
3: Transport Layer 1Comp 361, Spring 2004

Chapter 3: Transport Layer last revised 23/03/04

Chapter goals:
❒ understand principles

behind transport layer
services:

❍ multiplexing/demultiplex
ing

❍ reliable data transfer
❍ flow control
❍ congestion control

❒ instantiation and
implementation in the
Internet

Chapter Overview:
❒ transport layer services
❒ multiplexing/demultiplexing
❒ connectionless transport: UDP
❒ principles of reliable data

transfer
❒ connection-oriented transport:

TCP
❍ reliable transfer
❍ flow control
❍ connection management

❒ principles of congestion control
❒ TCP congestion control

3: Transport Layer 2Comp 361, Spring 2004

Chapter 3 outline

❒ 3.1 Transport-layer
services

❒ 3.2 Multiplexing and
demultiplexing

❒ 3.3 Connectionless
transport: UDP

❒ 3.4 Principles of
reliable data transfer

❒ 3.5 Connection-oriented
transport: TCP

❍ segment structure
❍ reliable data transfer
❍ flow control
❍ connection management

❒ 3.6 Principles of
congestion control

❒ 3.7 TCP congestion
control

3: Transport Layer 3Comp 361, Spring 2004

Transport services and protocols
❒ provide logical communication

between app processes
running on different hosts

❒ transport protocols run in
end systems

❍ send side: breaks app
messages into segments,
passes to network layer

❍ rcv side: reassembles
segments into messages,
passes to app layer

❒ more than one transport
protocol available to apps

❍ Internet: TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

logical end-end transport

3: Transport Layer 4Comp 361, Spring 2004

Transport vs. network layer
Household analogy:
12 kids sending letters

to 12 kids
❒ processes = kids
❒ app messages = letters

in envelopes
❒ hosts = houses
❒ transport protocol =

Ann and Bill
❒ network-layer protocol

= postal service

❒ network layer: logical
communication
between hosts

❒ transport layer: logical
communication
between processes

❍ relies on, enhances,
network layer services

3: Transport Layer 5Comp 361, Spring 2004

Transport-layer protocols

Internet transport services:
❒ reliable, in-order unicast

delivery (TCP)
❍ congestion
❍ flow control
❍ connection setup

❒ unreliable (“best-effort”),
unordered unicast or
multicast delivery: UDP

❒ services not available:
❍ real-time
❍ bandwidth guarantees
❍ reliable multicast

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

logical end-end transport

3: Transport Layer 6Comp 361, Spring 2004

Chapter 3 outline

❒ 3.1 Transport-layer
services

❒ 3.2 Multiplexing and
demultiplexing

❒ 3.3 Connectionless
transport: UDP

❒ 3.4 Principles of
reliable data transfer

❒ 3.5 Connection-oriented
transport: TCP

❍ segment structure
❍ reliable data transfer
❍ flow control
❍ connection management

❒ 3.6 Principles of
congestion control

❒ 3.7 TCP congestion
control

3: Transport Layer 7Comp 361, Spring 2004

Multiplexing/demultiplexing
gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

Multiplexing at send host:

delivering received segments
to correct socket

Demultiplexing at rcv host:

= socket = process

application

transport

network

link

physical

P1 application

transport

network

link

physical

application

transport

network

link

physical

P2P3 P4P1

host 1 host 2 host 3

3: Transport Layer 8Comp 361, Spring 2004

Multiplexing/demultiplexing
segment - unit of data

exchanged between
transport layer entities

❍ aka TPDU: transport
protocol data unit

Demultiplexing: delivering
received segments to
correct app layer processes

application
transport
network

M P2
application
transport
network

Ht
Hn segment

M
application
transport
network

P1
M

M M
P3 P4

segment
header

receiver
application-layer
data

segment

3: Transport Layer 9Comp 361, Spring 2004

How demultiplexing works
❒ host receives IP datagrams

❍ each datagram has source
IP address, destination IP
address

❍ each datagram carries 1
transport-layer segment

❍ each segment has source,
destination port number
(recall: well-known port
numbers for specific
applications)

❒ host uses IP addresses & port
numbers to direct segment to
appropriate socket

32 bits

source port # dest port #

application
data

(message)

other header fields

TCP/UDP segment format

3: Transport Layer 10Comp 361, Spring 2004

Connectionless demultiplexing
❒ When host receives UDP

segment:
❍ checks destination port

number in segment
❍ directs UDP segment to

socket with that port
number

❒ IP datagrams with
different source IP
addresses and/or source
port numbers directed
to same socket

❒ Create sockets with port
numbers:

DatagramSocket mySocket1 = new
DatagramSocket(99111);

DatagramSocket mySocket2 = new
DatagramSocket(99222);

❒ UDP socket identified by
two-tuple:

(dest IP address, dest port number)

3: Transport Layer 11Comp 361, Spring 2004

Connectionless demux (cont)
DatagramSocket serverSocket = new DatagramSocket(6428);

Client
IP:B

P3

client
IP: A

P1P1P3

server
IP: C

SP: 6428
DP: 9157

SP: 9157
DP: 6428

SP: 6428
DP: 5775

SP: 5775
DP: 6428

SP provides “return address”

3: Transport Layer 12Comp 361, Spring 2004

Connection-oriented demux

❒ TCP socket identified
by 4-tuple:

❍ source IP address
❍ source port number
❍ dest IP address
❍ dest port number

❒ recv host uses all four
values to direct
segment to appropriate
socket

❒ Server host may support
many simultaneous TCP
sockets:

❍ each socket identified by
its own 4-tuple

❒ Web servers have
different sockets for
each connecting client

❍ non-persistent HTTP will
have different socket for
each request

3: Transport Layer 13Comp 361, Spring 2004

Connection-oriented demux
(cont)

P3

client
IP: A

P3 P4 P1P1

Client
IP:B

server
IP: C

SP: 80
DP: 9157

SP: 80
DP: 5775

SP: 9157 SP: 5775
DP: 80DP: 80

3: Transport Layer 14Comp 361, Spring 2004

Chapter 3 outline

❒ 3.1 Transport-layer
services

❒ 3.2 Multiplexing and
demultiplexing

❒ 3.3 Connectionless
transport: UDP

❒ 3.4 Principles of
reliable data transfer

❒ 3.5 Connection-oriented
transport: TCP

❍ segment structure
❍ reliable data transfer
❍ flow control
❍ connection management

❒ 3.6 Principles of
congestion control

❒ 3.7 TCP congestion
control

3: Transport Layer 15Comp 361, Spring 2004

UDP: User Datagram Protocol [RFC 768]

❒ “no frills,” “bare bones”
Internet transport
protocol

❒ “best effort” service, UDP
segments may be:

❍ lost
❍ delivered out of order

to app
❒ connectionless:

❍ no handshaking between
UDP sender, receiver

❍ each UDP segment
handled independently
of others

Why is there a UDP?
❒ no connection

establishment (which can
add delay)

❒ simple: no connection state
at sender, receiver

❒ small segment header (8
Bytes)

❒ no congestion control: UDP
can blast away as fast as
desired

3: Transport Layer 16Comp 361, Spring 2004

UDP: more
❒ often used for streaming

multimedia apps
❍ loss tolerant
❍ rate sensitive

❒ other UDP uses
(why?):

❍ DNS: small delay
❍ SNMP: stressful cond.

❒ reliable transfer over UDP:
add reliability at
application layer

❍ application-specific
error recover!

32 bits

source port # dest port #

Application
data

(message)

length checksum
Length, in

bytes of UDP
segment,
including

header

UDP segment format

3: Transport Layer 17Comp 361, Spring 2004

UDP checksum
Goal: detect “errors” (e.g.,flipped bits) in transmitted

segment

Receiver:
❒ compute checksum of

received segment
❒ check if computed checksum

equals checksum field value:
❍ NO - error detected
❍ YES - no error detected.

But maybe errors
nonetheless? More later ..

❒ Receiver may choose to
discard segment or send a
warning to app in case error

Sender:
❒ treat segment contents

as sequence of 16-bit
integers

❒ checksum: addition (1’ s
complement sum) of
segment contents

❒ sender puts checksum
value into UDP checksum
field

3: Transport Layer 18Comp 361, Spring 2004

Chapter 3 outline

❒ 3.1 Transport-layer
services

❒ 3.2 Multiplexing and
demultiplexing

❒ 3.3 Connectionless
transport: UDP

❒ 3.4 Principles of
reliable data transfer

❒ 3.5 Connection-oriented
transport: TCP

❍ segment structure
❍ reliable data transfer
❍ flow control
❍ connection management

❒ 3.6 Principles of
congestion control

❒ 3.7 TCP congestion
control

3: Transport Layer 19Comp 361, Spring 2004

Principles of Reliable data transfer
❒ important in app., transport, link layers
❒ top-10 list of important networking topics!

❒ characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

3: Transport Layer 20Comp 361, Spring 2004

Reliable data transfer: getting started

send
side

receive
side

rdt_send(): called from above,
(e.g., by app.). Passed data to

deliver to receiver upper layer

udt_send(): called by rdt,
to transfer packet over

unreliable channel to receiver

rdt_rcv(): called when packet
arrives on rcv-side of channel

deliver_data(): called by
rdt to deliver data to upper

3: Transport Layer 21Comp 361, Spring 2004

Reliable data transfer: getting started
We’ll:
❒ incrementally develop sender, receiver sides of

reliable data transfer protocol (rdt)
❒ consider only unidirectional data transfer

❍ but control info will flow on both directions!
❒ use finite state machines (FSM) to specify

sender, receiver

state
1

state
2

event causing state transition
actions taken on state transition

state: when in this
“state” next state

uniquely determined
by next event

event
actions

3: Transport Layer 22Comp 361, Spring 2004

Incremental Improvements

❒ rdt1.0: assumes every packet sent arrives,
and no errors introduced in transmission

❒ rdt2.0: assumes every packet sent arrives, but
some errors (bit flips) can occur within a
packet. Introduces concept of ACK and NAK

❒ rdt2.1: deals with corrupted ACKS/NAKS

❒ rdt2.2: like rdt2.1 but does not need NAKs

❒ Rdt3.0: Allows packets to be lost

3: Transport Layer 23Comp 361, Spring 2004

Rdt1.0: reliable transfer over a reliable channel

❒ underlying channel perfectly reliable
❍ no bit errors
❍ no loss of packets

❒ separate FSMs for sender, receiver:
❍ sender sends data into underlying channel
❍ receiver read data from underlying channel

extract (packet,data)
deliver_data(data)

Wait for
call from

below

rdt_rcv(packet)Wait for
call from
above packet = make_pkt(data)

udt_send(packet)

rdt_send(data)

sender receiver

3: Transport Layer 24Comp 361, Spring 2004

Rdt2.0: channel with bit errors

❒ underlying channel may flip bits in packet
❍ recall: UDP checksum to detect bit errors

❒ the question: how to recover from errors:
❍ acknowledgements (ACKs): receiver explicitly tells sender

that pkt received OK
❍ negative acknowledgements (NAKs): receiver explicitly

tells sender that pkt had errors
❍ sender retransmits pkt on receipt of NAK
❍ human scenarios using ACKs, NAKs?

❒ new mechanisms in rdt2.0 (beyond rdt1.0):
❍ error detection
❍ receiver feedback: control msgs (ACK,NAK) rcvr->sender

3: Transport Layer 25Comp 361, Spring 2004

rdt2.0: FSM specification

Wait for
call from
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)Wait for

ACK or
NAK

rdt_send(data)

receiver

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

Wait for
call from

below

rdt_rcv(rcvpkt) && isACK(rcvpkt)
Λ

sender

3: Transport Layer 26Comp 361, Spring 2004

rdt2.0: operation with no errors

Wait for
call from
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

Wait for
ACK or

NAK

Wait for
call from

below

rdt_send(data)

Λ

3: Transport Layer 27Comp 361, Spring 2004

rdt2.0: error scenario

Wait for
call from
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

Wait for
ACK or

NAK

Wait for
call from

below

rdt_send(data)

Λ

3: Transport Layer 28Comp 361, Spring 2004

rdt2.0 has a fatal flaw!
What happens if ACK/NAK

corrupted?
❒ sender doesn’t know what

happened at receiver!
❒ can’t just retransmit: possible

duplicate.
But receiver waiting!

What to do?
❒ sender ACKs/NAKs receiver’s

ACK/NAK? What if sender
ACK/NAK corrupted?

❒ retransmit, but this might
cause retransmission of
correctly received pkt!

❒ Receiver won’t know about
duplication!

Handling duplicates:
❒ sender adds sequence number

(0/1) to each pkt
❒ sender retransmits current

pkt if ACK/NAK garbled
❒ receiver discards (doesn’t

deliver up) duplicate pkt
❒ Duplicate packet is one with

same sequence # as previous
packet

Sender sends one packet,
then waits for receiver
response

stop and wait

3: Transport Layer 29Comp 361, Spring 2004

❒ Sender: whenever sender receives control message it
sends a packet to receiver.

❍ A valid ACK: Sends next packet (if exists) with new sequence #
❍ A NAK or corrupt response: resends old packet

❒ Receiver: sends ACK/NAK to sender
❍ If received packet is corrupt: send NAK
❍ If received packet is valid and has different sequence # as prev

packet: send ACK and deliver new data up.
❍ If received packet is valid and has same sequence # as prev

packet, i.e., is a retransmission of duplicate: send ACK

❒ Note: ACK/NAK do not contain sequence #.

3: Transport Layer 30Comp 361, Spring 2004

rdt2.1: sender, handles garbled ACK/NAKs
rdt_send(data)

Wait for
call 0 from

above

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

Wait for
ACK or
NAK 0 udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isNAK(rcvpkt))

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isNAK(rcvpkt))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

Wait for
call 1 from

above

Wait for
ACK or
NAK 1

Λ

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

Λ

rdt_send(data)

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)

udt_send(sndpkt)

3: Transport Layer 31Comp 361, Spring 2004

rdt2.1: receiver, handles garbled ACK/NAKs
rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

&& has_seq0(rcvpkt)

Wait for
0 from
below

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has_seq0(rcvpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq1(rcvpkt)

Wait for
1 from
below

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

3: Transport Layer 32Comp 361, Spring 2004

rdt2.1: discussion

Sender:
❒ seq # added to pkt
❒ two seq. #’s (0,1) will

suffice. Why?
❒ must check if received

ACK/NAK corrupted
❒ twice as many states

❍ state must “remember”
whether “current” pkt
has 0 or 1 seq. #

Receiver:
❒ must check if received

packet is duplicate
❍ state indicates whether

0 or 1 is expected pkt
seq #

❒ note: receiver can not
know if its last
ACK/NAK received OK
at sender

3: Transport Layer 33Comp 361, Spring 2004

rdt2.2: a NAK-free protocol

❒ same functionality as rdt2.1, using ACKs only
❒ instead of NAK, receiver sends ACK for last pkt

received OK
❍ receiver must explicitly include seq # of pkt being ACKed

❒ duplicate ACK at sender results in same action as
NAK: retransmit current pkt

3: Transport Layer 34Comp 361, Spring 2004

rdt2.2: sender, receiver fragments

Wait for
call 0 from

above

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||

isACK(rcvpkt,1))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

Wait for
ACK

0
sender FSM

fragment

Wait for
0 from
below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq1(rcvpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||

has_seq1(rcvpkt))

udt_send(sndpkt)
receiver FSM

fragment

Λ

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK1, chksum)
udt_send(sndpkt)

3: Transport Layer 35Comp 361, Spring 2004

rdt3.0: channels with errors and loss

New assumption:
underlying channel can
also lose packets (data
or ACKs)

❍ checksum, seq. #, ACKs,
retransmissions will be
of help, but not enough

Q: how to deal with loss?
❍ sender waits until

certain data or ACK
lost, then retransmits

❍ yuck: drawbacks?

Approach: sender waits
“reasonable” amount of
time for ACK

❒ retransmits if no ACK
received in this time

❒ if pkt (or ACK) just delayed
(not lost):

❍ retransmission will be
duplicate, but use of seq.
#’s already handles this

❍ receiver must specify seq
of pkt being ACKed

❒ requires countdown timer

3: Transport Layer 36Comp 361, Spring 2004

rdt3.0 sender
sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)
start_timer

Wait
for

ACK0

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isACK(rcvpkt,1))

Wait for
call 1 from

above

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)
rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isACK(rcvpkt,0))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,1)

stop_timer
stop_timer

udt_send(sndpkt)
start_timer

timeout

udt_send(sndpkt)
start_timer

timeout

rdt_rcv(rcvpkt)

Wait for
call 0from

above

Wait
for

ACK1

Λ
rdt_rcv(rcvpkt)

Λ
Λ

rdt_send(data)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

Λ

3: Transport Layer 37Comp 361, Spring 2004

rdt3.0 in action

3: Transport Layer 38Comp 361, Spring 2004

rdt3.0 in action

3: Transport Layer 39Comp 361, Spring 2004

Performance of rdt3.0

❒ rdt3.0 works, but performance stinks
❒ example: 1 Gbps link, 15 ms e-e prop. delay, 1KB packet:

L (packet length in bits) 8kb/pkt
10**9 b/sec

Ttransmit = = = 8 microsecR (transmission rate, bps)

U
sender =

.008
30.008

= 0.00027 L / R
RTT + L / R

=

❍ U sender: utilization – fraction of time sender busy sending
❍ 1KB pkt every 30 msec -> 33kB/sec thruput over 1 Gbps link
❍ network protocol limits use of physical resources!

3: Transport Layer 40Comp 361, Spring 2004

rdt3.0: stop-and-wait operation

RTT

last packet bit transmitted, t = L / R

ACK arrives, send next
packet, t = RTT + L / R

sender receiver

first packet bit transmitted, t = 0

first packet bit arrives
last packet bit arrives, send
ACK

U
sender =

.008
30.008

= 0.00027 L / R
RTT + L / R

=

3: Transport Layer 41Comp 361, Spring 2004

Pipelined protocols
Pipelining: sender allows multiple, “in-flight”, yet-to-be-acknowledged pkts

❍ range of sequence numbers must be increased
❍ buffering at sender and/or receiver

3: Transport Layer 42Comp 361, Spring 2004

Pipelined protocols

❒ Advantage: much better bandwidth
utilization than stop-and-wait

❒ Disadvantage: More complicated to deal
with reliability issues, e.g., corrupted, lost,
out of order data.
❍ Two generic approaches to solving this

• go-Back-N protocols
• selective repeat protocols

❒ Note: TCP is not exactly either

3: Transport Layer 43Comp 361, Spring 2004

Pipelining: increased utilization

RTT

last bit transmitted, t = L / R

last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

U
sender =

.024
30.008

= 0.0008 3 * L / R
RTT + L / R

=

sender receiver

first packet bit transmitted, t = 0

first packet bit arrives

Increase utilization
by a factor of 3!

3: Transport Layer 44Comp 361, Spring 2004

Go-Back-N
Sender:
❒ k-bit seq # in pkt header
❒ “window” of up to N, consecutive unack’ed pkts allowed

❒ ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK”
❍ may receive duplicate ACKs (see receiver)

❒ Only one timer: for oldest unacknowledged pkt
❒ timeout(n): retransmit pkt n and all higher seq # pkts in window
❒ Called a sliding-window protocol

3: Transport Layer 45Comp 361, Spring 2004

GBN: Sender

❒ rdt_Send() called: checks to see if window is full.
❍ No: send out packet
❍ Yes: return data to application level

❒ Receipt of ACK(n): cumulative acknowledgement
that all packets up to and including n have been
received. Updates window accordingly.

❒ Timeout: resends ALL packets that have been sent
but not yet acknowledged.

3: Transport Layer 46Comp 361, Spring 2004

GBN: sender extended FSM
rdt_send(data)

Wait start_timer
udt_send(sndpkt[base])
udt_send(sndpkt[base+1])
…
udt_send(sndpkt[nextseqnum-1])

timeout

if (nextseqnum < base+N) {
sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)
udt_send(sndpkt[nextseqnum])
if (base == nextseqnum)

start_timer
nextseqnum++
}

else
refuse_data(data)

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

base=1
nextseqnum=1

rdt_rcv(rcvpkt)
&& corrupt(rcvpkt)

Λ

base = getacknum(rcvpkt)+1
If (base == nextseqnum)

stop_timer
else

start_timer

3: Transport Layer 47Comp 361, Spring 2004

GBN: receiver extended FSM

Wait

default

rdt_rcv(rcvpkt)
&& notcurrupt(rcvpkt)
&& hasseqnum(rcvpkt,expectedseqnum)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedseqnum++

expectedseqnum=1
sndpkt =

make_pkt(0,ACK,chksum)

Λ

udt_send(sndpkt)

❒ If expected packet received:
❍ Send ACK and deliver packet packet upstairs

❒ If out-of-order packet received:
❍ discard (don’t buffer) -> no receiver buffering!
❍ Re-ACK pkt with highest in-order seq #
❍ may generate duplicate ACKs

3: Transport Layer 48Comp 361, Spring 2004

More on receiver

❒ The receiver always sends ACK for last
correctly received packet with highest in-
order seq #

❒ Receiver only sends ACKS (no NAKs)
❒ Can generate duplicate ACKs
❒ need only remember expectedseqnum

3: Transport Layer 49Comp 361, Spring 2004

GBN in
action

3: Transport Layer 50Comp 361, Spring 2004

GBN is easy to code but might have performance
problems.

In particular, if many packets are in pipeline at
one time (bandwidth-delay product large) then
one error can force retransmission of huge
amounts of data!

Selective Repeat protocol allows receiver to
buffer data and only forces retransmission of
required packets.

3: Transport Layer 51Comp 361, Spring 2004

Selective Repeat

❒ receiver individually acknowledges all correctly
received pkts

❍ buffers pkts, as needed, for eventual in-order delivery
to upper layer

❒ sender only resends pkts for which ACK not
received

❍ sender timer for each unACKed pkt
❍ Compare to GBN which only had timer for base packet

❒ sender window
❍ N consecutive seq #’s
❍ again limits seq #s of sent, unACKed pkts
❍ Important: Window size < seq # range

3: Transport Layer 52Comp 361, Spring 2004

Selective repeat: sender, receiver windows

3: Transport Layer 53Comp 361, Spring 2004

Selective repeat

pkt n in [rcvbase, rcvbase+N-1]

❒ send ACK(n)
❒ out-of-order: buffer
❒ in-order: deliver (also

deliver buffered, in-order
pkts), advance window to
next not-yet-received pkt

pkt n in [rcvbase-N,rcvbase-1]

❒ ACK(n) (note this is a reACK)

otherwise:
❒ ignore

receiver
data from above :
❒ if next available seq # in

window, send pkt
timeout(n):
❒ resend pkt n, restart timer
ACK(n) in [sendbase,sendbase+N]:

❒ mark pkt n as received
❒ if n smallest unACKed pkt,

advance window base to
next unACKed seq #

sender

3: Transport Layer 54Comp 361, Spring 2004

Selective repeat in action

3: Transport Layer 55Comp 361, Spring 2004

Selective repeat:
dilemma

Example:
❒ seq #’s: 0, 1, 2, 3
❒ window size=3

❒ receiver sees no
difference in two
scenarios!

❒ incorrectly passes
duplicate data as new
in (a)

Q: what is relationship
between seq # size
and window size?

3: Transport Layer 56Comp 361, Spring 2004

Chapter 3 outline

❒ 3.1 Transport-layer
services

❒ 3.2 Multiplexing and
demultiplexing

❒ 3.3 Connectionless
transport: UDP

❒ 3.4 Principles of
reliable data transfer

❒ 3.5 Connection-oriented
transport: TCP

❍ segment structure
❍ reliable data transfer
❍ flow control
❍ connection management

❒ 3.6 Principles of
congestion control

❒ 3.7 TCP congestion
control

3: Transport Layer 57Comp 361, Spring 2004

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

❒ full duplex data:
❍ bi-directional data flow

in same connection
❍ MSS: maximum segment

size
❒ connection-oriented:

❍ handshaking (exchange
of control msgs) init’s
sender, receiver state
before data exchange

❒ flow controlled:
❍ sender will not

overwhelm receiver

❒ point-to-point:
❍ one sender, one receiver

❒ reliable, in-order byte
steam:

❍ no “message boundaries”
❒ pipelined:

❍ TCP congestion and flow
control set window size

❒ send & receive buffers

socket
door

TCP
send buffer

TCP
receive buffer

socket
door

segment

application
writes data

application
reads data

3: Transport Layer 58Comp 361, Spring 2004

More TCP Details
❒ Maximum Segment Size (MSS)

❍ Depends upon implementation (can often be set)
❍ The Max amount of application-layer data in

segment
❒ Application Data + TCP Header = TCP Segment

❒ Three way Handshake
❍ Client sends special TCP segment to server requesting

connection. No payload (Application data) in this segment.
❍ Server responds with second special TCP segment

(again no payload)
❍ Client responds with third special segment

This can contain payload

3: Transport Layer 59Comp 361, Spring 2004

Even More TCP Details

❒ A TCP connection between client and
server creates, in both client and server
❍ (i) buffers
❍ (ii) variables and
❍ (iii) a socket connection to process.

❒ TCP only exists in the two end machines.
No buffers and variables allocated to the connection in

any of the network elements between the host and
server.

3: Transport Layer 60Comp 361, Spring 2004

TCP segment structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number
acknowledgement number

Receive window
Urg data pnterchecksum

FSRPAUhead
len

not
used

Options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

Internet
checksum

(as in UDP)

counting
by bytes
of data
(not segments!)

bytes
rcvr willing
to accept

3: Transport Layer 61Comp 361, Spring 2004

TCP seq. #’s and ACKs
Seq. #’s:

❍ byte stream
“number” of first
byte in segment’s
data

ACKs:
❍ seq # of next byte

expected from
other side

❍ cumulative ACK
Q: how receiver handles

out-of-order segments
❍ A: TCP spec doesn’t

say, - up to
implementer

Host BHost A

Seq=43, ACK=80

=42, ACK=79, data = ‘C’

Seq

Seq=79, ACK=43, data = ‘C’

User
types

‘C’
host ACKs
receipt of
‘C’, echoes

back ‘C’

host ACKs
receipt

of echoed
‘C’

time
simple telnet scenario

3: Transport Layer 62Comp 361, Spring 2004

TCP Round Trip Time and Timeout

Q: how to estimate RTT?
❒ SampleRTT: measured time from

segment transmission until ACK
receipt

❍ ignore retransmissions
❒ SampleRTT will vary, want

estimated RTT “smoother”
❍ average several recent

measurements, not just
current SampleRTT

Q: how to set TCP
timeout value?

❒ longer than RTT
❍ but RTT varies

❒ too short: premature
timeout

❍ unnecessary
retransmissions

❒ too long: slow reaction
to segment loss

3: Transport Layer 63Comp 361, Spring 2004

TCP Round Trip Time and Timeout

EstimatedRTT = (1- α)*EstimatedRTT + α*SampleRTT

❒ Exponential weighted moving average
❒ influence of past sample decreases exponentially fast
❒ typical value: α = 0.125

3: Transport Layer 64Comp 361, Spring 2004

Example RTT estimation:
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

RT
T

(m
ill

ise
co

nd
s)

SampleRTT Estimated RTT

3: Transport Layer 65Comp 361, Spring 2004

TCP Round Trip Time and Timeout

Setting the timeout
❒ EstimtedRTT plus “safety margin”

❍ large variation in EstimatedRTT -> larger safety margin
❒ first estimate of how much SampleRTT deviates from

EstimatedRTT:

DevRTT = (1-β)*DevRTT +
β*|SampleRTT-EstimatedRTT|

(typically, β = 0.25)

Then set timeout interval:

TimeoutInterval = EstimatedRTT + 4*DevRTT

3: Transport Layer 66Comp 361, Spring 2004

Chapter 3 outline

❒ 3.1 Transport-layer
services

❒ 3.2 Multiplexing and
demultiplexing

❒ 3.3 Connectionless
transport: UDP

❒ 3.4 Principles of
reliable data transfer

❒ 3.5 Connection-oriented
transport: TCP

❍ segment structure
❍ reliable data transfer
❍ flow control
❍ connection management

❒ 3.6 Principles of
congestion control

❒ 3.7 TCP congestion
control

3: Transport Layer 67Comp 361, Spring 2004

TCP reliable data transfer

❒ TCP creates rdt
service on top of IP’s
unreliable service

❒ Pipelined segments
❒ Cumulative acks
❒ TCP uses single

retransmission timer

❒ Retransmissions are
triggered by:

❍ timeout events
❍ duplicate acks

❒ Initially consider
simplified TCP sender:

❍ ignore duplicate acks
❍ ignore flow control,

congestion control

3: Transport Layer 68Comp 361, Spring 2004

TCP sender events:
data rcvd from app:
❒ Create segment with

seq #
❒ seq # is byte-stream

number of first data
byte in segment

❒ start timer if not
already running (think
of timer as for oldest
unacked segment)

❒ expiration interval:
TimeOutInterval

timeout:
❒ retransmit segment

that caused timeout
❒ restart timer
Ack rcvd:

❒ If acknowledges
previously unacked
segments

❍ update what is known to
be acked

❍ start timer if there are
outstanding segments

3: Transport Layer 69Comp 361, Spring 2004

TCP
sender
(simplified)

NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum

loop (forever) {
switch(event)

event: data received from application above
create TCP segment with sequence number NextSeqNum
if (timer currently not running)

start timer
pass segment to IP
NextSeqNum = NextSeqNum + length(data)

event: timer timeout
retransmit not-yet-acknowledged segment with

smallest sequence number
start timer

event: ACK received, with ACK field value of y
if (y > SendBase) {

SendBase = y
if (there are currently not-yet-acknowledged segments)

start timer
}

} /* end of loop forever */

Comment:
• SendBase-1: last
cumulatively
ack’ed byte
Example:
• SendBase-1 = 71;
y= 73, so the rcvr
wants 73+ ;
y > SendBase, so
that new data is
acked

3: Transport Layer 70Comp 361, Spring 2004

TCP: retransmission scenarios
Host A Host BHost A

Seq=92, 8 bytes data

ACK=100

loss

ti
m

eo
ut

lost ACK scenario

Host B

X

Seq=92, 8 bytes data

ACK=100

time

SendBase
= 100

Seq=100, 20 bytes data

ACK=100

time
premature timeout

Seq=92, 8 bytes data

ACK=120

Seq=92, 8 bytes data

Se
q=

92
 t

im
eo

ut

ACK=120

Se
q=

92
 t

im
eo

ut

SendBase
= 120

SendBase
= 120

Sendbase
= 100

3: Transport Layer 71Comp 361, Spring 2004

TCP retransmission scenarios (more)
Host A

Seq=92, 8 bytes data

ACK=100

loss

ti
m

eo
ut

Cumulative ACK scenario

Host B

X

Seq=100, 20 bytes data

ACK=120

time

SendBase
= 120

3: Transport Layer 72Comp 361, Spring 2004

TCP ACK generation [RFC 1122, RFC 2581]

Event at Receiver

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Arrival of in-order segment with
expected seq #. One other
segment has ACK pending

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Arrival of segment that
partially or completely fills gap

TCP Receiver action

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Immediately send single cumulative
ACK, ACKing both in-order segments

Immediately send duplicate ACK,
indicating seq. # of next expected byte

Immediate send ACK, provided that
segment starts at lower end of gap

3: Transport Layer 73Comp 361, Spring 2004

More on Sender Policies

❒ Doubling the Timeout Interval
❍ Used by most TCP implementations
❍ If timeout occurs then, after retransmisison,

Timeout Interval is doubled
❍ Intervals grow exponentially with each

consecutive timeout
❍ When Timer restarted because of (i) new data

from above or (ii) ACK received, then Timeout
Interval is reset as described previously using
Estimated RTT and DevRTT.

❍ Limited form of Congestion Control

3: Transport Layer 74Comp 361, Spring 2004

Fast Retransmit

❒ Time-out period often
relatively long:

❍ long delay before
resending lost packet

❒ Detect lost segments
via duplicate ACKs.

❍ Sender often sends
many segments back-to-
back

❍ If segment is lost,
there will likely be many
duplicate ACKs.

❒ If sender receives 3
ACKs for the same
data, it supposes that
segment after ACKed
data was lost:

❍ fast retransmit: resend
segment before timer
expires

3: Transport Layer 75Comp 361, Spring 2004

Fast retransmit algorithm:

event: ACK received, with ACK field value of y
if (y > SendBase) {

SendBase = y
if (there are currently not-yet-acknowledged segments)

start timer
}

else {
increment count of dup ACKs received for y
if (count of dup ACKs received for y = 3) {

resend segment with sequence number y
}

a duplicate ACK for
already ACKed segment

fast retransmit

3: Transport Layer 76Comp 361, Spring 2004

TCP: GBN or Selective Repeat?

❒ Basic TCP looks a lot like GBN

❒ Many TCP implementations will buffer
received out-of-order segments and then
ACK them all after filling in the range
❍ This looks a lot like Selective Repeat

❒ TCP is a hybrid

3: Transport Layer 77Comp 361, Spring 2004

Chapter 3 outline

❒ 3.1 Transport-layer
services

❒ 3.2 Multiplexing and
demultiplexing

❒ 3.3 Connectionless
transport: UDP

❒ 3.4 Principles of
reliable data transfer

❒ 3.5 Connection-oriented
transport: TCP

❍ segment structure
❍ reliable data transfer
❍ flow control
❍ connection management

❒ 3.6 Principles of
congestion control

❒ 3.7 TCP congestion
control

3: Transport Layer 78Comp 361, Spring 2004

TCP Flow Control

❒ Sender should not overwhelm receiver’s
capacity to receive data

❒ If necessary, sender should slow down
transmission rate to accommodate
receiver’s rate.

❒ Different from Congestion Control whose
purpose was to handle congestion in
network. (But both congestion control and flow control
work by slowing down data transmission)

3: Transport Layer 79Comp 361, Spring 2004

TCP Flow Control
sender won’t overflow
receiver’s buffer by

transmitting too much,
too fast

flow control
❒ receive side of TCP

connection has a
receive buffer:

❒ speed-matching
service: matching the
send rate to the
receiving app’s drain
rate

❒ app process may be
slow at reading from
buffer

3: Transport Layer 80Comp 361, Spring 2004

TCP segment structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number
acknowledgement number

Receive window
Urg data pnterchecksum

FSRPAUhead
len

not
used

Options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

Internet
checksum

(as in UDP)

counting
by bytes
of data
(not segments!)

bytes
rcvr willing
to accept

3: Transport Layer 81Comp 361, Spring 2004

TCP Flow control: how it works

(Suppose TCP receiver
discards out-of-order
segments)

❒ spare room in buffer
= RcvWindow
= RcvBuffer-[LastByteRcvd -

LastByteRead]

❒ Rcvr advertises spare
room by including value
of RcvWindow in
segments

❒ Sender limits unACKed
data to RcvWindow

❍ guarantees receive
buffer doesn’t overflow

3: Transport Layer 82Comp 361, Spring 2004

Technical Issue

❒ Suppose RcvWindow=0 and that receiver has
already ACK’d ALL packets in buffer

❒ Sender does not transmit new packets until it
hears RcvWindow>0.

❒ Receiver never sends RcvWindow>0 since it has no
new ACKS to send to Sender

❒ DEADLOCK

❒ Solution: TCP specs require sender to continue
sending packets with one data byte while
RcvWindow=0, just to keep receiving ACKS from
B. At some point the receiver’s buffer will empty
and RcvWindow>0 will be transmitted back to
sender.

3: Transport Layer 83Comp 361, Spring 2004

Note on UDP

UDP has no flow control!

UDP appends packets to receiving socket’s
buffer. If buffer is full then packets are
lost!

3: Transport Layer 84Comp 361, Spring 2004

Chapter 3 outline

❒ 3.1 Transport-layer
services

❒ 3.2 Multiplexing and
demultiplexing

❒ 3.3 Connectionless
transport: UDP

❒ 3.4 Principles of
reliable data transfer

❒ 3.5 Connection-oriented
transport: TCP

❍ segment structure
❍ reliable data transfer
❍ flow control
❍ connection management

❒ 3.6 Principles of
congestion control

❒ 3.7 TCP congestion
control

3: Transport Layer 85Comp 361, Spring 2004

TCP Connection Management

Three way handshake:
Step 1: client end system sends

TCP SYN control segment to
server

❍ specifies client_isn, the
initial seq #

❍ No application data

Step 2: server end system
receives SYN, replies with
SYNACK control segment

❍ ACKs received SYN
❍ allocates buffers
❍ Replies with client_isn+1 in

ACK field to signal
synchronization

❍ Specifies server_isn
❍ No application data

Recall: TCP sender, receiver
establish “connection”
before exchanging data
segments

❒ initialize TCP variables:
❍ seq. #s
❍ buffers, flow control

info (e.g. RcvWindow)
❒ client: connection initiator
Socket clientSocket = new
Socket("hostname","port
number");

❒ server: contacted by client
Socket connectionSocket =
welcomeSocket.accept();

3: Transport Layer 86Comp 361, Spring 2004

TCP Connection Management (cont.)

Step 3: client end system
receives SYNACK, replies
with SYN=0 and
server_isn+1

❍ Allocate buffers
❍ Allocates buffers
❍ Can include application

data

SYN=0 signals that
connection established
server_isn+1 signals that #
is synchronized

client
nection request (SYN=1 seq=client_isn)

n,

server
Con

ACK (SYN=0, seq=client_isn+1)ack=server_isn+1

Connection granted (SYN=1, serve

ack=client_isn+1)

r_is

3: Transport Layer 87Comp 361, Spring 2004

TCP Connection Management (cont.)

Closing a connection:

client closes socket:
clientSocket.close();

Step 1: client end system
sends TCP FIN control
segment to server

Step 2: server receives
FIN, replies with ACK.
Closes connection, sends
FIN.

client

FIN

server

ACK

ACK

FIN

close

close

closed

ti
m

ed
 w

ai
t

3: Transport Layer 88Comp 361, Spring 2004

TCP Connection Management (cont.)

clientStep 3: client receives FIN,
replies with ACK.

❍ Enters “timed wait” –
during which will respond
with ACK to received
FINs (that might arrive
if ACK gets lost).

❍ Closes down after timed-
wait

Step 4: server, receives ACK.
Connection closed.

Note: with small modification,
can handle simultaneous FINs.

server

FIN

ACK

ti
m

ed
 w

ai
t

closing

ACK

FIN
closing

closed

closed

3: Transport Layer 89Comp 361, Spring 2004

TCP Connection Management (cont)

ExampleTCP server
lifecycle

Example TCP client
lifecycle

3: Transport Layer 90Comp 361, Spring 2004

A few special cases

❒ Have not discussed what happens if both
client and server decide to close down
connection at same time.

❒ It is possible that first ACK (from server)
and second FIN (also from server) are sent
in same segment

3: Transport Layer 91Comp 361, Spring 2004

Chapter 3 outline

❒ 3.1 Transport-layer
services

❒ 3.2 Multiplexing and
demultiplexing

❒ 3.3 Connectionless
transport: UDP

❒ 3.4 Principles of
reliable data transfer

❒ 3.5 Connection-oriented
transport: TCP

❍ segment structure
❍ reliable data transfer
❍ flow control
❍ connection management

❒ 3.6 Principles of
congestion control

❒ 3.7 TCP congestion
control

3: Transport Layer 92Comp 361, Spring 2004

Principles of Congestion Control

Congestion:
❒ informally: “too many sources sending too much

data too fast for network to handle”
❒ different from flow control!
❒ manifestations:

❍ lost packets (buffer overflow at routers)
❍ long delays (queuing in router buffers)

❒ a top-10 problem!

3: Transport Layer 93Comp 361, Spring 2004

Causes/costs of congestion: scenario 1
❒ two senders, two

receivers
❒ one router,

infinite buffers
❒ no retransmission
❒ Send rate 0-C/2

❒ large delays
when congested

❒ maximum
achievable
throughput

3: Transport Layer 94Comp 361, Spring 2004

Causes/costs of congestion: scenario 2

❒ one router, finite buffers
❒ sender retransmission of lost packet

3: Transport Layer 95Comp 361, Spring 2004

❒ always: (goodput)
❒ Magic transmission; only send when there’s space in buffer
❒ “perfect” retransmission only when loss:

❒ retransmission of delayed (not lost) packet makes larger (than
perfect case) for same

λin λout=

λin λout>
λ

inλout

“costs” of congestion:
❒ more work (retrans) for given “goodput”
❒ unneeded retransmissions: link carries multiple copies of pkt

3: Transport Layer 96Comp 361, Spring 2004

Causes/costs of congestion: scenario 3
❒ four senders
❒ multihop paths
❒ timeout/retransmit

λ
in

Q: what happens as
and increase ?λ

in

3: Transport Layer 97Comp 361, Spring 2004

Causes/costs of congestion: scenario 3

Another “cost” of congestion:
❒ when packet dropped, any “upstream transmission

capacity used for that packet was wasted!

3: Transport Layer 98Comp 361, Spring 2004

Approaches towards congestion control

Two broad approaches towards congestion control:

End-end congestion
control:

❒ no explicit feedback from
network

❒ congestion inferred from
end-system observed loss,
delay

❒ approach taken by TCP

Network-assisted
congestion control:

❒ routers provide feedback
to end systems

❍ single bit indicating
congestion (SNA,
DECbit, TCP/IP ECN,
ATM)

❍ explicit rate sender
should send at

3: Transport Layer 99Comp 361, Spring 2004

Case study: ATM ABR congestion control

RM (resource management)
cells:

❒ sent by sender, interspersed
with data cells

❒ bits in RM cell set by switches
(“network-assisted”)

❍ NI bit: no increase in rate
(mild congestion)

❍ CI bit: severe congestion
indicator

❒ RM cells returned to sender by
receiver, with bits intact

small exception – see next page

ABR: available bit rate:
❒ “elastic service”
❒ if sender’s path

“underloaded”:
❍ sender should use

available bandwidth
❒ if sender’s path congested:

❍ sender throttled to
minimum guaranteed rate

3: Transport Layer 100Comp 361, Spring 2004

Case study: ATM ABR congestion control

❒ two-byte ER (explicit rate) field in RM cell
❍ congested switch may lower ER value in cell
❍ sender’s send rate thus minimum supportable rate on path

❒ EFCI bit in data cells: set to 1 by congested switch
❍ Signals congestion
❍ if data cell preceding RM cell has EFCI=1, destination sets

CI bit=1 before returning RM cell to source.

3: Transport Layer 101Comp 361, Spring 2004

Chapter 3 outline

❒ 3.1 Transport-layer
services

❒ 3.2 Multiplexing and
demultiplexing

❒ 3.3 Connectionless
transport: UDP

❒ 3.4 Principles of
reliable data transfer

❒ 3.5 Connection-oriented
transport: TCP

❍ segment structure
❍ reliable data transfer
❍ flow control
❍ connection management

❒ 3.6 Principles of
congestion control

❒ 3.7 TCP congestion
control

3: Transport Layer 102Comp 361, Spring 2004

TCP Congestion Control
❒ end-end control (no network assistance)
❒ transmission rate limited by congestion window size, Congwin,

over segments. Congwin dynamically modified to reflect perceived congestion.

Congwin

❒ w segments, each with MSS bytes sent in one RTT:

throughput = w * MSS
RTT Bytes/sec

3: Transport Layer 103Comp 361, Spring 2004

❒ To simplify presentation we assume that RcvBuffer
is large enough that it will not overflow

❒ Tools are “similar” to flow control.
sender limits transmission using:

LastByteSent-LastByteAcked ≤ CongWin

How does sender perceive congestion?
❒ loss event = timeout or 3 duplicate acks
❒ TCP sender reduces rate (CongWin) after loss event

three mechanisms:
❍ AIMD = Additive Increase Multiplicative Decrease
❍ slow start = CongWin set to 1 and then grows exponentially
❍ conservative after timeout events

3: Transport Layer 104Comp 361, Spring 2004

TCP AIMD
additive increase: increase

CongWin by 1 MSS every
RTT in the absence of loss
events: probing also known as
congestion avoidance

multiplicative decrease:
cut CongWin in half
after loss event

8 Kbytes

16 Kbytes

24 Kbytes

time

congestion
window

Long-lived TCP connection

3: Transport Layer 105Comp 361, Spring 2004

TCP Slow Start

❒ When connection begins,
CongWin = 1 MSS

❍ Example: MSS = 500
bytes & RTT = 200 msec

❍ initial rate = 20 kbps
❒ available bandwidth may

be >> MSS/RTT
❍ desirable to quickly ramp

up to respectable rate

❒ When connection begins,
increase rate
exponentially fast until
first loss event

3: Transport Layer 106Comp 361, Spring 2004

TCP Slow Start (more)

❒ When connection
begins, increase rate
exponentially until
first loss event:

❍ double CongWin every
RTT

❍ done by incrementing
CongWin for every ACK
received

❒ Summary: initial rate
is slow but ramps up
exponentially fast

Host A

one segment

RT
T

Host B

time

two segments

four segments

3: Transport Layer 107Comp 361, Spring 2004

❒ So Far
❍ Slow-Start: ramps up exponentially
❍ Followed by AIMD: sawtooth pattern

❒ Reality (TCP Reno)
❍ Introduce new variable threshold
❍ threshold initially very large
❍ Slow-Start exponential growth stops when

reaches threshold and then switches to AIMD
❍ Two different types of loss events

• 3 dup ACKS: cut CongWin in half and set
threshold=CongWin (now in standard AIMD)

• Timeout: set threshold=CongWin/2, CongWin=1
and switch to Slow-Start

3: Transport Layer 108Comp 361, Spring 2004

❒ Reason for treating 3 dup ACKS differently than timeout
is that 3 dup ACKs indicates network capable of
delivering some segments while timeout before 3 dup
ACKs is “more alarming”.

❒ Note that older protocol, TCP Tahoe, treated both types
of loss events the same and always goes to slowstart with
Congwin=1 after a loss event.

❒ TCP Reno’s skipping of the slow start for a 3-DUP-ACK
loss event is known as fast-recovery.

3: Transport Layer 109Comp 361, Spring 2004

Summary: TCP Congestion Control

❒ When CongWin is below Threshold, sender in
slow-start phase, window grows exponentially.

❒ When CongWin is above Threshold, sender is in
congestion-avoidance phase, window grows linearly.

❒ When a triple duplicate ACK occurs, Threshold
set to CongWin/2 and CongWin set to
Threshold. (only in TCP Reno)

❒ When timeout occurs, Threshold set to
CongWin/2 and CongWin is set to 1 MSS.
(TCP Tahoe does this for 3 Dup Acks as well)

3: Transport Layer 110Comp 361, Spring 2004

The Big Picture

3: Transport Layer 111Comp 361, Spring 2004

TCP Fairness
Fairness goal: if K TCP sessions share same

bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

bottleneck
router

capacity R

TCP
connection 2

3: Transport Layer 112Comp 361, Spring 2004

Why is TCP fair?
Two competing sessions:
❒ Additive increase gives slope of 1, as throughout increases
❒ multiplicative decrease decreases throughput proportionally

ct
io

n
2

t h
ro

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

R equal bandwidth share

Co
nn

e
u g

hp
ut

Connection 1 throughput R

3: Transport Layer 113Comp 361, Spring 2004

Fairness (more)
Fairness and UDP
❒ Multimedia apps often do

not use TCP
❍ do not want rate throttled

by congestion control
❒ Instead use UDP:

❍ pump audio/video at
constant rate, tolerate
packet loss

❒ Current Research area:
❍ How to keep UDP from

congesting the internet.

Fairness and parallel TCP
connections

❒ nothing prevents app from
opening parallel cnctions
between 2 hosts.

❒ Web browsers do this
❒ Example: link of rate R

supporting 9 cnctions;
❍ new app asks for 1 TCP, gets

rate R/10
❍ new app asks for 11 TCPs, gets

R/2 !

3: Transport Layer 114Comp 361, Spring 2004

TCP Latency Modeling
Notation, assumptions:
❒ Assume one link between

client and server of rate R
❒ S: MSS (bits)
❒ O: object size (bits)
❒ no retransmissions (no loss,

no corruption)
Window size:
❒ First assume: fixed

congestion window, W
segments

❒ Then dynamic window,
modeling slow start

Q: How long does it take to
completely receive an
object from a Web server
after sending a request?
This is known as the latency of the
(request for the) object.

Ignoring congestion, delay is
influenced by:

❒ TCP connection establishment
❒ data transmission delay
❒ slow start

3: Transport Layer 115Comp 361, Spring 2004

Fixed Congestion Window (W)
Two cases

1. WS/R > RTT + S/R:
ACK for first segment in window returns before

window’s worth of data sent
Latency = 2RTT + O/R

2. WS/R < RTT + S/R:
ACK for first segment in window returns after

window’s worth of data sent
Latency = 2RTT + O/R + (K-1)[S/R + RTT - WS/R]

3: Transport Layer 116Comp 361, Spring 2004

Fixed congestion window (1)

First case:
WS/R > RTT + S/R: ACK for

first segment in window
returns before window’s
worth of data sent

latency = 2RTT + O/R

3: Transport Layer 117Comp 361, Spring 2004

Fixed congestion window (2)

Second case:
❒ WS/R < RTT + S/R: wait

for ACK after sending
window’s worth of data
sent

latency = 2RTT + O/R
+ (K-1)[S/R + RTT - WS/R]

3: Transport Layer 118Comp 361, Spring 2004

TCP Latency Modeling: Slow Start (1)

Now suppose window grows according to slow start
(with no threshold and no loss events)

Will show that the delay for one object is:

R
S

R
SRTTP

R
ORTTLatency P)12(2 −−

 +++=

where P is the number of times TCP idles at server:
}1,{min −= KQP

- where Q is the number of times the server idles
if the object were of infinite size.

- and K is the number of windows that cover the object.

3: Transport Layer 119Comp 361, Spring 2004

TCP Latency Modeling: Slow Start (2)

RTT

initiate TCP
connection

request
object

first window
= S/R

second window
= 2S/R

third window
= 4S/R

fourth window
= 8S/R

complete
transmissionobject

delivered

time at
client

time at
server

Example:
• O/S = 15 segments
• K = 4 windows
• Q = 2
• P = min{K-1,Q} = 2

Server idles P=2 times

Delay components:
• 2 RTT for connection
estab and request
• O/R to transmit
object
• time server idles due
to slow start

Server idles:
P = min{K-1,Q} times

3: Transport Layer 120Comp 361, Spring 2004

TCP Latency Modeling (3)

ementacknowledg receivesserver until

segment send tostartsserver whenfrom time=+ RTT
R
S

R
S

R
SRTTPRTT

R
O

R
SRTT

R
SRTT

R
O

idleTimeRTT
R
O

P

k
P

k

P

p
p

)12(][2

]2[2

2delay

1

1

1

−−+++=

−+++=

++=

−

=

=

∑

∑

th window after the timeidle 2 1 k
R
SRTT

R
S k =

 −+

+
−

 window kth the transmit totime2 1 =−

R
Sk

RTT

initiate TCP
connection

request
object

first window
= S/R

second window
= 2S/R

third window
= 4S/R

fourth window
= 8S/R

complete
transmissionobject

delivered

time at
client

time at
server

3: Transport Layer 121Comp 361, Spring 2004

TCP Latency Modeling (4)
Recall K = number of windows that cover object

How do we calculate K ?

 +=

+≥=

≥−=

≥+++=

≥+++=
−

−

)1(log

)}1(log:{min

}12:{min

}/222:{min
}222:{min

2

2

110

110

S
O

S
Okk

S
Ok

SOk
OSSSkK

k

k

k

L

L

Calculation of Q, number of idles for infinite-size object,
is similar.

3: Transport Layer 122Comp 361, Spring 2004

HTTP Modeling
❒ Assume Web page consists of:

❍ 1 base HTML page (of size O bits)
❍ M images (each of size O bits)

❒ Non-persistent HTTP:
❍ M+1 TCP connections in series
❍ Response time = (M+1)O/R + (M+1)2RTT + sum of idle times

❒ Persistent HTTP:
❍ 2 RTT to request and receive base HTML file
❍ 1 RTT to request and receive M images
❍ Response time = (M+1)O/R + 3RTT + sum of idle times

❒ Non-persistent HTTP with X parallel connections
❍ Suppose M/X integer.
❍ 1 TCP connection for base file
❍ M/X sets of parallel connections for images.
❍ Response time = (M+1)O/R + (M/X + 1)2RTT + sum of idle times

3: Transport Layer 123Comp 361, Spring 2004

HTTP Response time (in seconds)
RTT = 100 msec, O = 5 Kbytes, M=10 and X=5

0
2
4
6
8

10
12
14
16
18
20

28
Kbps

100
Kbps

1 Mbps 10
Mbps

non-persistent

persistent

parallel non-
persistent

For low bandwidth, connection & response time dominated by
transmission time.
Persistent connections only give minor improvement over parallel
connections.

3: Transport Layer 124Comp 361, Spring 2004

HTTP Response time (in seconds)

0

10

20

30

40

50

60

70

28
Kbps

100
Kbps

1 Mbps 10
Mbps

non-persistent

persistent

parallel non-
persistent

RTT =1 sec, O = 5 Kbytes, M=10 and X=5

For larger RTT, response time dominated by TCP establishment
& slow start delays. Persistent connections now give important
improvement: particularly in high delay•bandwidth networks.

3: Transport Layer 125Comp 361, Spring 2004

Chapter 3: Summary
❒ principles behind transport

layer services:
❍ multiplexing,

demultiplexing
❍ reliable data transfer
❍ flow control
❍ congestion control

❒ instantiation and
implementation in the
Internet
❍ UDP
❍ TCP

Next:
❒ leaving the network

“edge” (application,
transport layers)

❒ into the network
“core”

	Chapter 3: Transport Layer last revised 23/03/04
	Chapter 3 outline
	Transport services and protocols
	Transport vs. network layer
	Transport-layer protocols
	Chapter 3 outline
	Multiplexing/demultiplexing
	Multiplexing/demultiplexing
	How demultiplexing works
	Connectionless demultiplexing
	Connectionless demux (cont)
	Connection-oriented demux
	Connection-oriented demux (cont)
	Chapter 3 outline
	UDP: User Datagram Protocol [RFC 768]
	UDP: more
	UDP checksum
	Chapter 3 outline
	Principles of Reliable data transfer
	Reliable data transfer: getting started
	Reliable data transfer: getting started
	Incremental Improvements
	Rdt1.0: reliable transfer over a reliable channel
	Rdt2.0: channel with bit errors
	rdt2.0: FSM specification
	rdt2.0: operation with no errors
	rdt2.0: error scenario
	rdt2.0 has a fatal flaw!
	
	rdt2.1: sender, handles garbled ACK/NAKs
	rdt2.1: receiver, handles garbled ACK/NAKs
	rdt2.1: discussion
	rdt2.2: a NAK-free protocol
	rdt2.2: sender, receiver fragments
	rdt3.0: channels with errors and loss
	rdt3.0 sender
	rdt3.0 in action
	rdt3.0 in action
	Performance of rdt3.0
	rdt3.0: stop-and-wait operation
	Pipelined protocols
	Pipelined protocols
	Pipelining: increased utilization
	Go-Back-N
	GBN: Sender
	GBN: sender extended FSM
	GBN: receiver extended FSM
	More on receiver
	GBN inaction
	
	Selective Repeat
	Selective repeat: sender, receiver windows
	Selective repeat
	Selective repeat in action
	Selective repeat: dilemma
	Chapter 3 outline
	TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581
	More TCP Details
	Even More TCP Details
	TCP segment structure
	TCP seq. #’s and ACKs
	TCP Round Trip Time and Timeout
	TCP Round Trip Time and Timeout
	Example RTT estimation:
	TCP Round Trip Time and Timeout
	Chapter 3 outline
	TCP reliable data transfer
	TCP sender events:
	TCP sender(simplified)
	TCP: retransmission scenarios
	TCP retransmission scenarios (more)
	TCP ACK generation [RFC 1122, RFC 2581]
	More on Sender Policies
	Fast Retransmit
	Fast retransmit algorithm:
	TCP: GBN or Selective Repeat?
	Chapter 3 outline
	TCP Flow Control
	TCP Flow Control
	TCP segment structure
	TCP Flow control: how it works
	Technical Issue
	Chapter 3 outline
	TCP Connection Management
	TCP Connection Management (cont.)
	TCP Connection Management (cont.)
	TCP Connection Management (cont.)
	TCP Connection Management (cont)
	A few special cases
	Chapter 3 outline
	Principles of Congestion Control
	Causes/costs of congestion: scenario 1
	Causes/costs of congestion: scenario 2
	Causes/costs of congestion: scenario 3
	Causes/costs of congestion: scenario 3
	Approaches towards congestion control
	Case study: ATM ABR congestion control
	Case study: ATM ABR congestion control
	Chapter 3 outline
	TCP Congestion Control
	
	TCP AIMD
	TCP Slow Start
	TCP Slow Start (more)
	
	
	Summary: TCP Congestion Control
	The Big Picture
	TCP Fairness
	Why is TCP fair?
	Fairness (more)
	TCP Latency Modeling
	Fixed Congestion Window (W)
	Fixed congestion window (1)
	Fixed congestion window (2)
	TCP Latency Modeling: Slow Start (1)
	TCP Latency Modeling: Slow Start (2)
	TCP Latency Modeling (3)
	TCP Latency Modeling (4)
	HTTP Modeling
	Chapter 3: Summary

