More Efficient Algorithms and Analyses for
Unequal Letter Cost Prefix-Free Coding

Mordecai Golin, Member, IEEE and Jian Li

Abstract—There is a large literature devoted to the problem of will be cost(w) = 22:1 ¢i,, 1.€., the sum of the costs of its
finding an optimal (min-cost) prefix-free code with an unequal |etters (rather than the length of the codeword) with theé obs

letter-cost encoding alphabet of size. While there is no known the code still being defined aSost(C) = Zn cost(w;)p;
polynomial time algorithm for solving it optimally there are many with this new cost function =1 e

good heuristics that all provide additive errors to optimal. The - } o
additive error in these algorithms usually depends linearly upon ~ The existing, large, literature on the problem of finding
the largest encoding letter size. a minimal-cost prefix free code when the are no longer

This paper was motivated by the problem of finding optimal equal, which will be surveyed below, assumes thatis
codes when the encoding alphabet is infinite. Because the Iargesta finite alphabet, i.e., that = || < oo. The original

letter cost is infinite, the previous analyses could give infinite error L f thi dd h bl h
bounds. We provide a new algorithm that works with infinite ~Motivation of this paper was to address the problem when
encoding alphabets. When restricted to the finite alphabet case, ¥ IS unbounded As will briefly be described in Section I,

our algorithm often provides better error bounds than the best this models certain types of language restrictions on prefix

previous ones known. free codes and the imposition of different cost metrics on
Index Terms—Prefix-Free Codes. Source-Coding. Redundancy. search trees. The tools developed, though, turn out to geeovi
Entropy. improved approximation bounds for many of the finite cases
as well.
I. INTRODUCTION More specifically, it was known [3], [4] that

%H(plaapn) < OPT where H(p17~--7pn) =
— > . pilogp; is the entropy of the distribution, ¢ is
the unique positive root of thecharacteristic equation
1=3"_, 27 andOPT is the minimum cost of any prefix

ET ¥ = {01,02....,0+} be anencoding alphabet:*

represents all finite words written usidg Word w € >*
is a prefix of word w’ € ¥* if w’ = wu whereu € ¥* is a
non-empty word. ACode over ¥ is a collection of words)) i
C = {wi,...,w,}. CodeC is prefix-freeif for all i # j w; free code for thosep;. Note that in this paperlogz will

is not a prefix ofw,. See Fig.1. always denotdog, z. o .

Let cost(w) be the length or number of characters in FOrt < oo, the known efficient algorithms create a cafle
w. Given a set of associated probabilitigs, ps,...,p, > hat satisfies
0, >,pi = 1, the cost of the code iCost(C) =
i cost(w;)p;. The prefix coding problem, sometimes c
known as theHuffman encodingroblem is to find a prefix- where C(T) is the cost of codd’, C = (c1,¢a,--- ,¢;) and

free code overY of minimum cost. This problem is very £(C) is some function of the letter cos@ with the actual

well studied and has a well-knowfi(tn log n)-time greedy- 5,6 of £(c) depending upon the particular algorithm. Since
algorithm due to Huffman [1]@(tn)-time if the p; are sorted Li(py,...,pn) < OPT, codeT has anadditive error at

in non-decreasing order). mostf(C) from OPT. The f(C) corresponding to the different

Alpha}betlccodlng Is the same problem with thg ac_id|t|ona,‘|j‘| orithms shared an almost linear dependence upon the valu
constraint that the codewords must be chosen in increasing_ max(C), the largest letter cost. They therefore can not be

. . C
alphabetic order (with respect to the words to be encodegzed for infiniteC. In this paper we present a new algorithmic

Th'.s colrregaonds, for example, to the phro_blem of cor;]s'mgctl ariation (most algorithms for this problem start with tlzare
pptlma .(\;]V'th res_pect to averagebsg_?rf: t|mtfa) searc _etg]ess plitting procedure so they are all, in some sense, vansitio
items with the given access probabilities or frequenci of each other) with a new analysis:

a code can be constructed @n(tn?) time [2].
@¢n”) (2] « (Theorems 2 and 3) For finité we derive new additive

One well studied generalization of the problem is to let the e
encoding letters have different costs. That is,deE ¥ have error boundsf (C) which in many cases, are much better
than the old ones.

associated cost;. The cost of codewordy = o;,04, ...0y, (Lemma 9) I£C is infinite butd; — [{m | j < e, <
° j — = m

M. Golin is with the Department of Computer Science and Enginge j + 1}| is bounded, then we can still give a bound of
Hong Kong UST.golin@cs.ust.hk His work on this paper was partially ; _ m—1| ;
supported by HK RGC Competitive Research Grants 613105 aBH051 type (1). For example, it,, =1+ |*#5=], i.e., exactly

J. Li is with the department of Computer Science, Universityairyland
at College Parklijian@cs.umd.eduHis work on this paper was performed INote that ift = 2 with ¢; = c2 = 1 thenc = 1 and this reduces
while he was visiting HKUST from the Shanghai Key Laboratofyntelligent to the standard entropy lower bound for prefix-free codingth@ugh the
Information Processing, Department of Computer Science aminEering, general lower bound is usually only explicitly derived fonife ¢, Krause
Fudan University, and was partially supported by a graninftoe National [3] showed how to extend it to infinité in cases where a positive root of
Natural Science Fund China (grant no. 60573025). 1= Zc.’il 27 ¢ exists.

K3

CT) < LH(pr, ... pa) + £(C) 1)

T aaa | aab | ab | b x aaa | aab | ab | aaba
cost(xz) | 3 5 | 413 cost(z) | 3 5 | 4 6

Fig. 1. In this example& = {a, b}. The code on the left iaaa, aab, ab, b} which is prefix free. The code on the right{gaa, aad, ab, aaba} which is
not prefix-free becauseab is a prefix ofaaba. The second row of the tables contain the costs of the codisnwhencost(a) = 1 andcost(b) = 3.

5 1/6 aab

Fig. 2. Two min-cost prefix free codes for probabilitizg6, 2/6,1/6,1/6 and their tree representations. The code on the left is opfona; = co =1
while the code on the right, the prefix-free code from Figsloptimal forc; = 1,¢co = 3.

two letters each of length,= 1,2,3,..., then we can test depends upon the outcome of the test [14, 6.2.2, ex. 33]
show thatf(C) <1+ 2 3- and has also been studied under the nasig®tomous search
e (Theorem 4) IfC is inﬁnite but d; is unbounded then [15] or theleaky showemproblem [16].
we can not provide a bound of type (1) but, as long as The literature contains many algorithms for the unequal-
Yo em27%m < oo, we can show that cost coding problem. Blachman [5], Marcus [6], and (much
1 later) Gilbert [11] give heuristic constructions withoutsdyses
Ve>0, C(T) < (A+e) H(pi,....,pn)+f(C,€) (2) of the costs of the codes they produced. Karp gave the first
. algorithm yielding an exact solution (assuming the lettests
where (C’_e) IS some constqnt based only_dm}nde. are integers); Karp’s algorithm transforms the probleno int
We now provide some more history and motivation. 5 integer program and does not run in polynomial time [7].
For a S'mP"? example, refer to Fig.2. Both codes writteflier gyact algorithms based on dynamic programming were
thlerf Qa\;e minimum cost for the frequencies, pa, ps, pa) = given by Golin and Rote [13] for arbitrary and a slightly
(33,5, 5) but under different letter costs. The codgn,re efiicient one by Bradford et. al. [17] for= 2.. These
{00,01,10,11} has minimum cost for the standard HUﬁma'bIgorithms run inne+0() time wherec, is the cost of the
largest letter. Despite the extensive literature, then@iknown

problem in which of¥ = {0,1} and¢; = ¢ = 1, i.e,

the cost of a word is the n_u_mber of bits it contains. Thﬁolynomial-time algorithm for the generalized problemy no
code {aaa, aab, ab,b} has minimum cost for the alphabetg yho problem known to be NP-hard. Golin, Kenyon and
¥ = {a,b} in which the cost of and” is 1 and the cost v, 4 [18] provide a polynomial time approximation scheme
(PTAS). Their algorithm is mainly theoretical and not usefu

of a “v"is 3, i.e.,C = (1,3).
in contrast to the non-alphabeticegas

The unequal letter cost coding problem was originall;,ﬁ practice. Finally

motivated by coding problems in which different Charameraﬁphabetic coding has a polynomial-time algorither{¢n®)
have different transmission times or storage costs [5]-<]®ile time algorithm [2]

example is the telegraph channel ,[3]' [,10]’ [_11] in which Karp's result was followed by many efficient algorithms [3],
% = {,-}ande = le = 2 ie, in which dashes ;) 1191 151) As mentioned above.H (py. ... ,p,) < OPT;

are twice as long as dots. Another is theb) run-length- 5,52 ajl of these algorithms produce codes of cost at most
!lmlteq codes used in magnetlc'and optical storage (12, [13+ T)< LH(py,...,pn) + f(C) and therefore give solutions
in which the codewords are binary and constrained so thﬁi&hin an additive errorof optimal. An important observation
eachl must be preceded by at least and at mosb, 0S. s that the additive error in these papef$C) somehow

(This example.can be mod.eled by the unequal-cost Ieqﬁlr:orporate the cost of the largest letter= max(C). Typical
problem by using an encoding alphabetrof= b6 —a + 1

characters{0¥1 : k = a,a + 1,...,b} with associated costs 2As mentioned by Mehlhom [4], the result of Cot [20] is a bitfeient.

{Ci ey 1}) It's a redundancy bound and not clear how to efficiently impletm&s an

. . . . algorithm. Also, the redundancy bound is in a very differearrf involving

T_he _unequa_l letter Cosﬂphat_)etlccpdlng pr(_)blem arl_ses IN taking the ratio of roots of multiple equations that makesfftaiilt to compare
designing testing procedures in which the time required bytathe others in the literature.

in this regard is Mehlhorn’s algorithm [4] which provides aMe say that a cod€' is in £ if C C £. The problem is to
bound of find a minimum cost code among all codes/n
Note thatL = Q* where @ = {1,01,001,0001,...}.
cCO(T) = H(pr,-..pn) <A =p1—pa) +cc () BecauseQ is prefix-free (even thouébﬁ isn’t), every wo}rd
Thus, none of the algorithms described can be used to addri@s€ can be uniquely decomposed as the concatenation of
infinite alphabets with unbounded letter costs. words in Q. If the decomposition ofv € Lisw = q1g2 ... ¢»

The algorithms all work by starting with the probabilities i for ¢; € Q, thencost(w) = Y7, cost(g;). We can therefore
some given order, grouping consecutive probabilitiesttogre model the problem of finding a minimum cost code among all
according to some rule, assigning the same initial codewadggdes inL by first creating an infinite alphabéty = {0, |
prefix to all of the probabilities in the same group and then€ Q} with associated cost vectalg (in which the cost ofr,
recursing. They therefore actually create alphabetic so0dé cost(q)) and then solving the minimal cost coding problem
Another unstated assumption in those papers (related o tHfer o with those associated costs. Fioended codes we set
definition of alphabetic coding) is that the order of thg is < as above and thus = {1,2,3,...,}, i.e., another infinite
given and must be maintained. alphabet withe,,, = m for all m > 1.

In this paper we are only interested in the general codin
problem and not the alphabetic one and will therefore ha\l;_%
freedom to dictate the original order in which the are T
given and the ordering of the,,. We will actually always
assume thap; > ps > p2 > --- ande; < cp <cz3 < ---l
These assumptions are the starting point that will permit
to derive better bounds. Furthermore, for simplicity, wel wi
always assume that = 1. If not, we can always force this
by uniformly scaling all of the;.

ample 3 ¥’-ended unequal letter-cost codes.
e only place above in which we used the specific definition
(4) of £ was in the choice of the appropriat In fact, the
derivation works for the problem of finding a min-cost prefix-
fge code inL where £ is any (generally non prefix-free)
anguage which can be decomposed/as= Q* for some
prefix-free languag®.

As an example, consider the following generalizatioriLof
For further references on Huffman coding with unequﬁnded codes. Suppose we are given an unequal cast coding

letter costs, see Abrahams’ survey on source coding [Z2° ?lsmtw;éhf_lnlte alphabetz,;\lzw{rlt7'z}"a§} anndddas%?: clated
Section 2.7], which contains a section on the problem. Cost vectorC = (c1,..-,¢c;)- Now let’ c X a efine
L =" = {w e T* | the last letter inw is in ¥'}.

1. EXAMPLES OF UNEQUAL-COSTLETTERS £ = Q" whereQ = (X —X')*Y' is a prefix-free language We
It is very easy to understand the unequal-cost letter pnoblecan therefore model the problem of finding a minimum cost
as modeling situations in which different characters hawwde among all codes ifi by solving an unequal cost coding
different transmission times or storage costs [5]-[9]. fBu@roblem with alphabeEo = {0, | ¢ € Q} and associated
cases will all have finite alphabets. It is not a-priori asacle cost vectorCq (in which cost(o,) = cost(gq)). The important
why infinite alphabets would be interesting. We now discusshservation is that
some motivation.
In what follows we will need some basic language notation.
A language/ is just a set of words over alphabBt The the number of letters ing of cost j, satisfies a linear
concatenationof languagesA and B is AB = {ab | a € recurrence relation. Bounding redundancies for thesestgpe
A,b € B}. Thei-fold concatenationf?, is defined by£® = C will be discussed in Section VI, Case 4.
{\} (the language containing just the empty string},= £ As a specific illustration, consideE = {1,2,3} with
and £’ = £LL£71. TheKleene starof £, is £* = |, L. C = (1,1,2) and ¥’ = {1}; our problem is find minimal
cost prefix free codes in which all words end withla

d; = |[{w € Xg | cost(w) = j}|,

Example 1 C=1{1,2,3,...,}i.e,Ym > 0,¢,, =m. L£=1{1,2,3}*{1} = Q*, whereQ = {2,3}*{1}. The number
This is one of the simplest infinite cost vectors. An early usg characters g with costj is
was in [23]. The idea there was to construct a tree (not a dy=1,dy=1,ds=2 dy=3, ds =5,

code) in which the internal pointers to children were stored))

in a linked list. Taking then!" pointer corresponds to usingand, in generald;,» = d;1 + d;, sod; = F;, the Fibonacci
charactero,,. The time that it takes tdind the mth pointer numbers. This specific case will be examined in Section VI,
is proportional to the location of the pointer in the list.ush Example 5.

r normalizing time uni =m. :
(after normalizing time unitsy.,, = m Example 4 Balanced binary words.

We conclude with a very naturd for which we donot know

Example 2 Zen . . .
amp'e ended codes ow to analyze the redundancy. In Section VI, Case 5, we will

The problem of finding min-cost prefix-free codes with the. hv this is difficult
additional restriction that all codewords end withlawas ISLCeutSLs: Vl\)/eythelsslest olf :IlIJ “balance d" binary woids.e., al
studied in [24], [25] with the motivation of designing self- Y o

synchronizing codes. One can model this problem as followvgf)rdS which contain exactly as marjs as I's. Note that

Let £ be a language. In our problem, 3This also generalizes a problem from [26] which providesristios for
)) constructing a min-cost prefix-free code in which the exmkaember of0’s
L ={w e {0,1}" | the last letter inw is al}. (4) equals the expected number 1.

P ' P2 i p3 ' P4 ' Ps 1 Do
' . . . I

L = 9* where @ is the set of all non-empty balanced words !
w such that no prefix ofy is balanced. Note that, by definition, 2 2 2
Q is prefix-free. Let

U ={w e L|cost(w) =3}, dj =|{we Q| cost(w) = j}|
and setL(z) = Y07 €,2" and D(z) = >~ d,z" to be

n=0

their associated generating functionsCl& D*, then standard
generating function rules, see e.g., [27], state th&t) =

P1,P2,DP3

(1—D(2))~". Observe that, = 0 if n is odd and,, = (,’,) b
for n even, so Fig. 3. The first splitting step for a case when= 6 ¢; = 1, c3 = 2,
< /o, 1 c3 = 3 and the associated preliminary tree. _This step grQup®2, p3 as
L(Z) — Z ()(2)71 — the first groupp4, ps as the secc’)nd angs by itself. Note that we haven't
s n 1 — 422 yet formally explained yeivhy we've grouped the items this way.
and -
Zdjzj =D(z)=1—+1—422
el y4i ! P2 1 P3 ‘
This can then be solved to see that, for even- 0, d,, = 2“1+ p2 -+) - (m;wm =
2C,,/5-1 whereC; = 1 (%) is the" Catalan number. For R

n =0 or oddn, d, = 0.

IIl. N OTATIONS AND DEFINITIONS

There is a very standard correspondence between prefix- 7
freﬁ codes over alphabét and |X|-ary trees in which the P2, D3 Pe
mt child of nqdev is labeled with gharaCterm € . A path Fig. 4. In the second splitp; is kept by itself andp2, p3 are grouped
from the root in a tree to a leaf will correspond to the worghgether.
constructed by reading the edge labels while walking thk.pat
The treeT corresponding to cod€' = {wy, ..., w,} will be
the tree containing the paths corresponding to the regpecte
words. Note that the leaves in the tree will then correspond t
codewords while internal nodes will correspond to prefixes o
codewords. See Fig. 2 and 5.

Because this correspondence is 1-1 we will speak about
codes and trees interchangeably, with the cost of a tregbein
the cost of the associate code.

Definition 1: Let C' be a prefix free code over andT its Fig. 5. After two more splits, the final coding tree is constegc The
associated treeVy will denote the set ointernal nodesof 1. associated code o101, 010201, 010202, 0201, 0202, 03}

Definition 2: Setc to be the unique positive solution to=
Si_, 2. Note that ift < oo, thenc must exists while it =

oo, ¢ might not exist. We only define for the cases in which IV. THE ALGORITHM
it exists. ¢ is sometimes called theot of the characteristic
equationof the letter costs. All of the provably efficient heuristics for the problem, g.g

Definition 3: Given letter costs; and their associated char-[3], [4], [19]-[21], use the same basic approach, whichlfitse
acteristic rootc, let T be a code with those letter costsis a generalization of Shannon’s original binary splittadgo-
If p1,p2,...,pn > 0 is a probability distribution then the rithm [28]. The idea is to createbins, where binm has weight

redundancyof T relative to thep; is 27¢m (so the sum of all bin weights i$). The algorithms
1 then try to partition the probabilities into the bins; binwill
R(Tsp1,--spn) = C(T) = —H(p1-- - pn)- contain a set of contiguous probabilitigs, , p; 11, .., pr,.

We will also define thenormalized redundancio be whose sum will have total weight "close” ta~““». The

algorithms fix the first letter of all the codewords assodate
NR(T;p1,...,pn) = cR=cC(T) = H(p1, ..., pn). with the p;, in bin m to beo,,. After fixing the first letter, the
If the p; and T are understood, we will writd&?(T") (NR(7)) algorithms then recurse, normalizing,, ,pi,,+1,---;Pr,, tO
or evenR (NR). sum tol, taking them as input and starting anew. The various

We note that many of the previous results in the literatug, e algorithms differ in how they group the probabilities andvho
(3) from [4], were stated in terms dfR. We will see later they recurse. See Fig. 3, 4 and 5 for an illustration of this
that this is a very natural measure for deriving bounds. Alsgeneric procedure.

note that by the lower bound previously mentionét;l") > Here we use a generalization of the version introduced in
%H(pl, ...,pn) for all T and p;, so R(T;p1,...,pn) is a [4]. The algorithm first preprocesses the input and caleslat
good measure of absolute error. all P, =p1+pa+...+pr (Po=0)andsy =p1+p2+...+

CODE(,rU);

{Constructs codeword§;, U;+1, ..., U, for p;,pis1,. .., pr.

U is previously constructed common prefix(of U1, ..., Uy.}

fli=r
then codewordU;, is set to beU.

else {Distribute p;s into initial bins I}, }
L=P_1;R=P;w=R-1L
Vm, et Ly = L+w) "' 27 and Ry, = Ly + w2,
setl;, = {k| Lm < sk < Rn} }

{Shift the bins to become find),. Afterwards,

all bins > M are empty, all bins< M non-empty

andvm < M, I, = {lm,...Tm}}

{shift left so there are no empty “middle” bins.

M=0;k=1

while &£ < r do
M=M+4+1;
v =k; rar :max({k}U{i>k|i€I]*u});
k=rm+1;

{If all p;’s are in first bin, (right) shiftp, to 2nd pin }
if o = r then

M =2,

ri=r—1,la=res=r;
for m =1to M do

CODE(lm,Tm,Uom);

Fig. 6. Our algorithm. Note that the first step of creating ifjpwas written
to simplify the development of the analysis. In practice, ihé needed since
I* is only used to findmax{¢ > k | « € I} and this value can be
calculated using binary search at the time it is required.

pr—1+ 5. Note that if we lay out the; along the unit interval
in order, thens; can be seen as thaidpoint of interval p;.
The algorithm then partitions the probabilities into rasigend
for each range it constructs left and right boundafigs R,,,.
i Will be assigned to binn if, as an intervalp, “falls” into
the “range”[L,,, R.,).

If the intervalp, completely falls into the range, i.e,,, <
Py < P, < R, thenp,, should definitely be in bimn. But
what if p, spans two (or more) ranges, €.@., < Pr_1 <

R,, < P;? To which bin shoulg;, be assigned? The choice

made by [4] is thapy, is assigned to bimn if s, = p; +ps +
...+ pr/2 falls into [L,,, R,,), i.e., the midpoint ofp;, falls
into the range.

Our procedure”ODE(I, r, U) will build a prefix-free code
for p;, ..., p. in which every code word starts with prefix.
To build the entire code we callODE(1,n,\), where\ is
the empty string.

Py P, Py Py P P

B
S5 i

L LS

Fig. 7. The first step in our algorithm’s splitting procedure= 6. L; =
2“:1 2—cem _Note that even though only the first5; are shown, there
mig7ﬁt %)e an infinite number of them (if = o). Note too that, for0 < ¢,
Li = Ri—1~

D3, P4
pLp2 s Po T = Pip2 Ps Pas s 6 s
Iy I3 I3 I I3 I T, L Iy I I I,

Fig. 8. The splitting procedure performed on the above examngates the
bins I, on the left. The shifting procedure then creates Eheon the right.

P Bibia by
%+r+
o Se 0 Sl 8D
L L1 AN
‘// .s',. Sit+1 Sl
Li=P, Ly =Ly +w2™ Ly = Ly +w2™* Ly Ls Ri= Py
=Li+wy 27
i=1

Fig. 9. An illustration of the recursive step of the algomithp;, p;+1, pi+2
have been grouped together. In the next splitting step, ritevial operated
on has lengthv = p; + pi+1 + pit2-

w(v) into ¢t range$ as follows.V1 < m < t,

m—1

L,, = L+(R—L)Zz—wi,
1=1

Rn = L+(R-L)> 27
i=1

Insertpy, I < k < rinbinmif s, € [Ly, Ry). Binm
will thus contain thepy, in I’ (v) = {k | Ly, < sp < R}

We now shift the itemg,. leftward in the bins as follows.
Walk through the bins from left to right. If the current bin
already contains somg;, continue to the next bin. If the
current bin is empty, take the firgt, that appears in a bin
to the right of the current one, shift; into the current bin
and walk to the next bin. Stop when all. have been seen.
Let I,,(v) denote the items in the bins after this shifting.

The procedure works as follows (Fig. 6 gives pseudocode,ye note that it is not necessary to actually construct the

and Fig.7, 8 and 9 illustrate the concepts): I (v) first. We only did so because viewing the construction
Assume that we currently have a prefix Of assigned to as a two-stage procedure of first finding th&(v) and then the

i, ...,pr. Let v be node in the tree associated with Let w(v) will be useful in our later analysis. Our main reason for

w(v) =>4, Pk introducing the left-shift is that, after it is completedhete

. : . . will be some M (v) such that all binsn < M (v) will be
(@) If I = r then wordU is assigned tg;. Correspondingly, .
v is a leaf in the tree with weight(v) = p;. nonempty and all bingn > M (v) empty.

(ii) Otherwise letL. = P,y andR = P,.. Splt R — L =

4In the description is permitted to be finite or infinite.

This observation permits constructing thi,(v) from 1) The costC (T) of the code tred is
scratch by walking from left to right, using a binary search .
each time, to find the rightmost item that should be in the C(T) = Z Z Com + T (0)
current bin. This will takeO (M (v) log(l — r)) time in total.
We then check if all of the items are iR (v). If they are,
we takep, and move it intoly(v) (and setM(v) = 2). We 2) The entropyH (py,pz; ..., pn) IS
call this aright-shift Note that left-shifts and right-shifts can (wl(v) W (v))

vGNFm:I

not both occur while processing the same node. H(p1,p2,...,pn) = Z w(v)-H
Finally, after creating the all of thd,,(v) we leti,, = vENT

min{k € I, (v)} andr,, = max{k € I,(v)} and recurse, Note: As proven in [4], this lemma is valid for any code tree that

for eachm < M (v) building CODE(l,,, 7, Uom) contains a finite number of edges. The proof never uses the finiteness
It is clear that the algorithm builds some prefix code withf ¢. Also, [4] states the lemma particularly for what we calf (v)

associated tred'. As defined, letNr be the set of internal and w;;, (v). The proof, thoughonly uses the fact that these values

nodes ofT". Since every internal node df has at least two are defined by the distribution of weights on a code tree and never

children, > o, M(v) <2n —1. uses any facts aboutow the code tree was created. We therefore
The algorithm use®)(1) time at each of its: leaves and state the lemma in its full generality using(v) and @,, (v).

O(M (v)logn) time at nodev. Its total running time is thus This lemma is valid forany code tree. In particular, we can

—)

w(v) " w(v)

bounded by apply it to express the normalized redundancy of Theuilt
by our algorithm as
n+ Z lognM (v) = O(nlogn)
vENT NR(T):CC(T) 7H(p1,p2,...,pn)
with no dependence upan ~ Wi (v) Wi, (V)
. N . . = e log 2™ 4 1 = .
For comparison, we point out the algorithm in [4] also starts U;; w(v) mZ:1 w(v) (Og +log w(v))

by first finding thel, (v). Since it assumeti< o, its shifting

stage was much simpler,ththough. It just shiftedinto the Set

first bin andp, into the ! bin (if they were not already) _ wm(v) cem Wi, (V)

there). This can, using an amortization technique from,[21] Ev,m) = w(v) <log2 log w(v)) '

be implemented ir®(tn) time. Note the explicit dependence .

upont, which is not permissible in the= oo case. Note thatNR(T) = > ,cn, w(v) (Zm:1 E(Uam)> - For
We will now see that our modified shifting procedure notonvenience we will also define

only permits a finite algorithm for infinite encoding alph&he . ~wh(v) e wk, (v)

but also often provides a provably better approximation for B (v,m)= (logQ +log w(v)) ’

finite encoding alphabets. v t
NR*(T)= Z w(v) (Z E*(v,m))
m=1

V. ANALYSIS vENT

In the analysis we define;, (v) = Y y.c;. () Pir Wi (v) = The analysis*proceeds by bounding the valueNRf (7") and
Yier, (v Pr- Note that | NR(T) — NRY(T).
] : i, Lemma 2: [4]
_ * _ _ . (note: In this Lemma, thg; can be arbitrarily ordered.
w(v) Z W (V) mz::lw’”(v) kz::lpk' Consider any callCODE(l,r,U) with | < r. Let nodewv

_ »)] correspond to the worll. Let setsl{, I, ... be defined as in
Also, unlesst < oo is specifically noted¢ is permitted to be procedure CODE.

m=1

infinite. « «

Our starting point is three Lemmas from [4]. The first was 3) II:: ﬁT ; ?;}thiﬁéﬁ{&(f)(v_)i'p _
proven by recursion on the nodes of a tree and the secon) If |}11 |> 2. Lete :WILniIlI* aendf — maxI*.
followed from the definition of the splitting procedure. The o= .) "
third was stated as a series of observations that could be 1) If 2 < m < t, then o < 27 +
derived from the second via some straightforward algebraic I;J(i; <2.27¢m
manipulations. Since our shifting procedure forces us ®aus i) If m =1, then 11;}(75;;) < 2—cer 4 25@) <
slightly different notation than [4], we restate the lemraig 9.9—cer
our notation. Also, since [4] implicitly assumes thak oo, iy If m =t (note that this case requires< o)
we follow every lemma with a small note explaining why the then
proof does/doesn’t extend to the case oo and other issues)
that might affect our analysis. “f;((f)) <27+ ghes <2.270

Lemma 1: [4] Let T be a code tree aniy= be the set of Note: the proof of this lemma is local. It assumes that the call
all internal nodes off". Letw(v) andw,, (v) be the associated CODE(l,r,U) is given and only concerns itself with partitioning
weights at the nodes and children of the nodes. the p; associated with/. It never uses any information abobbw

the call was arrived at, i.e., the rest of the tree. Thus, the fact that vigettingq = w!,,(v) — p in (5) implies

perform an extra shifting procedure before making the call does not) (w!, (v) — p)) w!, (v)

change the analysis. Also, the proofs of cases (a), (b) and (c -Ji),(iB 10g —— +(w;, (v)—p) log "= < w;, (v) log —"=.
. w(v) w(v) w(v)

never use the finiteness of

Furthermore, the fact that the are nondecreasing implies

Lemma 3: [4 cc, 1 cCm 1 CCm,
(note: In this L([en]ma, the; can be arbitrarily ordered. plog 2" + (wi, (v) = p) log 2 < win(v)log2 ©
In case (c) of Lemma 2E*(v, m) < P;J(rgf Combining the two last equations gives that
Furthermore, ifm = 1 then E* (v, m) < 75, (1 geer 41 p)
while if m = t < 0o, then E* (v, m) < <. P s %8 (o)

Note: This lemma follows from the previous ones by some straight- , e wh(v) —p
forward algebraic manipulations that never use the fact that co. +(wy, (v) = p) (logQ ™+ log w(v))

As mentioned, since we are only interested in general and / W (v)
not alphabetic coding, we may take the in any arbitrary < wj, (v) <1og 2°°m 4 log ’uT]rE’U))

order we like. In particular, Lemma 3 implies
. . .
Corollary 4: If the p; are sorted in nonincreasing order thefpince moving fromX™(v) to X (v) involves only operations

in case (c) of Lemma 2, in which probabilities are shifted to the left into an empty
if m =1, then E* (v, m) < 2L, bucket, the analysis above implies thétv) < X*(v).
while if m > 1, then E*(v,m) < jps . Note: The calculations above show that “left-shifting” does not

We can now prove the technical lemma which is the basis iptrease the code cost. They also imply that it might not improve
most of our results. This lemma explicitly uses the factg thi§ either. So, why include it? The reason for left-shifting was to
the p; are nonincreasing and that thgare nondecreasing to reduce the code cost. It was, as described at the end of Section IV, to
bound the error that can result from the left and right shiftgmove any dependence ofrom the running time of the algorithm.
performed by the algorithm of Fig.6.

Lemma 5: Right shifts:
. Consider nodev. Suppose that all of the probabilities in
NR - NR™ < ¢(c2 ‘Cl)zpi fall into I7 with I{ = {pe,....ps;} ande # f. Since p;
€A starts in bin 1p. must be totally contained in bin 1, g <
where 27c1w(v). The algorithm shiftgp; to the right givingl; =

I — andl; = {p:}. Thep,; are nonincreasin - < De.
A = {i|iis right shifted by the algorithm at some sjep tpr}andly = {ps}. Thep 99y =P

4 ce ps 7
Ev,2)= log 2°“2 4+ lo < ccy — CC1).
Note: p1 can never be right shifted, sp_,_, pi <1 —p1. (v,2) w(v) (8 8 w(v)) w(v)(2)
Proof: Define Also E(v,1) < E*(v,1). Thus
t
t t
w(v Ev,m)=ww)E(v,1)+ww)E(v,2
= S uiFm) and X0 = S we () 3 Blom)=u(w) B 1) + w(0)B(w.2
=1 m=1 <w(v)E*(v,1) + psleea — cer)

Note thatNR = >_,c, X(v) andNR"™ = 37,y X*(v) Once apy is right-shifted it immediately becomes a leaf
For eachv we will compare X*(v) and X (v). If no shifts ang can never be right-shifted again.

were performed while processing then X*(v) = X(v) and Combining the analyses of left shifts and right shifts gives
there is nothing to do. We now examine the two mutually

exclusive cases of performing left shifts or performingghti NR= Z X(v) < Z X*(v) 4 clcz — 1) Zpi
shift. vENT vENT i€EA
=NR* -
Left shifts: Tele—a) iEZAp
Every step in our left-shifting procedure involves taking a -
probability out of some binn and and moving it into some Lemma. 6:
currently empty binr < m. Let w/,(v) be the weight in bin i .
m before that shift angh be the probability of the item being NR* <2(1—p1) Z Z v)E*(v,m).
shiftecP. Note that the original weight of bin wasw/.(v) = 0 veNT AL
W/hlle after the shift, birr W_lll_have weightp and binm weight Proof: We evaluateNR* by partitioning it into
w! (v) —p. We use the trivial fact
=Y Y e@Eem
Vp,q >0, plogp+qlogqg < (p+q)log(p+q) (5) vENy 15met
15, (v)=22
5To be clear; since we're examining intermediate stages of kiifing + Z Z (v, m). (7)

procedure, it's possible that’ (v) (w!, (v)) is not equal to eithetw* (v) or N 15mt
w(v) (), (v) OF wn (v). P i

We use a generalization of an amortization argument devé&he theorem then follows from Corollary 7.

oped in [4] to bound the first summand. From Corollary 4 we]
know that if |15 (v)| > 2 with e = min I}, and f = max I}, For a tighter analysis we will need a better bound.
then w(v) E* (v, m) is at most (a)p; or (b) 2p., depending Lemma 8:(a) Let v € Ny. Supposei is such thati e
upon whether (ajn =1, or (b) m > 1. I, (v). Then
Suppose that some; appears a®p; in such a bound _ by
becausei = minI* (v), i.e., case (b). Then, in all later Pi 5. >
. L . ’LU(’U) ‘ IR
recursive steps of the algorithinwill always be the leftmost j=m
item in bin 1 and will therefore not be used in any later cas .
(a) or (b) bound y (%) Further suppose there is somé > m such thatl};,, # 0.
Now suppose that somg appears in such a bound becaus&nen ! 1
1 =max I}, (v), i.e., case (a). Then in all later recursive steps Pi oy, Z 1 <4. Z 1
of the algorithm,i will always be the rightmost item in the w(v) ~ =, 20¢ — =, 20¢;

rightmost non-empty bin. The only possibility for it to beegls
in a later bound is if becomes the rightmost item in bin 1, i.e. Proof: Consider the calCODE(l,r,U) at nodev. The
all of the probabilities are irf; (v). In this casep; is used fact thati € I7,(v) implies L + Z}”:_ll 27%% = Ly, < s;. TO
for a second case (a) bound. Note that if this happens, thsve (a) just note that

p; is immediately right shifted, becomes a leaf in bin 2, and
is never used in any later recursion.

Any given probabilityp; can therefore be used either once
as a case (b) bound and contrib@g or twice as a case (b)
bound and again contribute- p;. Furthermorep; can never So B < w(v) Ez_:m 23cj.
appear in a case (a) or (b) bound because, until it becomes &o prove part (b) let’ € I*,. Then
leaf, it can only be the leftmost item in bin 1. Thus

t
pi 5 _ _ —cc;
si+5—Pz§P,._R_L+w(v);2 .

m’

Z Z w(v)E*(v,m) < 2(1 — py). (8) s + bi _ P <sy < L+w(v)227ccj.
vENp 1<m<t 2

115 (0)]>2 J=1

So & < w(v) s>™ _1_ The final inequality follows from

j=m 2%

Note: In Mehlhorn’s original proof [4] the value correspondin
g P [4] P gthe fact thatc,,, 1 < ¢,,.

to the RHS of (8) wa$l — p1 — p»). This is because the shifting
step of Mehlhorn’s algorithm guaranteed thidf (v)| # 0 and thus . : o .
there was a symmetry between the analysis of leftmost and rightmospe‘clnltlon 4: set f, = 2% Zi,:m 27 and g =
In our situationt might be infinity so we can not assume that th&uP{Bm .‘ 1 S.mé t} ,

rightmost non-empty bin is and we ge®(1 — p1) instead. Note: This definition is valid for both < oo andt = co.

Combining this Lemma with Lemma 5 gives We can now prove our first improved bound:
Corollary 7: Th 21t 3 th
eorem 2: < oo then
NR < 2(1—p1)+c(ca—c1) Zp,»—i— Z Z w(v)E* (v, m).
i€A weENp 1<m<t NR < 2(1 — p1) + max(c(c2 — ¢1),1 + log 3)

|1, (v)]=1
We will now see different bounds on the last summand in proof: Recall that
the above expression. Section VI compares the results we get
to previous ones for different classes(bfBefore proceeding, w(v)E*(m,v) = w (v) log 2°m + log m .
we note that any; can only appear a&",(v) = {p;} for at ’ " w(v)

most one(m, v) pair. Furthermore, ifp; does appear in SUChIn the special case thaf* (v)| = 1, i.e., I% (v) = {i} for

a way, then it can not have been made a leaf by a previous__ .
right shift and thus; ¢ A. somei, Lemma 8(a) tells us that

We start by noting that, wheh < oo our bound is never
worse thanl plus the old bound of1 — p; — p,,) + cc; stated
in (3).

Theorem 1If ¢ < oo then Using the above and Definition 4 we can bound the last

NR <2(1 —p1) +cer summands in Corollary 7 as

wi(v) _ ps e
wv) wv) SQZQ ’

i=m

Proof: If I, (v) = {p;} thenw(v)E*(v,m) < p;ccy, SO

. wi, (v)
w(v)E* (m,v)=w}, (v) <1og 2¢¢m 4 log —2)
’LU(U)E* (Uv m)S PiCCm U}(U)
1), (v)|=1 [13, (v)|=1 Sw:@ (’U) log 2¢Cm 9 Z 9—CCi
<cey sz i=m

igA <w,, (v)(1 + log B)

If I (v) = {i} theni was not a leaf in any previous step and For everye > 0 we associate a valu¥, (to be determined
therefore could not have been right shifted,isp A. Thus later) and setn. = max{m | ¢, < N.}. Since no probability

appears more than once in the sum we can write
S Y @B em < +gn)Y
<m< E* < ¢Ne..
veNT \Il;"n('u)\;l A Z Z (v,m) < eNe
VENp 1<m<me
™ |1, (v)|=1

This immediately gives an improved bound for many finite To analyze the remaining cases, fix Consider the set of
cases because, #f < oo, then 3,, = 2¢» 3! 27c% < indices
t—m-+1sop8 <t Thus

Theorem 3:If ¢ is finite then

NR < 2(1 — p1) + max(c(cz — ¢1), 1 + logt)

M, = {m| (m >m.) and|I%,(v) = 1]}.

Sort these indices in increasing order so thaf, =

{my,ma,...,m,} for somer with m; < mg < --- < m,.
Definition 5: For all j > 1, set Leti; be such that;;, (v) = {p;, }. Thus
di=|{i|j<ec <j+1}. r r
i =1 I w(v)E* (v,m) = Zw(v)E*(me—) < Zpijccmj
This permits us to give another general bound that alsa..<~ = =1

15, (v)]=1

works for many infinite alphabets.
Lemma 9:1f d; = O(1) then NR = O(1). In particular, Lemma 8 and the fact that thg,, are non-decreasing then
if V4, d; < K then < so, from Theorem 2, gives

12°

K T
NR < 2(1—p;)+max <C(C2 — 1), 1+ c+log (1 2)) D Dicem,

Furthermore, if all of the:; are integers, thef < 55— 2 - and r—1 mm 1
—CCm —CCm
K <cw(v) Zcm Z 2 +2¢m, Z 2
NR <2(1—p;)+max | c(ca—cy), 1+1log . i=1 m=m; m=m,
1—-2-¢ o s
Proof: Sincec; — 1 we must have2—¢ < 1. Thus, for <4cw(v) D em2m <dew(v) Y em2
alm>1,if £ <c¢, <+ 1 then m=m mme
t We are given thap_~_, ¢,,27““~ converges. Thug(m.) | 0
B =26Cm Z 2 com asm. — oo whereg(x) S, Cm 27,
i=m Note that aslV. increasesm. increases. Givel, we now
e(e11) i chooseN, to be the smallest value such thgin.) < g. Note
<2+ " ;27 that N, is independent of.
g=t Combine the above bounds:
= i 2°K
c c —cj __ *
SEKTY 2 = > D wEwm=3 3 wEwm)
j=0 VENp 1<m<t VENp 1<m<me
115, ()]=1 115, (o) =1
which is mdepe'nde'nt'om and /. The analysis when the; n Z Z V) E* (v, m)
are all integers is similar. [] =
For general infinite alphabets we are not able to derive a T =1
constant redundancy bound but we can prove <cN, + Z fcw(v)
Theorem 4:If C is infinite and}_~_; ¢,,27 ™ < oo, then, ven, 2

for everye > 0 Recall from Lemma 1 and the fact thetn, ¢, > 1,

1
RSG*H(plv"‘vpn)—f—f(Cve) (9) ¢
¢ T)= Z Zcm-wm(v)
where f(C, €) is some constant based only 6nand e. Note vENp m=1
that this is equivalent to stating that
> W (V) = w(v).
C(T) < (14+€OPT + f(C,e) _U;;T mZ=1 (v) v;;T)
Proof: We must bound the Thus, we have just seen that
Z Z v)E* (v, m) Z Z w(v)E*(v,m) < cN. + EcC’(T).
vENp 1<m<t vENp 1<m<t 2

|15, (v)|=1 |1%, (v)[=1

term from the right hand side of Corollary 7. Recall that Plugging back into Corollary 7 gives

|I: (v)] = 1 means thatdi such thatl} (v) = {i}, i.e, €
wk, (v) = p; and thusw(v) E* (v, m) < picem. cC(T)=H(p1,- ., pn) < 2(1=p1)te(ez—er)+eNet5cO(T)

which can be rewritten as

1 1
C(T)f1 — £EH(pl,..wpn)
2
1 1
ST <3 (2(1 —p1) +¢e(ca — 1) + eN)
—<c

We may assume that< 1/2, so1 +e > —-. Thus

—<
)~ (L4 L Hlpr, - pa) < F(C.6)
where

J(C.) = 5C+ (=) + N,

This can then be rewritten as

1 1
R=C(T) - EH(pl,...,pn)geEH(pl,...,pn) + f(C,e)

<eOPT + f(C,¢)

proving the Theorem.

VI. EXAMPLES

10

Let C be an infinite sequence of letter costs such that there
exists aK > 0 satisfying for allj, d; = [{i | j < ¢ <
j} < K. Let ¢ be the root of the characteristic equation
1= 27 Let 5 = {0y,...,0,} and its associated
letter costs beC®) = {ci,...,¢}. Let ¢ be the root of
the corresponding characteristic equatios Zle 2% and
(NR;) R; be the associated (normalized) redundancy. Note
thatc(Y) 1 ¢ ast increases.

For any fixedt, the old bound (3) would b&VR; < (1 —
p1 — pn) + ce, which goes toco ast increases. Lemma 9
tells us that

t C C
(t) — C(t)cm C(t)Ci < 2 K < 2 K
At 2_31 S e

so, from Theorem 2 and the fact that, ¢ < () < ¢, we
get

K
NR; < 2(1—p1)+max <c(62 —c), 14+ c+log 12_6(2)> .

Note that if all of thec,, are integers, then the additive factor
¢ will vanish.

We now examine some of the bounds derived in the lastExample 2:Let C = (1,2,3,...). i.e., ¢;, = m. The old
section and show how they compare to the old boundlef bounds (3) gives an asymptotically infinite error@s- oco.
P1 — pn) + cc; stated in (3). In particular, we show that for For this casec = 1 and K = 1. ¢ is the root of the
large families of costs the old bounds go to infinity while theharacteristic equation= 2-2+2-2¢. Solving gives2~* ' =

new ones give uniformly constant bounds.

Case 1C, = (c1,¢2,..., -1,) With a T 0.

We assumeg > 3 and all of thec;, i < t, are fixed. Let
< be the root of the corresponding characteristic equation
1 =27 4 Y"1 ¢, Note thate® | ¢ wherec is the
root of 1 = Zf;i ¢ . Let (NR,) R, be the (normalized)

redundancy corresponding &,.
For any fixeda, the old bound (3) would give

A =p1—pa)

NRa S (1—191 —pn)+0(a)04, Ra S (@)
cla

the right hand sides of both of which tenddo as«a increases.
Compare this to Theorem 3 which gives a uniform bound

NR,<2(1 — p1) + max(c!®(ca — ¢1),1 + log t)

<2(1 —p1) + max (c(‘:t*l)(@ —c1),1+1log t)

and

NR,, < 2(1 — p1) + max (c(c‘—l)(CQ —c1),1+logt)

Ry <
= cla) — I

@ andc® =1 —log(v/5 — 1) ~ 0.694.. .. Plugging into
our equations gives

K
NRtSQ(l _pl) -+ max (C(CQ — Cl), 1+ IOg (1_2_0(2))>

=2(1 — + 1+ lo < 4.388
and
_ NR, NR,

Case 3:An infinite case whenl; = O(1).

0Ifn this case just apply Lemma 9 directly.

Example 3:Let C containd copies each of =1,2,3,...,
e, cn = 1+ 7] Note thatK = d. If d = 1, i.e,
¢m =m, thenc=K =1 and

R=NR <2(1—p1)+2.
If d > 1thenA(z) = " cpz™ = The solutiona

m=1 11—z

to A(a) = 1isa = g7, S0c¢ = —loga = log(d + 1). The
lemma gives

dz

For concreteness, we examine a special case of the above.

Example 1l:Lett =3 with ¢; = ¢c; =1 andes = a > 1.
The old bounds (3) gives an asymptotically infinite error as

a — oo. The bound from Theorem 3 is

NR, < 2(17p1)+max(c(a)(02701), 1+logt) < 3+log3

independent ofv. Sincec(® > ¢ =1 we also get

NR,

Ra - C(a)

< 3+ log3.

K
NR <2(1—-p1)+ <1+log(1_26)> <3+log(d+1)

R<1+——F—.
- +10g(d+1)

Case 44d; are integral and satisfy a linear recurrence relation.
In this case the generating functiofi(z) = Z;’;l djzl =
Yoo , z°m can be written asA(z) = 523 where P(z) and
Q(z) are relatively prime polynomials. Lef be a smallest

Case 2A sequence of finite alphabets approaching an infinitaodulus root ofQ(z). If v is the unique root of that modulus

one.

(which happens in most interesting cases) then it is knoah th

d; = 04!

11

) (which will also imply thaty is positive Example 4. Recall that this hadj integral withd; = 0 for

real) whered is the multiplicity of the root. There must;j = 0 and oddj and for evenj > 0, d; = 2C;/,_, Where

then exist somex < v such thatA(«) = 1. By definition
C =

applies.
Note that

implying
h™(e)

where we define
h’l()

=log, 1/€+ O(loglog1/¢)

= max{z | h(r) <e, h(x—1)>e}

—log . Furthermore, sincex < v we must have that
Yoy djjal =320 ematm also converges, so Theorem

C; = ?(21) is thezth Catalan numberlt's well known that
C0Ciwl = =(1—/1—4x) so

= ixc’" = idjxj =1—+1—422
m=1 j=1

Solving for A(a) = 1 givesa = 5 andc = —loga = 1. On
the other hand,

> me—Z]d xa—gz(-) (22)]

m=1

2

- V1 — 4z?
so this sumdoes notconverge when: = 1/2. Thus, we can

not use Theorem 4 to bound the redundancy. Some observation
shows that this? does not satisfy any of our other theorems

the ¢,,, are all integral,

)= Y et Y e

m>m/ m>m/

< Z jdjaj = h(Cm/).

J2Cms

Recall thatm, = max{m | ¢,, < N.}. Theng(m.) < h(N,).
Sinceg(m.) < €/8,

N. < h™*(e/8) = log., /o 1/€+ O(loglog 1/¢)
and thus our algorithm creates a cdiesatisfying
C(T)—OPT < eOPT +log,,, 1/e+ O(loglog 1/¢). (11)

Example 4:Consider the case wher®, = Fj, the jth

Fibonacci numbetf; =1, Fr =1, F3 = 2,.... It's wgll knovyh
that A(z) = 332, dj2/ = =2 and F; = =090

where¢ =
len] < 1. Solving Ala) =1 givesa = /2 —
(@andc = —loga = 1.2715.
cost of the redundancy of our code with=
1.492.

Example 5:As discussed in Section Il, Exampled =
F; arises when modeling = {1, 2,3} with associated’ =

L8 Thusd; = 12+, wherev = ¢~ and
4142,

1+f)(f 1)

code W|th “small” redundancy for this problem, i.e., a code
with a constant additive approximation or something simila
to Theorem 4.

VII.

We have just see@(n logn) time algorithms for construct-
ing almost optimal prefix-free codes for source letters with
probabilitiespy, . .., p, when the costs of the letters of the
encoding alphabet are unequal valdes= {ci,ca,...}. For
many finite encoding alphabets, our algorithms have prgvabl
smaller redundancy (error) than previous algorithms given
[3], [4], [19], [21]. Our algorithms also are the first thawgi
provably bounded redundancy for some infinite alphabets.

There are still many open questions left. The first arises by
noting that, for the finite case, the previous algorithmsewer
implicitly constructingalphabetic codesOur proof explicitly
uses the fact that we are only constructing general codes. It
would be interesting to examine whether it is possible to get
better bounds for alphabetic codes (or to show that this s no

CONCLUSION AND OPEN QUESTIONS

..). (11) gives a bound on the possible).

Another open question concerns Theorem 4 in which we
showed that ify"°_; ¢,,27°m < oo, then,

Ve >0, C(T)—OPT <eOPT + f(C,e¢).

(1,1,2); the problem there was to find minimal cost prefix-fregs it possible to improve this for some genefao get a purely

codes in which all words end with

additive error rather than a multiplicative one combinethwi

That problem was actually an illustration of the genergln additive one?

Section I,

= {o1,...,0:}, associated cost vect@t = (cy,...,ct),

2’ C ¥ and£ = ¥*¥' are given. We are then asked to find ggr which S

Example 3 situation in whicliinite alphabet

Finally, in Case 5 of the last section we gave a natural
example for which the root of >~°°, 27<m = 1 exists but
1Cm27%m = 00 SO that we can not apply

minimum cost prefix free code if. It was shown there that Theorem 4 and therefore have no error bound. It would be

this can be modeled as an infinite alphabet problem in Whigiteresting to devise an analysis that would work for such
the d; satisfy a linear recurrence relation. Thus, all of thesgses as well.

problems fit into the Case 4 framework.

Case 5:An example for which there is no known bound.

REFERENCES

An interESting open queStion is how to bound the redundanc{!] D. A. Huffman, “A method for the construction of minimum rediancy

for the case of balanced words described in Section I,

codes,” inProc. IRE 40 vol. 10, September 1952, pp. 1098-1101.

(2]
(3]
(4]

(5]
(6]
(7]

8

(9]

(20]
[11]
[12]

(23]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

I. Itai, “Optimal alphabetic trees SIAM J. Computingvol. 5, pp. 9-18,
1976.

R. M. Krause, “Channels which transmit letters of uneqgdatation,”
Inform. Contr, vol. 5, pp. 13-24, 1962.

K. Mehlhorn, “An efficient algorithm for constructing ady optimal
prefix codes,”|IEEE Trans. Inform. Theoryvol. 26, pp. 513-517,
September 1980.

N. M. Blachman, “Minimum cost coding of information|RE Transac-
tions on Information Theorwol. PGIT-3, pp. 139-149, 1954.

R. Marcus,Discrete Noiseless Coding M.S. Thesis, MIT E.E. Dept,
1957.

R. Karp, “Minimum-redundancy coding for the discrete mdéss chan-
nel,” IRE Transactions on Information Theoryol. IT-7, pp. 27-39,
January 1961.

L. E. Stanfel, “Tree structures for optimal searchingdurnal of the
Association for Computing Machinegryol. 17, no. 3, pp. 508-517, July
1970.

B. Varn, “Optimal variable length codes (arbitrary symbokt and equal [27]
code word probability),”Information Contro] vol. 19, pp. 289-301,

[21]

[22]

(23]

(24]

(25]

(26]

12

D. Altenkamp and K. Melhorn, “Codes: Unequal probalsjienequal
letter costs,” Journal of the Association for Computing Machinery
vol. 27, no. 3, pp. 412-427, July 1980.

J. Abrahams, “Code and parse trees for lossless sourcedie,”
Communications in Information and Systerasl. 1, no. 2, pp. 113—
146, April 2001.

Y. N. Patt, “Variable length tree structures having minim average
search time,Commun. ACMvol. 12, no. 2, pp. 72-76, 1969.

T. Berger and R. W. Yeung, “Optimum 1’ ended binary pretisdes.”
IEEE Transactions on Information Thegryol. 36, no. 6, pp. 1435-
1441, 1990.

R. M. Capocelli, A. D. Santis, and G. Persiano, “Binamgfix codes
ending in a "1"." IEEE Transactions on Information Theoryol. 40,
no. 4, pp. 1296-1302, 1994.

J.-Y. Lin, Y. Liu, and K.-C. Yi, “Balance of 0, 1 bits foruffman and
reversible variable-length codinglEEE Transactions on Communica-
tions vol. 52, no. 3, pp. 359-361, 2004.

R. Sedgewick and P. Flajolefn introduction to the analysis of algo-
rithms Boston, MA, USA: Addison-Wesley Longman Publishing Co.,

1971.

E. N. Gilbert, “How good is morse codelirform Control vol. 14, pp.
585-565, 1969.

——, “Coding with digits of unequal costs,TEEE Trans. Inform.
Theory vol. 41, pp. 596-600, 1995.

K. A. S. Immink, Codes for Mass Data Storage SystemsShannon
Foundations Publishers, 1999.

M. Golin and G. Rote, “A dynamic programming algorithm foonz
structing optimal prefix-free codes for unequal letter cbstEEE
Transactions on Information Thearyol. 44, no. 5, pp. 1770-1781,
1998.

Inc., 1996.
C. E. Shannon, “A mathematical theory of communication,”
The Bell System Technical Journavol. 27, pp. 379-423, 623-
656, July, October 1948. [Online]. Available: http://crilbe
labs.com/cm/ms/what/shannonday/shannon1948.pdf

(28]

Mordecai Golin received his B.Sc. in Mathematics and Computer Science

from the Hebrew University of Jerusalem in 1984, his M.A. ionGuter

D. E. Knuth, The Art of Computer Programming, Volume IlI: Sortingscience from Princeton University in 1987 and his Ph.D. imater Science

and Searching Addison-Wesley, 1973.

K. Hinderer, “On dichotomous search with direction-degent costs for
a uniformly hidden objec,Optimization vol. 21, no. 2, pp. 215-229,
1990.

S. Kapoor and E. M. Reingold, “Optimum lopsided binarges,”
Journal of the Association for Computing Machinempl. 36, no. 3,
pp. 573-590, July 1989.

P. Bradford, M. Golin, L. L. Larmore, and W. Rytter, “Optal prefix-
free codes for unequal letter costs and dynamic programmirty thvit
monge property,Journal of Algorithmsvol. 42, pp. 277-303, 2002.
M. J. Golin, C. Kenyon, and N. E. Young, “Huffman codingtwvunequal

from Princeton University in 1990. He then served as a pasidoProjet
Algo of theInstitut National de Recherche en Informatique et en Aut@mea
(INRIA) in Rocquencourt, France through the end of 1992. In 1993 inedo
the Computer Science Department of the Hong Kong Universitgaénce
and Technology where he remains. His research interestsdim¢he design
and analysis of algorithms with special emphasis on matherhatiethods,
computational geometry, combinatorics, coding theory armtinétion theory.

letter costs.” inProceedings of the 34th Annual ACM Symposium oBian Li received his B.Sc. in Urban/Rural Planning and Managemem fr

Theory of Computing (STOC'022002, pp. 785-791.

I. Csisz'ar, “Simple proofs of some theorems on noiseldssnoels,”
Inform. Contr, vol. 514, pp. 285-298, 1969.

N. Cott, Characterization and Design of Optimal Prefix Code$*hD
Thesis, Stanford University, Department of Computer Scigidcme
1977.

Sun Yat-sen University in 2004, Guangzhou, and his M.Sc. amfuter
Science from Fudan University, Shanghai, in 2007. He is ®&Pstudent in
Computer Science Department at University of Maryland, @ell®ark. His
research interests include the design and analysis ofitidige with emphasis
on approximation and graph algorithms.

