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Chapter 3: Transport Layer last revised 23/03/04

Chapter goals:
❒ understand principles 

behind transport layer 
services:

❍ multiplexing/demultiplex
ing

❍ reliable data transfer
❍ flow control
❍ congestion control

❒ instantiation and 
implementation in the 
Internet

Chapter Overview:
❒ transport layer services
❒ multiplexing/demultiplexing
❒ connectionless transport: UDP
❒ principles of reliable data 

transfer
❒ connection-oriented transport: 

TCP
❍ reliable transfer
❍ flow control
❍ connection management

❒ principles of congestion control
❒ TCP congestion control
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Chapter 3 outline

❒ 3.1 Transport-layer 
services

❒ 3.2 Multiplexing and 
demultiplexing

❒ 3.3 Connectionless 
transport: UDP

❒ 3.4 Principles of 
reliable data transfer

❒ 3.5 Connection-oriented 
transport: TCP

❍ segment structure
❍ reliable data transfer
❍ flow control
❍ connection management

❒ 3.6 Principles of 
congestion control

❒ 3.7 TCP congestion 
control
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Transport services and protocols
❒ provide logical communication

between app processes 
running on different hosts

❒ transport protocols run in 
end systems 

❍ send side: breaks app 
messages into segments, 
passes to  network layer

❍ rcv side: reassembles 
segments into messages, 
passes to app layer

❒ more than one transport 
protocol available to apps

❍ Internet: TCP and UDP
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Transport vs. network layer
Household analogy:
12 kids sending letters 

to 12 kids
❒ processes = kids
❒ app messages = letters 

in envelopes
❒ hosts = houses
❒ transport protocol = 

Ann and Bill
❒ network-layer protocol 

= postal service

❒ network layer: logical 
communication 
between hosts

❒ transport layer: logical 
communication 
between processes 

❍ relies on, enhances, 
network layer services
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Transport-layer protocols

Internet transport services:
❒ reliable, in-order unicast

delivery (TCP)
❍ congestion 
❍ flow control
❍ connection setup

❒ unreliable (“best-effort”), 
unordered unicast or 
multicast delivery: UDP

❒ services not available: 
❍ real-time
❍ bandwidth guarantees
❍ reliable multicast 
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Chapter 3 outline

❒ 3.1 Transport-layer 
services

❒ 3.2 Multiplexing and 
demultiplexing

❒ 3.3 Connectionless 
transport: UDP

❒ 3.4 Principles of 
reliable data transfer

❒ 3.5 Connection-oriented 
transport: TCP

❍ segment structure
❍ reliable data transfer
❍ flow control
❍ connection management

❒ 3.6 Principles of 
congestion control

❒ 3.7 TCP congestion 
control
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Multiplexing/demultiplexing
gathering data from multiple
sockets, enveloping data with 
header (later used for 
demultiplexing)

Multiplexing at send host:

delivering received segments
to correct socket

Demultiplexing at rcv host:

= socket = process

application

transport

network

link

physical
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link

physical
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network

link
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Multiplexing/demultiplexing
segment - unit of data 

exchanged between 
transport layer entities

❍ aka TPDU: transport 
protocol data unit

Demultiplexing: delivering 
received segments to 
correct app layer processes

application
transport
network

M P2
application
transport
network

Ht
Hn segment

M
application
transport
network

P1
M

M M
P3 P4

segment
header

receiver
application-layer
data

segment
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How demultiplexing works
❒ host receives IP datagrams

❍ each datagram has source 
IP address, destination IP 
address

❍ each datagram carries 1 
transport-layer segment

❍ each segment has source, 
destination port number 
(recall: well-known port 
numbers for specific 
applications)

❒ host uses IP addresses & port 
numbers to direct segment to 
appropriate socket

32 bits

source port # dest port #

application
data 

(message)

other header fields

TCP/UDP segment format
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Connectionless demultiplexing
❒ When host receives UDP 

segment:
❍ checks destination port 

number in segment
❍ directs UDP segment to 

socket with that port 
number

❒ IP datagrams with 
different source IP 
addresses and/or source 
port numbers directed 
to same socket

❒ Create sockets with port 
numbers:

DatagramSocket mySocket1 = new 
DatagramSocket(99111);

DatagramSocket mySocket2 = new 
DatagramSocket(99222);

❒ UDP socket identified by  
two-tuple:

(dest IP address, dest port number)
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Connectionless demux (cont)
DatagramSocket serverSocket = new DatagramSocket(6428);

Client
IP:B

P3

client
IP: A

P1P1P3

server
IP: C

SP: 6428
DP: 9157

SP: 9157
DP: 6428

SP: 6428
DP: 5775

SP: 5775
DP: 6428

SP provides “return address”
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Connection-oriented demux

❒ TCP socket identified 
by 4-tuple: 

❍ source IP address
❍ source port number
❍ dest IP address
❍ dest port number

❒ recv host uses all four 
values to direct 
segment to appropriate 
socket

❒ Server host may support 
many simultaneous TCP 
sockets:

❍ each socket identified by 
its own 4-tuple

❒ Web servers have 
different sockets for 
each connecting client

❍ non-persistent HTTP will 
have different socket for 
each request
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Connection-oriented demux
(cont)

P3

client
IP: A

P3 P4 P1P1

Client
IP:B

server
IP: C

SP: 80
DP: 9157

SP: 80
DP: 5775

SP: 9157 SP: 5775
DP: 80DP: 80
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Chapter 3 outline

❒ 3.1 Transport-layer 
services

❒ 3.2 Multiplexing and 
demultiplexing

❒ 3.3 Connectionless 
transport: UDP

❒ 3.4 Principles of 
reliable data transfer

❒ 3.5 Connection-oriented 
transport: TCP

❍ segment structure
❍ reliable data transfer
❍ flow control
❍ connection management

❒ 3.6 Principles of 
congestion control

❒ 3.7 TCP congestion 
control
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UDP: User Datagram Protocol [RFC 768]

❒ “no frills,” “bare bones”
Internet transport 
protocol

❒ “best effort” service, UDP 
segments may be:

❍ lost
❍ delivered out of order 

to app
❒ connectionless:

❍ no handshaking between 
UDP sender, receiver

❍ each UDP segment 
handled independently 
of others

Why is there a UDP?
❒ no connection 

establishment (which can 
add delay)

❒ simple: no connection state 
at sender, receiver

❒ small segment header (8 
Bytes)

❒ no congestion control: UDP 
can blast away as fast as 
desired
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UDP: more
❒ often used for streaming 

multimedia apps
❍ loss tolerant
❍ rate sensitive

❒ other UDP uses 
(why?):

❍ DNS: small delay
❍ SNMP: stressful cond.

❒ reliable transfer over UDP: 
add reliability at 
application layer

❍ application-specific 
error recover!

32 bits

source port # dest port #

Application
data 

(message)

length checksum
Length, in

bytes of UDP
segment,
including

header 

UDP segment format
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UDP checksum
Goal: detect  “errors” (e.g.,flipped bits) in transmitted 

segment

Receiver:
❒ compute checksum of 

received segment
❒ check if computed checksum 

equals checksum field value:
❍ NO - error detected
❍ YES - no error detected. 

But maybe errors 
nonetheless? More later ..

❒ Receiver may choose to 
discard segment or send a 
warning to app in case error

Sender:
❒ treat segment contents 

as sequence of 16-bit 
integers

❒ checksum: addition (1’ s 
complement sum) of 
segment contents

❒ sender puts checksum 
value into UDP checksum 
field
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Chapter 3 outline

❒ 3.1 Transport-layer 
services

❒ 3.2 Multiplexing and 
demultiplexing

❒ 3.3 Connectionless 
transport: UDP

❒ 3.4 Principles of 
reliable data transfer

❒ 3.5 Connection-oriented 
transport: TCP

❍ segment structure
❍ reliable data transfer
❍ flow control
❍ connection management

❒ 3.6 Principles of 
congestion control

❒ 3.7 TCP congestion 
control
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Principles of Reliable data transfer
❒ important in app., transport, link layers
❒ top-10 list of important networking topics!

❒ characteristics of unreliable channel will determine 
complexity of reliable data transfer protocol (rdt)
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Reliable data transfer: getting started

send
side

receive
side

rdt_send(): called from above, 
(e.g., by app.). Passed data to 

deliver to receiver upper layer

udt_send(): called by rdt,
to transfer packet over 

unreliable channel to receiver

rdt_rcv(): called when packet 
arrives on rcv-side of channel

deliver_data(): called by 
rdt to deliver data to upper
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Reliable data transfer: getting started
We’ll:
❒ incrementally develop sender, receiver sides of 

reliable data transfer protocol (rdt)
❒ consider only unidirectional data transfer

❍ but control info will flow on both directions!
❒ use finite state machines (FSM)  to specify 

sender, receiver

state
1

state
2

event causing state transition
actions taken on state transition

state: when in this 
“state” next state 

uniquely determined 
by next event

event
actions
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Incremental Improvements

❒ rdt1.0: assumes every packet sent arrives,    
and no errors introduced in transmission

❒ rdt2.0: assumes every packet sent arrives, but 
some errors (bit flips) can occur within a 
packet. Introduces concept of ACK and NAK

❒ rdt2.1: deals with corrupted ACKS/NAKS

❒ rdt2.2: like rdt2.1 but does not need NAKs

❒ Rdt3.0: Allows packets to be lost
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Rdt1.0: reliable transfer over a reliable channel

❒ underlying channel perfectly reliable
❍ no bit errors
❍ no loss of packets

❒ separate FSMs for sender, receiver:
❍ sender sends data into underlying channel
❍ receiver read data from underlying channel

extract (packet,data)
deliver_data(data)

Wait for 
call from 

below

rdt_rcv(packet)Wait for 
call from 
above packet = make_pkt(data)

udt_send(packet)

rdt_send(data)

sender receiver
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Rdt2.0: channel with bit errors

❒ underlying channel may flip bits in packet
❍ recall: UDP checksum to detect bit errors

❒ the question: how to recover from errors:
❍ acknowledgements (ACKs): receiver explicitly tells sender 

that pkt received OK
❍ negative acknowledgements (NAKs): receiver explicitly 

tells sender that pkt had errors
❍ sender retransmits pkt on receipt of NAK
❍ human scenarios using ACKs, NAKs?

❒ new mechanisms in rdt2.0 (beyond rdt1.0):
❍ error detection
❍ receiver feedback: control msgs (ACK,NAK) rcvr->sender
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rdt2.0: FSM specification

Wait for 
call from 
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)Wait for 

ACK or 
NAK

rdt_send(data)

receiver

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) && 
notcorrupt(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && 
corrupt(rcvpkt)

Wait for 
call from 

below

rdt_rcv(rcvpkt) && isACK(rcvpkt)
Λ

sender
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rdt2.0: operation with no errors

Wait for 
call from 
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) && 
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && 
corrupt(rcvpkt)

Wait for 
ACK or 

NAK

Wait for 
call from 

below

rdt_send(data)

Λ
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rdt2.0: error scenario

Wait for 
call from 
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) && 
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && 
corrupt(rcvpkt)

Wait for 
ACK or 

NAK

Wait for 
call from 

below

rdt_send(data)

Λ
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rdt2.0 has a fatal flaw!
What happens if ACK/NAK 

corrupted?
❒ sender doesn’t know what 

happened at receiver!
❒ can’t just retransmit: possible 

duplicate.                            
But receiver waiting!

What to do?
❒ sender ACKs/NAKs receiver’s 

ACK/NAK? What if sender 
ACK/NAK corrupted?

❒ retransmit, but this might 
cause retransmission of 
correctly received pkt!

❒ Receiver won’t know about 
duplication!

Handling duplicates: 
❒ sender adds sequence number

(0/1) to each pkt
❒ sender retransmits current 

pkt if ACK/NAK garbled
❒ receiver discards (doesn’t 

deliver up) duplicate pkt
❒ Duplicate packet is one with 

same sequence # as previous 
packet

Sender sends one packet, 
then waits for receiver 
response

stop and wait
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❒ Sender: whenever sender receives control message it 
sends a packet to receiver.

❍ A valid ACK: Sends next packet (if exists) with new sequence #
❍ A NAK or corrupt response: resends old packet

❒ Receiver: sends ACK/NAK to sender
❍ If received packet is corrupt: send NAK
❍ If received packet is valid and has different  sequence # as prev

packet: send ACK and deliver new data up.
❍ If received packet is valid and has same sequence # as prev

packet, i.e., is a retransmission of duplicate: send ACK

❒ Note: ACK/NAK  do not contain sequence #.
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rdt2.1: sender, handles garbled ACK/NAKs
rdt_send(data)

Wait for 
call 0 from 

above

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

Wait for 
ACK or 
NAK 0 udt_send(sndpkt)

rdt_rcv(rcvpkt) &&  
( corrupt(rcvpkt) ||
isNAK(rcvpkt) )

rdt_rcv(rcvpkt) &&  
( corrupt(rcvpkt) ||
isNAK(rcvpkt) )

rdt_rcv(rcvpkt)   
&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt)

Wait for
call 1 from 

above

Wait for 
ACK or 
NAK 1

Λ

rdt_rcv(rcvpkt)   
&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt) 

Λ

rdt_send(data)

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)

udt_send(sndpkt)



3: Transport Layer 31Comp 361, Spring 2004

rdt2.1: receiver, handles garbled ACK/NAKs
rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) 

&& has_seq0(rcvpkt) 

Wait for 
0 from 
below

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && 
not corrupt(rcvpkt) &&
has_seq0(rcvpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) 
&& has_seq1(rcvpkt)

Wait for 
1 from 
below

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && 
not corrupt(rcvpkt) &&
has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)
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rdt2.1: discussion

Sender:
❒ seq # added to pkt
❒ two seq. #’s (0,1) will 

suffice.  Why?
❒ must check if received 

ACK/NAK corrupted 
❒ twice as many states

❍ state must “remember” 
whether “current” pkt 
has 0 or 1 seq. #

Receiver:
❒ must check if received 

packet is duplicate
❍ state indicates whether 

0 or 1 is expected pkt 
seq #

❒ note: receiver can not
know if its last 
ACK/NAK received OK 
at sender
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rdt2.2: a NAK-free protocol

❒ same functionality as rdt2.1, using ACKs only
❒ instead of NAK, receiver sends ACK for last pkt 

received OK
❍ receiver must explicitly include seq # of pkt being ACKed 

❒ duplicate ACK at sender results in same action as 
NAK: retransmit current pkt
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rdt2.2: sender, receiver fragments

Wait for 
call 0 from 

above

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&  
( corrupt(rcvpkt) ||

isACK(rcvpkt,1) )

rdt_rcv(rcvpkt)   
&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt,0)

Wait for 
ACK

0
sender FSM

fragment

Wait for 
0 from 
below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) 
&& has_seq1(rcvpkt) 

rdt_rcv(rcvpkt) && 
(corrupt(rcvpkt) ||

has_seq1(rcvpkt))

udt_send(sndpkt)
receiver FSM

fragment

Λ

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK1, chksum)
udt_send(sndpkt)
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rdt3.0: channels with errors and loss

New assumption:
underlying channel can 
also lose packets (data 
or ACKs)

❍ checksum, seq. #, ACKs, 
retransmissions will be 
of help, but not enough

Q: how to deal with loss?
❍ sender waits until 

certain data or ACK 
lost, then retransmits

❍ yuck: drawbacks?

Approach: sender waits 
“reasonable” amount of 
time for ACK 

❒ retransmits if no ACK 
received in this time

❒ if pkt (or ACK) just delayed 
(not lost):

❍ retransmission will be  
duplicate, but use of seq. 
#’s already handles this

❍ receiver must specify seq 
# of pkt being ACKed

❒ requires countdown timer



3: Transport Layer 36Comp 361, Spring 2004

rdt3.0 sender
sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)
start_timer

Wait 
for 

ACK0

rdt_rcv(rcvpkt) &&  
( corrupt(rcvpkt) ||
isACK(rcvpkt,1) )

Wait for 
call 1 from 

above

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)
rdt_rcv(rcvpkt) &&  
( corrupt(rcvpkt) ||
isACK(rcvpkt,0) )

rdt_rcv(rcvpkt)   
&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt,1)

stop_timer
stop_timer

udt_send(sndpkt)
start_timer

timeout

udt_send(sndpkt)
start_timer

timeout

rdt_rcv(rcvpkt)

Wait for 
call 0from 

above

Wait 
for 

ACK1

Λ
rdt_rcv(rcvpkt)

Λ
Λ

rdt_send(data)

rdt_rcv(rcvpkt)   
&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt,0)

Λ
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rdt3.0 in action
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rdt3.0 in action
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Performance of rdt3.0

❒ rdt3.0 works, but performance stinks
❒ example: 1 Gbps link, 15 ms e-e prop. delay, 1KB packet:

L (packet length in bits) 8kb/pkt
10**9 b/sec

Ttransmit = = = 8 microsecR (transmission rate, bps)

U 
sender = 

.008
30.008 

= 0.00027 L / R 
RTT + L / R 

=

❍ U sender: utilization – fraction of time sender busy sending
❍ 1KB pkt every 30 msec -> 33kB/sec thruput over 1 Gbps link
❍ network protocol limits use of physical resources!
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rdt3.0: stop-and-wait operation

RTT

last packet bit transmitted, t = L / R

ACK arrives, send next 
packet, t = RTT + L / R

sender receiver

first packet bit transmitted, t = 0

first packet bit arrives
last packet bit arrives, send 
ACK

U 
sender =

.008 
30.008 

= 0.00027 L / R 
RTT + L / R 

=
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Pipelined protocols
Pipelining: sender allows multiple, “in-flight”, yet-to-be-acknowledged pkts

❍ range of sequence numbers must be increased
❍ buffering at sender and/or receiver
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Pipelined protocols

❒ Advantage:  much better bandwidth 
utilization than stop-and-wait

❒ Disadvantage: More complicated to deal 
with reliability issues, e.g., corrupted, lost, 
out of order data.
❍ Two generic approaches to solving this

• go-Back-N protocols
• selective repeat protocols

❒ Note: TCP is not exactly either
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Pipelining: increased utilization

RTT 

last bit transmitted, t = L / R

last packet bit arrives, send ACK

ACK arrives, send next 
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

U 
sender =

.024
30.008 

= 0.0008 3 * L / R 
RTT + L / R 

=

sender receiver

first packet bit transmitted, t = 0

first packet bit arrives

Increase utilization
by a factor of 3!
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Go-Back-N
Sender:
❒ k-bit seq # in pkt header
❒ “window” of up to N, consecutive unack’ed pkts allowed

❒ ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK”
❍ may receive duplicate ACKs (see receiver)

❒ Only one timer:  for oldest unacknowledged pkt
❒ timeout(n): retransmit pkt n and all higher seq # pkts in window
❒ Called a sliding-window protocol
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GBN: Sender

❒ rdt_Send() called: checks to see if window is full.
❍ No: send out packet
❍ Yes: return data to application level

❒ Receipt of ACK(n): cumulative acknowledgement 
that all packets up to and including n have been 
received.  Updates window accordingly.

❒ Timeout: resends ALL packets that have been sent 
but not yet acknowledged.
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GBN: sender extended FSM
rdt_send(data)

Wait start_timer
udt_send(sndpkt[base])
udt_send(sndpkt[base+1])
…
udt_send(sndpkt[nextseqnum-1])

timeout

if (nextseqnum < base+N) {
sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)
udt_send(sndpkt[nextseqnum])
if (base == nextseqnum)

start_timer
nextseqnum++
}

else
refuse_data(data)

rdt_rcv(rcvpkt) && 
notcorrupt(rcvpkt) 

base=1
nextseqnum=1

rdt_rcv(rcvpkt) 
&& corrupt(rcvpkt)

Λ

base = getacknum(rcvpkt)+1
If (base == nextseqnum)

stop_timer
else

start_timer
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GBN: receiver extended FSM

Wait

default

rdt_rcv(rcvpkt)
&& notcurrupt(rcvpkt)
&& hasseqnum(rcvpkt,expectedseqnum) 

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedseqnum++

expectedseqnum=1
sndpkt =    

make_pkt(0,ACK,chksum)

Λ

udt_send(sndpkt)

❒ If expected packet received:
❍ Send ACK and deliver packet packet upstairs

❒ If out-of-order packet received: 
❍ discard (don’t buffer) -> no receiver buffering!
❍ Re-ACK pkt with highest in-order seq #
❍ may generate duplicate ACKs
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More on receiver

❒ The receiver always sends ACK for last 
correctly received packet with highest in-
order seq #

❒ Receiver only sends ACKS (no NAKs)
❒ Can generate duplicate ACKs
❒ need only remember expectedseqnum
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GBN in
action
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GBN is easy to code but might have  performance 
problems.

In particular,  if many packets are in pipeline at 
one time (bandwidth-delay product large) then 
one error can force retransmission of huge 
amounts of data!

Selective Repeat protocol allows receiver to 
buffer data and only forces retransmission of 
required packets.
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Selective Repeat

❒ receiver individually acknowledges all correctly 
received pkts

❍ buffers pkts, as needed, for eventual in-order delivery 
to upper layer

❒ sender only resends pkts for which ACK not 
received

❍ sender timer for each unACKed pkt
❍ Compare to GBN which only had timer for base packet

❒ sender window
❍ N consecutive seq #’s
❍ again limits seq #s of sent, unACKed pkts
❍ Important:  Window size < seq # range
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Selective repeat: sender, receiver windows
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Selective repeat

pkt n in [rcvbase, rcvbase+N-1]

❒ send ACK(n)
❒ out-of-order: buffer
❒ in-order: deliver (also 

deliver buffered, in-order 
pkts), advance window to 
next not-yet-received pkt

pkt n in [rcvbase-N,rcvbase-1]

❒ ACK(n) (note this is a reACK)

otherwise:
❒ ignore 

receiver
data from above :
❒ if next available seq # in 

window, send pkt
timeout(n):
❒ resend pkt n, restart timer
ACK(n) in [sendbase,sendbase+N]:

❒ mark pkt n as received
❒ if n smallest unACKed pkt, 

advance window base to 
next unACKed seq # 

sender
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Selective repeat in action
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Selective repeat:
dilemma

Example: 
❒ seq #’s: 0, 1, 2, 3
❒ window size=3

❒ receiver sees no 
difference in two 
scenarios!

❒ incorrectly passes 
duplicate data as new 
in (a)

Q: what is relationship 
between seq # size 
and window size?
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Chapter 3 outline

❒ 3.1 Transport-layer 
services

❒ 3.2 Multiplexing and 
demultiplexing

❒ 3.3 Connectionless 
transport: UDP

❒ 3.4 Principles of 
reliable data transfer

❒ 3.5 Connection-oriented 
transport: TCP

❍ segment structure
❍ reliable data transfer
❍ flow control
❍ connection management

❒ 3.6 Principles of 
congestion control

❒ 3.7 TCP congestion 
control
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TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

❒ full duplex data:
❍ bi-directional data flow 

in same connection
❍ MSS: maximum segment 

size
❒ connection-oriented:

❍ handshaking (exchange 
of control msgs) init’s
sender, receiver state 
before data exchange

❒ flow controlled:
❍ sender will not 

overwhelm receiver

❒ point-to-point:
❍ one sender, one receiver

❒ reliable, in-order byte 
steam:

❍ no “message boundaries”
❒ pipelined:

❍ TCP congestion and flow 
control set window size

❒ send & receive buffers

socket
door

TCP
send buffer

TCP
receive buffer

socket
door

segment

application
writes data

application
reads data
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More TCP Details
❒ Maximum Segment Size (MSS)

❍ Depends upon implementation (can often be set)
❍ The Max amount of application-layer data in 

segment
❒ Application Data + TCP Header = TCP Segment

❒ Three way Handshake
❍ Client sends special TCP segment to server requesting 

connection. No payload (Application data) in this segment.
❍ Server responds with second special TCP segment 

(again no payload)
❍ Client responds with third special segment 

This can contain payload
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Even More TCP Details

❒ A TCP connection between client and 
server creates, in both client and server
❍ (i) buffers
❍ (ii) variables and  
❍ (iii) a socket connection to process.

❒ TCP only exists in the two end machines.
No buffers and variables allocated to the connection in 

any of the network elements between the host and 
server.
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TCP segment structure

source port # dest port #

32 bits

application
data 

(variable length)

sequence number
acknowledgement number

Receive window
Urg data pnterchecksum

FSRPAUhead
len

not
used

Options (variable length)

URG: urgent data 
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

Internet
checksum

(as in UDP)

counting
by bytes 
of data
(not segments!)

# bytes 
rcvr willing
to accept
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TCP seq. #’s and ACKs
Seq. #’s:

❍ byte stream 
“number” of first 
byte in segment’s 
data

ACKs:
❍ seq # of next byte 

expected from 
other side

❍ cumulative ACK
Q: how receiver handles 

out-of-order segments
❍ A: TCP spec doesn’t 

say, - up to 
implementer

Host BHost A

Seq=43, ACK=80

=42, ACK=79, data = ‘C’

Seq

Seq=79, ACK=43, data = ‘C’

User
types

‘C’
host ACKs
receipt of
‘C’, echoes

back ‘C’

host ACKs
receipt 

of echoed
‘C’

time
simple telnet scenario
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TCP Round Trip Time and Timeout

Q: how to estimate RTT?
❒ SampleRTT: measured time from 

segment transmission until ACK 
receipt

❍ ignore retransmissions
❒ SampleRTT will vary, want 

estimated RTT “smoother”
❍ average several recent 

measurements, not just 
current SampleRTT

Q: how to set TCP 
timeout value?

❒ longer than RTT
❍ but RTT varies

❒ too short: premature 
timeout

❍ unnecessary 
retransmissions

❒ too long: slow reaction 
to segment loss
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TCP Round Trip Time and Timeout

EstimatedRTT = (1- α)*EstimatedRTT + α*SampleRTT

❒ Exponential weighted moving average
❒ influence of past sample decreases exponentially fast
❒ typical value: α = 0.125
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Example RTT estimation:
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

RT
T 

(m
ill

ise
co

nd
s)

SampleRTT Estimated RTT
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TCP Round Trip Time and Timeout

Setting the timeout
❒ EstimtedRTT plus “safety margin”

❍ large variation in EstimatedRTT -> larger safety margin
❒ first estimate of how much SampleRTT deviates from 

EstimatedRTT: 

DevRTT = (1-β)*DevRTT +
β*|SampleRTT-EstimatedRTT|

(typically, β = 0.25)

Then set timeout interval:

TimeoutInterval = EstimatedRTT + 4*DevRTT
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Chapter 3 outline

❒ 3.1 Transport-layer 
services

❒ 3.2 Multiplexing and 
demultiplexing

❒ 3.3 Connectionless 
transport: UDP

❒ 3.4 Principles of 
reliable data transfer

❒ 3.5 Connection-oriented 
transport: TCP

❍ segment structure
❍ reliable data transfer
❍ flow control
❍ connection management

❒ 3.6 Principles of 
congestion control

❒ 3.7 TCP congestion 
control
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TCP reliable data transfer

❒ TCP creates rdt
service on top of IP’s 
unreliable service

❒ Pipelined segments
❒ Cumulative acks
❒ TCP uses single 

retransmission timer

❒ Retransmissions are 
triggered by:

❍ timeout events
❍ duplicate acks

❒ Initially consider 
simplified TCP sender:

❍ ignore duplicate acks
❍ ignore flow control, 

congestion control
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TCP sender events:
data rcvd from app:
❒ Create segment with 

seq #
❒ seq # is byte-stream 

number of first data 
byte in  segment

❒ start timer if not 
already running (think 
of timer as for oldest 
unacked segment)

❒ expiration interval: 
TimeOutInterval

timeout:
❒ retransmit segment 

that caused timeout
❒ restart timer
Ack rcvd:

❒ If acknowledges 
previously unacked
segments

❍ update what is known to 
be acked

❍ start timer if there are  
outstanding segments
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TCP 
sender
(simplified)

NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum

loop (forever) {
switch(event)

event: data received from application above 
create TCP segment with sequence number NextSeqNum
if (timer currently not running)

start timer
pass segment to IP 
NextSeqNum = NextSeqNum + length(data) 

event: timer timeout
retransmit not-yet-acknowledged segment with 

smallest sequence number
start timer

event: ACK received, with ACK field value of y 
if (y > SendBase) { 

SendBase = y
if (there are currently not-yet-acknowledged segments)

start timer 
} 

}  /* end of loop forever */

Comment:
• SendBase-1: last 
cumulatively 
ack’ed byte
Example:
• SendBase-1 = 71;
y= 73, so the rcvr
wants 73+ ;
y > SendBase, so
that new data is 
acked



3: Transport Layer 70Comp 361, Spring 2004

TCP: retransmission scenarios
Host A Host BHost A

Seq=92, 8 bytes data

ACK=100

loss

ti
m

eo
ut

lost ACK scenario

Host B

X

Seq=92, 8 bytes data

ACK=100

time

SendBase
= 100

Seq=100, 20 bytes data

ACK=100

time
premature timeout

Seq=92, 8 bytes data

ACK=120

Seq=92, 8 bytes data

Se
q=

92
 t

im
eo

ut

ACK=120

Se
q=

92
 t

im
eo

ut

SendBase
= 120

SendBase
= 120

Sendbase
= 100
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TCP retransmission scenarios (more)
Host A

Seq=92, 8 bytes data

ACK=100

loss

ti
m

eo
ut

Cumulative ACK scenario

Host B

X

Seq=100, 20 bytes data

ACK=120

time

SendBase
= 120
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TCP ACK generation [RFC 1122, RFC 2581]

Event at Receiver

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Arrival of in-order segment with
expected seq #. One other 
segment has ACK pending

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Arrival of segment that 
partially or completely fills gap

TCP Receiver action

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Immediately send single cumulative 
ACK, ACKing both in-order segments 

Immediately send duplicate ACK, 
indicating seq. # of next expected byte

Immediate send ACK, provided that
segment starts at lower end of gap
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More on Sender Policies

❒ Doubling the Timeout Interval
❍ Used by most TCP implementations
❍ If timeout occurs then, after retransmisison, 

Timeout Interval is doubled
❍ Intervals grow exponentially with each 

consecutive timeout
❍ When Timer restarted because of (i) new data 

from above or (ii) ACK received, then Timeout 
Interval is reset as described previously using 
Estimated RTT and DevRTT.

❍ Limited form of Congestion Control
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Fast  Retransmit

❒ Time-out period  often 
relatively long:

❍ long delay before 
resending lost packet

❒ Detect lost segments 
via duplicate ACKs.

❍ Sender often sends 
many segments back-to-
back

❍ If segment is lost, 
there will likely be many 
duplicate ACKs.

❒ If sender receives 3 
ACKs for the same 
data, it supposes that 
segment after ACKed
data was lost:

❍ fast retransmit: resend 
segment before timer 
expires
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Fast retransmit algorithm:

event: ACK received, with ACK field value of y 
if (y > SendBase) { 

SendBase = y
if (there are currently not-yet-acknowledged segments)

start timer 
} 

else { 
increment count of dup ACKs received for y
if (count of dup ACKs received for y = 3) {

resend segment with sequence number y
}

a duplicate ACK for 
already ACKed segment

fast retransmit
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TCP: GBN or Selective Repeat?

❒ Basic TCP looks a lot like GBN

❒ Many TCP implementations will buffer 
received out-of-order segments and then 
ACK them all after filling in the range
❍ This looks  a lot like Selective Repeat

❒ TCP is a hybrid
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Chapter 3 outline

❒ 3.1 Transport-layer 
services

❒ 3.2 Multiplexing and 
demultiplexing

❒ 3.3 Connectionless 
transport: UDP

❒ 3.4 Principles of 
reliable data transfer

❒ 3.5 Connection-oriented 
transport: TCP

❍ segment structure
❍ reliable data transfer
❍ flow control
❍ connection management

❒ 3.6 Principles of 
congestion control

❒ 3.7 TCP congestion 
control
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TCP Flow Control

❒ Sender should not overwhelm receiver’s 
capacity to receive data

❒ If necessary, sender should slow down 
transmission rate to accommodate 
receiver’s rate.

❒ Different from Congestion Control whose 
purpose was to handle congestion in 
network. (But both congestion control and flow control 
work by slowing down data transmission)
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TCP Flow Control
sender won’t overflow
receiver’s buffer by

transmitting too much,
too fast

flow control
❒ receive side of TCP 

connection has a 
receive buffer:

❒ speed-matching 
service: matching the 
send rate to the 
receiving app’s drain 
rate

❒ app process may be 
slow at reading from 
buffer
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TCP segment structure

source port # dest port #

32 bits

application
data 

(variable length)

sequence number
acknowledgement number

Receive window
Urg data pnterchecksum

FSRPAUhead
len

not
used

Options (variable length)

URG: urgent data 
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

Internet
checksum

(as in UDP)

counting
by bytes 
of data
(not segments!)

# bytes 
rcvr willing
to accept
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TCP Flow control: how it works

(Suppose TCP receiver 
discards out-of-order 
segments)

❒ spare room in buffer
= RcvWindow
= RcvBuffer-[LastByteRcvd -

LastByteRead]

❒ Rcvr advertises spare 
room by including value 
of RcvWindow in 
segments

❒ Sender limits unACKed
data to RcvWindow

❍ guarantees receive 
buffer doesn’t overflow
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Technical Issue

❒ Suppose  RcvWindow=0 and that receiver has 
already ACK’d ALL packets in buffer

❒ Sender does not transmit new packets until it 
hears RcvWindow>0.

❒ Receiver never sends RcvWindow>0 since it has no 
new ACKS to send to Sender

❒ DEADLOCK

❒ Solution: TCP specs require sender to continue 
sending packets with one data byte while 
RcvWindow=0, just to keep  receiving ACKS from 
B. At some point the receiver’s buffer will empty 
and RcvWindow>0 will be transmitted back to 
sender.
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Note on UDP

UDP has no flow control!

UDP appends packets to receiving socket’s 
buffer.  If buffer is full then packets are 
lost!
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Chapter 3 outline

❒ 3.1 Transport-layer 
services

❒ 3.2 Multiplexing and 
demultiplexing

❒ 3.3 Connectionless 
transport: UDP

❒ 3.4 Principles of 
reliable data transfer

❒ 3.5 Connection-oriented 
transport: TCP

❍ segment structure
❍ reliable data transfer
❍ flow control
❍ connection management

❒ 3.6 Principles of 
congestion control

❒ 3.7 TCP congestion 
control
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TCP Connection Management

Three way handshake:
Step 1: client end system sends 

TCP SYN control segment to 
server

❍ specifies client_isn, the 
initial seq #

❍ No application data

Step 2: server end system 
receives SYN, replies with 
SYNACK control segment

❍ ACKs received SYN
❍ allocates buffers
❍ Replies with client_isn+1 in 

ACK field to signal 
synchronization

❍ Specifies server_isn
❍ No application data

Recall: TCP sender, receiver 
establish “connection”
before exchanging data 
segments

❒ initialize TCP variables:
❍ seq. #s
❍ buffers, flow control 

info (e.g. RcvWindow)
❒ client: connection initiator
Socket clientSocket = new   
Socket("hostname","port 
number");

❒ server: contacted by client
Socket connectionSocket = 
welcomeSocket.accept();
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TCP Connection Management (cont.)

Step 3: client end system 
receives SYNACK, replies 
with SYN=0 and 
server_isn+1

❍ Allocate buffers
❍ Allocates buffers
❍ Can include application 

data

SYN=0 signals that 
connection  established
server_isn+1 signals that # 
is synchronized

client
nection request (SYN=1 seq=client_isn)

n,

server
Con

ACK (SYN=0, seq=client_isn+1)ack=server_isn+1

Connection granted (SYN=1, serve

ack=client_isn+1)

r_is
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TCP Connection Management (cont.)

Closing a connection:

client closes socket:
clientSocket.close();

Step 1: client end system 
sends TCP FIN control 
segment to server

Step 2: server receives 
FIN, replies with ACK. 
Closes connection, sends 
FIN. 

client

FIN

server

ACK

ACK

FIN

close

close

closed

ti
m

ed
 w

ai
t
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TCP Connection Management (cont.)

clientStep 3: client receives FIN, 
replies with ACK. 

❍ Enters “timed wait” –
during which will respond 
with ACK to received 
FINs (that might arrive 
if ACK gets lost).

❍ Closes down after timed-
wait

Step 4: server, receives ACK.  
Connection closed. 

Note: with small modification, 
can handle simultaneous FINs.

server

FIN

ACK

ti
m

ed
 w

ai
t

closing

ACK

FIN
closing

closed

closed
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TCP Connection Management (cont)

ExampleTCP server
lifecycle

Example TCP client
lifecycle
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A few special cases

❒ Have not discussed what happens if both 
client and server decide to close down 
connection at same time.

❒ It is possible that first ACK (from server) 
and second FIN (also from server) are sent 
in same segment
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Chapter 3 outline

❒ 3.1 Transport-layer 
services

❒ 3.2 Multiplexing and 
demultiplexing

❒ 3.3 Connectionless 
transport: UDP

❒ 3.4 Principles of 
reliable data transfer

❒ 3.5 Connection-oriented 
transport: TCP

❍ segment structure
❍ reliable data transfer
❍ flow control
❍ connection management

❒ 3.6 Principles of 
congestion control

❒ 3.7 TCP congestion 
control
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Principles of Congestion Control

Congestion:
❒ informally: “too many sources sending too much 

data too fast for network to handle”
❒ different from flow control!
❒ manifestations:

❍ lost packets (buffer overflow at routers)
❍ long delays (queuing in router buffers)

❒ a top-10 problem!
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Causes/costs of congestion: scenario 1
❒ two senders, two 

receivers
❒ one router, 

infinite buffers 
❒ no retransmission
❒ Send rate 0-C/2

❒ large delays 
when congested

❒ maximum 
achievable 
throughput
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Causes/costs of congestion: scenario 2

❒ one router, finite buffers 
❒ sender retransmission of lost packet
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❒ always:                   (goodput)
❒ Magic transmission; only send when there’s space in buffer
❒ “perfect” retransmission only when loss:

❒ retransmission of delayed (not lost) packet makes         larger (than 
perfect case) for same

λin λout=

λin λout>
λ

inλout

“costs” of congestion:
❒ more work (retrans) for given “goodput”
❒ unneeded retransmissions: link carries multiple copies of pkt
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Causes/costs of congestion: scenario 3
❒ four senders
❒ multihop paths
❒ timeout/retransmit

λ
in

Q: what happens as      
and     increase ?λ

in
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Causes/costs of congestion: scenario 3

Another “cost” of congestion:
❒ when packet dropped, any “upstream transmission 

capacity used for that packet was wasted!
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Approaches towards congestion control

Two broad approaches towards congestion control:

End-end congestion 
control:

❒ no explicit feedback from 
network

❒ congestion inferred from 
end-system observed loss, 
delay

❒ approach taken by TCP

Network-assisted 
congestion control:

❒ routers provide feedback 
to end systems

❍ single bit indicating 
congestion (SNA, 
DECbit, TCP/IP ECN, 
ATM)

❍ explicit rate sender 
should send at
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Case study: ATM ABR congestion control

RM (resource management) 
cells:

❒ sent by sender, interspersed 
with data cells

❒ bits in RM cell set by switches 
(“network-assisted”) 

❍ NI bit: no increase in rate 
(mild congestion)

❍ CI bit: severe congestion 
indicator

❒ RM cells returned to sender by 
receiver, with bits intact

small exception – see next page

ABR: available bit rate:
❒ “elastic service”
❒ if sender’s path 

“underloaded”: 
❍ sender should use 

available bandwidth
❒ if sender’s path congested: 

❍ sender throttled to 
minimum guaranteed rate



3: Transport Layer 100Comp 361, Spring 2004

Case study: ATM ABR congestion control

❒ two-byte ER (explicit rate) field in RM cell
❍ congested switch may lower ER value in cell
❍ sender’s send rate thus minimum supportable rate on path

❒ EFCI bit in data cells: set to 1 by congested switch
❍ Signals congestion
❍ if data cell preceding RM cell has EFCI=1, destination sets 

CI bit=1 before returning RM cell to source.
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Chapter 3 outline

❒ 3.1 Transport-layer 
services

❒ 3.2 Multiplexing and 
demultiplexing

❒ 3.3 Connectionless 
transport: UDP

❒ 3.4 Principles of 
reliable data transfer

❒ 3.5 Connection-oriented 
transport: TCP

❍ segment structure
❍ reliable data transfer
❍ flow control
❍ connection management

❒ 3.6 Principles of 
congestion control

❒ 3.7 TCP congestion 
control
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TCP Congestion Control
❒ end-end control (no network assistance)
❒ transmission rate limited by congestion window size, Congwin, 

over segments.   Congwin dynamically modified to reflect perceived congestion.

Congwin

❒ w segments, each with MSS bytes sent in one RTT:

throughput = w * MSS
RTT Bytes/sec
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❒ To simplify presentation we assume that RcvBuffer
is large enough that it will not overflow

❒ Tools are  “similar” to flow control.                 
sender limits transmission using:

LastByteSent-LastByteAcked ≤ CongWin

How does  sender perceive congestion?
❒ loss event = timeout or 3 duplicate acks
❒ TCP sender reduces rate (CongWin) after loss event

three mechanisms:
❍ AIMD = Additive Increase Multiplicative Decrease
❍ slow start = CongWin set to 1 and then grows exponentially
❍ conservative after timeout events
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TCP AIMD
additive increase: increase  

CongWin by 1 MSS every 
RTT in the absence of loss 
events:  probing also known as
congestion avoidance

multiplicative decrease:
cut CongWin in half 
after loss event

8 Kbytes

16 Kbytes

24 Kbytes

time

congestion
window

Long-lived TCP connection
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TCP Slow Start

❒ When connection begins, 
CongWin = 1 MSS

❍ Example: MSS = 500 
bytes & RTT = 200 msec

❍ initial rate = 20 kbps
❒ available bandwidth may 

be >> MSS/RTT
❍ desirable to quickly ramp 

up to respectable rate

❒ When connection begins, 
increase rate 
exponentially fast until 
first loss event
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TCP Slow Start (more)

❒ When connection 
begins, increase rate 
exponentially until 
first loss event:

❍ double CongWin every 
RTT

❍ done by incrementing 
CongWin for every ACK 
received

❒ Summary: initial rate 
is slow but ramps up 
exponentially fast

Host A

one segment

RT
T

Host B

time

two segments

four segments
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❒ So Far
❍ Slow-Start:  ramps up exponentially
❍ Followed by AIMD: sawtooth pattern

❒ Reality (TCP Reno)
❍ Introduce new variable threshold
❍ threshold initially very large
❍ Slow-Start exponential growth stops when 

reaches threshold and then switches to AIMD
❍ Two different types of loss events

• 3 dup ACKS: cut CongWin in half  and set 
threshold=CongWin (now in standard AIMD) 

• Timeout: set  threshold=CongWin/2,  CongWin=1
and switch to Slow-Start
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❒ Reason for treating 3 dup ACKS differently than timeout 
is that 3 dup ACKs indicates  network capable of  
delivering some segments while timeout before 3 dup  
ACKs is “more alarming”.

❒ Note that older protocol, TCP Tahoe,  treated both types 
of loss events the same and always goes to slowstart with 
Congwin=1 after a loss event.

❒ TCP Reno’s skipping of the slow start for a 3-DUP-ACK 
loss event is known as fast-recovery.
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Summary: TCP Congestion Control

❒ When CongWin is below Threshold, sender in 
slow-start phase, window grows exponentially.

❒ When CongWin is above Threshold, sender is in 
congestion-avoidance phase, window grows linearly.

❒ When a triple duplicate ACK occurs, Threshold
set to CongWin/2 and CongWin set to 
Threshold.  (only in TCP Reno)

❒ When timeout occurs, Threshold set to 
CongWin/2 and CongWin is set to 1 MSS.
(TCP Tahoe does this for 3 Dup Acks as well)
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The Big Picture
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TCP Fairness
Fairness goal: if K TCP sessions share same 

bottleneck link of bandwidth R, each should have 
average rate of R/K

TCP connection 1

bottleneck
router

capacity R

TCP 
connection 2
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Why is TCP fair?
Two competing sessions:
❒ Additive increase gives slope of 1, as throughout increases
❒ multiplicative decrease decreases throughput proportionally 

ct
io

n  
2 

t h
ro

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

R equal bandwidth share

Co
nn

e
u g

hp
ut

Connection 1 throughput R
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Fairness (more)
Fairness and UDP
❒ Multimedia apps often do 

not use TCP
❍ do not want rate throttled 

by congestion control
❒ Instead use UDP:

❍ pump audio/video at 
constant rate, tolerate 
packet loss

❒ Current Research area: 
❍ How to keep UDP from 

congesting the internet.

Fairness and parallel TCP 
connections

❒ nothing prevents app from 
opening parallel cnctions
between 2 hosts.

❒ Web browsers do this 
❒ Example: link of rate R 

supporting 9 cnctions; 
❍ new app asks for 1 TCP, gets 

rate R/10
❍ new app asks for 11 TCPs, gets 

R/2 !
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TCP Latency Modeling
Notation, assumptions:
❒ Assume one link between 

client and server of rate R
❒ S: MSS (bits)
❒ O: object size (bits)
❒ no retransmissions (no loss, 

no corruption)
Window size:
❒ First assume: fixed 

congestion window, W 
segments

❒ Then dynamic window, 
modeling slow start

Q: How long does it take to 
completely receive an 
object from a Web server 
after sending a request? 
This is known as the latency of the 
(request for the) object.

Ignoring congestion, delay is 
influenced by:

❒ TCP connection establishment
❒ data transmission delay
❒ slow start
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Fixed Congestion Window (W)
Two cases

1. WS/R > RTT + S/R: 
ACK for first segment in window returns before 

window’s worth of data sent
Latency = 2RTT + O/R

2. WS/R < RTT + S/R: 
ACK for first segment in window returns after  

window’s worth of data sent
Latency = 2RTT + O/R + (K-1)[S/R + RTT - WS/R]
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Fixed congestion window (1)

First case:
WS/R > RTT + S/R: ACK for 

first segment in window 
returns before window’s 
worth of data sent

latency = 2RTT + O/R
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Fixed congestion window (2)

Second case:
❒ WS/R < RTT + S/R: wait 

for ACK after sending 
window’s worth of data 
sent

latency = 2RTT + O/R
+ (K-1)[S/R + RTT - WS/R]
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TCP Latency Modeling: Slow Start (1)

Now suppose window grows according to slow start
(with no threshold and no loss events)

Will show that the delay for one object is:

R
S

R
SRTTP

R
ORTTLatency P )12(2 −−



 +++=

where P is the number of times TCP idles at server:
}1,{min −= KQP

- where Q is the number of times the server idles
if the object were of infinite size.

- and  K is the number of windows that cover the object.
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TCP Latency Modeling: Slow Start (2)

RTT

initiate TCP
connection

request
object

first window
= S/R

second window
= 2S/R

third window
= 4S/R

fourth window
= 8S/R

complete
transmissionobject

delivered

time at
client

time at
server

Example:
• O/S  = 15 segments
• K = 4 windows
• Q = 2
• P = min{K-1,Q} = 2

Server idles P=2 times

Delay components:
• 2 RTT for connection 
estab and request
• O/R to transmit 
object
• time server idles due 
to slow start

Server idles: 
P = min{K-1,Q} times
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TCP Latency Modeling (3)
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TCP Latency Modeling (4)
Recall K = number of windows that cover object

How do we calculate K ?
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Calculation of Q, number  of idles for infinite-size object,
is similar.
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HTTP Modeling
❒ Assume Web page consists of:

❍ 1 base HTML page (of size O bits)
❍ M images (each of size O bits)

❒ Non-persistent HTTP: 
❍ M+1 TCP connections in series
❍ Response time = (M+1)O/R + (M+1)2RTT + sum of idle times

❒ Persistent HTTP:
❍ 2 RTT to request and receive base HTML file
❍ 1 RTT to request and receive M images
❍ Response time = (M+1)O/R + 3RTT + sum of idle times

❒ Non-persistent HTTP with X parallel connections
❍ Suppose M/X integer.
❍ 1 TCP connection for base file
❍ M/X sets of parallel connections for images.
❍ Response time = (M+1)O/R +  (M/X + 1)2RTT + sum of idle times
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HTTP Response time (in seconds)
RTT = 100 msec, O = 5 Kbytes, M=10 and X=5

0
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non-persistent

persistent

parallel non-
persistent

For low bandwidth, connection & response time  dominated by 
transmission time.
Persistent connections only give minor improvement over parallel
connections.
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HTTP Response time (in seconds)
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RTT =1 sec, O = 5 Kbytes, M=10 and X=5

For larger RTT, response time dominated by TCP establishment 
& slow start delays. Persistent connections now give important 
improvement: particularly in high delay•bandwidth networks.
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Chapter 3: Summary
❒ principles behind transport 

layer services:
❍ multiplexing, 

demultiplexing
❍ reliable data transfer
❍ flow control
❍ congestion control

❒ instantiation and 
implementation in the 
Internet
❍ UDP
❍ TCP

Next:
❒ leaving the network 

“edge” (application, 
transport layers)

❒ into the network 
“core”


	Chapter 3: Transport Layer last revised 23/03/04
	Chapter 3 outline
	Transport services and protocols
	Transport vs. network layer
	Transport-layer protocols
	Chapter 3 outline
	Multiplexing/demultiplexing
	Multiplexing/demultiplexing
	How demultiplexing works
	Connectionless demultiplexing
	Connectionless demux (cont)
	Connection-oriented demux
	Connection-oriented demux (cont)
	Chapter 3 outline
	UDP: User Datagram Protocol [RFC 768]
	UDP: more
	UDP checksum
	Chapter 3 outline
	Principles of Reliable data transfer
	Reliable data transfer: getting started
	Reliable data transfer: getting started
	Incremental Improvements
	Rdt1.0: reliable transfer over a reliable channel
	Rdt2.0: channel with bit errors
	rdt2.0: FSM specification
	rdt2.0: operation with no errors
	rdt2.0: error scenario
	rdt2.0 has a fatal flaw!
	
	rdt2.1: sender, handles garbled ACK/NAKs
	rdt2.1: receiver, handles garbled ACK/NAKs
	rdt2.1: discussion
	rdt2.2: a NAK-free protocol
	rdt2.2: sender, receiver fragments
	rdt3.0: channels with errors and loss
	rdt3.0 sender
	rdt3.0 in action
	rdt3.0 in action
	Performance of rdt3.0
	rdt3.0: stop-and-wait operation
	Pipelined protocols
	Pipelined protocols
	Pipelining: increased utilization
	Go-Back-N
	GBN: Sender
	GBN: sender extended FSM
	GBN: receiver extended FSM
	More on receiver
	GBN inaction
	
	Selective Repeat
	Selective repeat: sender, receiver windows
	Selective repeat
	Selective repeat in action
	Selective repeat: dilemma
	Chapter 3 outline
	TCP: Overview   RFCs: 793, 1122, 1323, 2018, 2581
	More TCP Details
	Even More TCP Details
	TCP segment structure
	TCP seq. #’s and ACKs
	TCP Round Trip Time and Timeout
	TCP Round Trip Time and Timeout
	Example RTT estimation:
	TCP Round Trip Time and Timeout
	Chapter 3 outline
	TCP reliable data transfer
	TCP sender events:
	TCP sender(simplified)
	TCP: retransmission scenarios
	TCP retransmission scenarios (more)
	TCP ACK generation [RFC 1122, RFC 2581]
	More on Sender Policies
	Fast  Retransmit
	Fast retransmit algorithm:
	TCP: GBN or Selective Repeat?
	Chapter 3 outline
	TCP Flow Control
	TCP Flow Control
	TCP segment structure
	TCP Flow control: how it works
	Technical Issue
	Chapter 3 outline
	TCP Connection Management
	TCP Connection Management (cont.)
	TCP Connection Management (cont.)
	TCP Connection Management (cont.)
	TCP Connection Management (cont)
	A few special cases
	Chapter 3 outline
	Principles of Congestion Control
	Causes/costs of congestion: scenario 1
	Causes/costs of congestion: scenario 2
	Causes/costs of congestion: scenario 3
	Causes/costs of congestion: scenario 3
	Approaches towards congestion control
	Case study: ATM ABR congestion control
	Case study: ATM ABR congestion control
	Chapter 3 outline
	TCP Congestion Control
	
	TCP AIMD
	TCP Slow Start
	TCP Slow Start (more)
	
	
	Summary: TCP Congestion Control
	The Big Picture
	TCP Fairness
	Why is TCP fair?
	Fairness (more)
	TCP Latency Modeling
	Fixed Congestion Window (W)
	Fixed congestion window (1)
	Fixed congestion window (2)
	TCP Latency Modeling: Slow Start (1)
	TCP Latency Modeling: Slow Start (2)
	TCP Latency Modeling (3)
	TCP Latency Modeling (4)
	HTTP Modeling
	Chapter 3: Summary

