDP
	TCP vs. UDP
	Example: Java client (UDP)
	Example: Java client (UDP)
	Example: Java client (UDP), cont.
	Example: Java server (UDP)
	Example: Java server (UDP), cont
	Chapter 2 outline
	Building a simple Web server
	Chapter 2 outline
	Content distribution networks (CDNs)
	CDN example
	More about CDNs
	Web Caching vs. CDN
	P2P
	Chapter 2: Summary
	Chapter 2: Summary

