
1

More Efficient Algorithms and Analyses for
Unequal Letter Cost Prefix-Free Coding

Mordecai Golin, Member, IEEE, and Jian Li

Abstract—There is a large literature devoted to the problem of
finding an optimal (min-cost) prefix-free code with an unequal
letter-cost encoding alphabet of size. While there is no known
polynomial time algorithm for solving it optimally there are many
good heuristics that all provide additive errors to optimal. The
additive error in these algorithms usually depends linearly upon
the largest encoding letter size.

This paper was motivated by the problem of finding optimal
codes when the encoding alphabet is infinite. Because the largest
letter cost is infinite, the previous analyses could give infinite error
bounds. We provide a new algorithm that works with infinite
encoding alphabets. When restricted to the finite alphabet case,
our algorithm often provides better error bounds than the best
previous ones known.

Index Terms—Prefix-Free Codes. Source-Coding. Redundancy.
Entropy.

I. I NTRODUCTION

L ET Σ = {σ1, σ2. . . . , σt} be anencoding alphabet; Σ∗

represents all finite words written usingΣ. Word w ∈ Σ∗

is a prefix of word w′ ∈ Σ∗ if w′ = wu whereu ∈ Σ∗ is a
non-empty word. ACode over Σ is a collection of words
C = {w1, . . . , wn}. CodeC is prefix-freeif for all i 6= j wi

is not a prefix ofwj . See Fig.1.
Let cost(w) be the length or number of characters in

w. Given a set of associated probabilitiesp1, p2, . . . , pn ≥
0,
∑

i pi = 1, the cost of the code isCost(C) =
∑n

i=1 cost(wi)pi. The prefix coding problem, sometimes
known as theHuffman encodingproblem is to find a prefix-
free code overΣ of minimum cost. This problem is very
well studied and has a well-knownO(tn log n)-time greedy-
algorithm due to Huffman [1] (O(tn)-time if thepi are sorted
in non-decreasing order).

Alphabeticcoding is the same problem with the additional
constraint that the codewords must be chosen in increasing
alphabetic order (with respect to the words to be encoded).
This corresponds, for example, to the problem of constructing
optimal (with respect to average search time) search trees for
items with the given access probabilities or frequencies. Such
a code can be constructed inO(tn3) time [2].

One well studied generalization of the problem is to let the
encoding letters have different costs. That is, letσi ∈ Σ have
associated costci. The cost of codewordw = σi1σi2 . . . σil

M. Golin is with the Department of Computer Science and Engineering,
Hong Kong UST.golin@cs.ust.hk. His work on this paper was partially
supported by HK RGC Competitive Research Grants 613105 and 613507.

J. Li is with the department of Computer Science, University ofMaryland
at College Park.lijian@cs.umd.edu. His work on this paper was performed
while he was visiting HKUST from the Shanghai Key Laboratoryof Intelligent
Information Processing, Department of Computer Science and Engineering,
Fudan University, and was partially supported by a grant from the National
Natural Science Fund China (grant no. 60573025).

will be cost(w) =
∑l

k=1 cik
, i.e., the sum of the costs of its

letters (rather than the length of the codeword) with the cost of
the code still being defined asCost(C) =

∑n
i=1 cost(wi)pi

with this new cost function.
The existing, large, literature on the problem of finding

a minimal-cost prefix free code when theci are no longer
equal, which will be surveyed below, assumes thatΣ is
a finite alphabet, i.e., thatt = |Σ| < ∞. The original
motivation of this paper was to address the problem when
Σ is unbounded. As will briefly be described in Section II,
this models certain types of language restrictions on prefix
free codes and the imposition of different cost metrics on
search trees. The tools developed, though, turn out to provide
improved approximation bounds for many of the finite cases
as well.

More specifically, it was known [3], [4]1 that
1
cH(p1, . . . , pn) ≤ OPT where H(p1, . . . , pn) =
−∑n

i=1 pi log pi is the entropy of the distribution, c is
the unique positive root of thecharacteristic equation
1 =

∑t
i=1 2−cci andOPT is the minimum cost of any prefix

free code for thosepi. Note that in this paper,log x will
always denotelog2 x.

For t < ∞, the known efficient algorithms create a codeT
that satisfies

C(T) ≤ 1

c
H(p1, . . . , pn) + f(C) (1)

whereC(T) is the cost of codeT , C = (c1, c2, · · · , ct) and
f(C) is some function of the letter costsC, with the actual
value off(C) depending upon the particular algorithm. Since
1
cH(p1, . . . , pn) ≤ OPT , code T has anadditive error at
mostf(C) from OPT. Thef(C) corresponding to the different
algorithms shared an almost linear dependence upon the value
ct = max(C), the largest letter cost. They therefore can not be
used for infiniteC. In this paper we present a new algorithmic
variation (most algorithms for this problem start with the same
splitting procedure so they are all, in some sense, variations
of each other) with a new analysis:

• (Theorems 2 and 3) For finiteC we derive new additive
error boundsf(C) which in many cases, are much better
than the old ones.

• (Lemma 9) If C is infinite but dj = |{m | j ≤ cm <
j + 1}| is bounded, then we can still give a bound of
type (1). For example, ifcm = 1 + ⌊m−1

2 ⌋, i.e., exactly

1Note that if t = 2 with c1 = c2 = 1 then c = 1 and this reduces
to the standard entropy lower bound for prefix-free coding. Although the
general lower bound is usually only explicitly derived for finite t, Krause
[3] showed how to extend it to infinitet in cases where a positive root of
1 =
∑

∞

i=1
2−cci exists.

2

x aaa aab ab b
cost(x) 3 5 4 3

x aaa aab ab aaba
cost(x) 3 5 4 6

Fig. 1. In this exampleΣ = {a, b}. The code on the left is{aaa, aab, ab, b} which is prefix free. The code on the right is{aaa, aab, ab, aaba} which is
not prefix-free becauseaab is a prefix ofaaba. The second row of the tables contain the costs of the codewords whencost(a) = 1 andcost(b) = 3.

0

1

2

3

4

5

0 1

1 0 1

2/6 2/6 1/6 1/6

2/6

1/6

1/6

2/6

0

00 01 10 11

a b

a

a b

b

aaa

aab

ab

b

Fig. 2. Two min-cost prefix free codes for probabilities2/6, 2/6, 1/6, 1/6 and their tree representations. The code on the left is optimal for c1 = c2 = 1
while the code on the right, the prefix-free code from Fig.1, is optimal forc1 = 1, c2 = 3.

two letters each of lengthi,= 1, 2, 3, . . ., then we can
show thatf(C) ≤ 1 + 3

log 3 .
• (Theorem 4) IfC is infinite but di is unbounded then

we can not provide a bound of type (1) but, as long as
∑∞

i=1 cm2−ccm < ∞, we can show that

∀ǫ > 0, C(T) ≤ (1+ǫ)
1

c
H(p1, . . . , pn)+f(C, ǫ) (2)

wheref(C, ǫ) is some constant based only onC and ǫ.
We now provide some more history and motivation.
For a simple example, refer to Fig.2. Both codes written

there have minimum cost for the frequencies(p1, p2, p3, p4) =
(

1
3 , 1

3 , 1
6 , 1

6

)

but under different letter costs. The code
{00, 01, 10, 11} has minimum cost for the standard Huffman
problem in which ofΣ = {0, 1} and c1 = c2 = 1, i.e.,
the cost of a word is the number of bits it contains. The
code {aaa, aab, ab, b} has minimum cost for the alphabet
Σ = {a, b} in which the cost of an “a” is 1 and the cost
of a “b” is 3, i.e., C = (1, 3).

The unequal letter cost coding problem was originally
motivated by coding problems in which different characters
have different transmission times or storage costs [5]–[9]. One
example is the telegraph channel [3], [10], [11] in which
Σ = {·,−} and c1 = 1, c2 = 2, i.e., in which dashes
are twice as long as dots. Another is the(a, b) run-length-
limited codes used in magnetic and optical storage [12], [13],
in which the codewords are binary and constrained so that
each1 must be preceded by at leasta, and at mostb, 0’s.
(This example can be modeled by the unequal-cost letter
problem by using an encoding alphabet ofr = b − a + 1
characters{0k1 : k = a, a + 1, . . . , b} with associated costs
{ci = a + i − 1}.)

The unequal letter costalphabeticcoding problem arises in
designing testing procedures in which the time required by a

test depends upon the outcome of the test [14, 6.2.2, ex. 33]
and has also been studied under the namesdichotomous search
[15] or the leaky showerproblem [16].

The literature contains many algorithms for the unequal-
cost coding problem. Blachman [5], Marcus [6], and (much
later) Gilbert [11] give heuristic constructions without analyses
of the costs of the codes they produced. Karp gave the first
algorithm yielding an exact solution (assuming the letter costs
are integers); Karp’s algorithm transforms the problem into
an integer program and does not run in polynomial time [7].
Later exact algorithms based on dynamic programming were
given by Golin and Rote [13] for arbitraryt and a slightly
more efficient one by Bradford et. al. [17] fort = 2.. These
algorithms run innct+O(1) time wherect is the cost of the
largest letter. Despite the extensive literature, there isno known
polynomial-time algorithm for the generalized problem, nor
is the problem known to be NP-hard. Golin, Kenyon and
Young [18] provide a polynomial time approximation scheme
(PTAS). Their algorithm is mainly theoretical and not useful
in practice. Finally, in contrast to the non-alphabetic case,
alphabetic coding has a polynomial-time algorithmO(tn3)
time algorithm [2].

Karp’s result was followed by many efficient algorithms [3],
[4], [19]–[21]. As mentioned above,1cH(p1, . . . , pn) ≤ OPT ;
almost2 all of these algorithms produce codes of cost at most
C(T) ≤ 1

cH(p1, . . . , pn) + f(C) and therefore give solutions
within an additive errorof optimal. An important observation
is that the additive error in these papersf(C) somehow
incorporate the cost of the largest letterct = max(C). Typical

2As mentioned by Mehlhorn [4], the result of Cot [20] is a bit different.
It’s a redundancy bound and not clear how to efficiently implement as an
algorithm. Also, the redundancy bound is in a very different form involving
taking the ratio of roots of multiple equations that makes it difficult to compare
to the others in the literature.

3

in this regard is Mehlhorn’s algorithm [4] which provides a
bound of

cC(T) − H(p1, . . . , pn) ≤ (1 − p1 − pn) + cct (3)

Thus, none of the algorithms described can be used to address
infinite alphabets with unbounded letter costs.

The algorithms all work by starting with the probabilities in
some given order, grouping consecutive probabilities together
according to some rule, assigning the same initial codeword
prefix to all of the probabilities in the same group and then
recursing. They therefore actually create alphabetic codes.
Another unstated assumption in those papers (related to their
definition of alphabetic coding) is that the order of thecm is
given and must be maintained.

In this paper we are only interested in the general coding
problem and not the alphabetic one and will therefore have
freedom to dictate the original order in which thepi are
given and the ordering of thecm. We will actually always
assume thatp1 ≥ p2 ≥ p2 ≥ · · · and c1 ≤ c2 ≤ c3 ≤ · · · .
These assumptions are the starting point that will permit us
to derive better bounds. Furthermore, for simplicity, we will
always assume thatc1 = 1. If not, we can always force this
by uniformly scaling all of theci.

For further references on Huffman coding with unequal
letter costs, see Abrahams’ survey on source coding [22,
Section 2.7], which contains a section on the problem.

II. EXAMPLES OF UNEQUAL-COST LETTERS

It is very easy to understand the unequal-cost letter problem
as modeling situations in which different characters have
different transmission times or storage costs [5]–[9]. Such
cases will all have finite alphabets. It is not a-priori as clear
why infinite alphabets would be interesting. We now discuss
some motivation.

In what follows we will need some basic language notation.
A languageL is just a set of words over alphabetΣ. The
concatenationof languagesA and B is AB = {ab | a ∈
A, b ∈ B}. The i-fold concatenation,Li, is defined byL0 =
{λ} (the language containing just the empty string),L1 = L
andLi = LLi−1. The Kleene starof L, is L∗ =

⋃∞
i=0 Li.

Example 1 C = {1, 2, 3, . . . , } i.e., ∀m > 0, cm = m.
This is one of the simplest infinite cost vectors. An early use
was in [23]. The idea there was to construct a tree (not a
code) in which the internal pointers to children were stored
in a linked list. Taking themth pointer corresponds to using
characterσm. The time that it takes tofind the mth pointer
is proportional to the location of the pointer in the list. Thus
(after normalizing time units)cm = m.

Example 2 1-ended codes.
The problem of finding min-cost prefix-free codes with the
additional restriction that all codewords end with a1 was
studied in [24], [25] with the motivation of designing self-
synchronizing codes. One can model this problem as follows.
Let L be a language. In our problem,

L = {w ∈ {0, 1}∗ | the last letter inw is a 1}. (4)

We say that a codeC is in L if C ⊆ L. The problem is to
find a minimum cost code among all codes inL.

Note that L = Q∗ where Q = {1, 01, 001, 0001, . . .}.
BecauseQ is prefix-free (even thoughL isn’t), every word
in L can be uniquely decomposed as the concatenation of
words inQ. If the decomposition ofw ∈ L is w = q1q2 . . . qr

for qi ∈ Q, thencost(w) =
∑r

i=1 cost(qi). We can therefore
model the problem of finding a minimum cost code among all
codes inL by first creating an infinite alphabetΣQ = {σq |
q ∈ Q} with associated cost vectorCQ (in which the cost ofσq

is cost(q)) and then solving the minimal cost coding problem
for ΣQ with those associated costs. For1-ended codes we set
Q as above and thusC = {1, 2, 3, . . . , }, i.e., another infinite
alphabet withcm = m for all m ≥ 1.

Example 3 Σ′-ended unequal letter-cost codes.
The only place above in which we used the specific definition
(4) of L was in the choice of the appropriateQ. In fact, the
derivation works for the problem of finding a min-cost prefix-
free code inL where L is any (generally non prefix-free)
language which can be decomposed asL = Q∗ for some
prefix-free languageQ.

As an example, consider the following generalization of1-
ended codes. Suppose we are given an unequal cost coding
problem withfinite alphabetΣ = {σ1, . . . , σt} and associated
cost vectorC = (c1, . . . , ct). Now let Σ′ ⊂ Σ and define

L = Σ∗Σ′ = {w ∈ Σ∗ | the last letter inw is in Σ′}.
L = Q∗ whereQ = (Σ−Σ′)∗Σ′ is a prefix-free language We
can therefore model the problem of finding a minimum cost
code among all codes inL by solving an unequal cost coding
problem with alphabetΣQ = {σq | q ∈ Q} and associated
cost vectorCQ (in which cost(σq) = cost(q)). The important
observation is that

dj = |{w ∈ ΣQ | cost(w) = j}|,
the number of letters inΣQ of cost j, satisfies a linear
recurrence relation. Bounding redundancies for these types of
C will be discussed in Section VI, Case 4.

As a specific illustration, considerΣ = {1, 2, 3} with
C = (1, 1, 2) and Σ′ = {1}; our problem is find minimal
cost prefix free codes in which all words end with a1.
L = {1, 2, 3}∗{1} = Q∗, whereQ = {2, 3}∗{1}. The number
of characters inΣQ with cost j is

d1 = 1, d2 = 1, d3 = 2, d4 = 3, d5 = 5,

and, in general,di+2 = di+1 + di, so di = Fi, the Fibonacci
numbers. This specific case will be examined in Section VI,
Example 5.

Example 4 Balanced binary words.
We conclude with a very naturalL for which we donot know
how to analyze the redundancy. In Section VI, Case 5, we will
discuss why this is difficult.

Let L be the set of all “balanced” binary words3, i.e., all
words which contain exactly as many0’s as 1’s. Note that

3This also generalizes a problem from [26] which provides heuristics for
constructing a min-cost prefix-free code in which the expected number of0’s
equals the expected number of1’s.

4

L = Q∗ whereQ is the set of all non-empty balanced words
w such that no prefix ofw is balanced. Note that, by definition,
Q is prefix-free. Let

ℓj = |{w ∈ L | cost(w) = j}|, dj = |{w ∈ Q | cost(w) = j}|
and setL(z) =

∑∞
n=0 ℓnzn and D(z) =

∑∞
n=0 dnzn to be

their associated generating functions. IfL = D∗, then standard
generating function rules, see e.g., [27], state thatL(z) =
(1−D(z))−1. Observe thatln = 0 if n is odd andln =

(

n
n/2

)

for n even, so

L(z) =

∞
∑

n=0

(

2n

n

)

(z2)n =
1√

1 − 4z2

and ∞
∑

n=1

djz
j = D(z) = 1 −

√

1 − 4z2.

This can then be solved to see that, for evenn > 0, dn =
2Cn/2−1 whereCi = 1

i+1

(

2i
i

)

is the ith Catalan number. For
n = 0 or oddn, dn = 0.

III. N OTATIONS AND DEFINITIONS

There is a very standard correspondence between prefix-
free codes over alphabetΣ and |Σ|-ary trees in which the
mth child of nodev is labeled with characterσm ∈ Σ. A path
from the root in a tree to a leaf will correspond to the word
constructed by reading the edge labels while walking the path.
The treeT corresponding to codeC = {w1, . . . , wn} will be
the tree containing the paths corresponding to the respected
words. Note that the leaves in the tree will then correspond to
codewords while internal nodes will correspond to prefixes of
codewords. See Fig. 2 and 5.

Because this correspondence is 1-1 we will speak about
codes and trees interchangeably, with the cost of a tree being
the cost of the associate code.

Definition 1: Let C be a prefix free code overΣ andT its
associated tree.NT will denote the set ofinternal nodesof T.

Definition 2: Setc to be the unique positive solution to1 =
∑t

i=1 2−cci . Note that ift < ∞, thenc must exists while ift =
∞, c might not exist. We only definec for the cases in which
it exists. c is sometimes called theroot of the characteristic
equationof the letter costs.

Definition 3: Given letter costsci and their associated char-
acteristic rootc, let T be a code with those letter costs.
If p1, p2, . . . , pn ≥ 0 is a probability distribution then the
redundancyof T relative to thepi is

R(T ; p1, . . . , pn) = C(T) − 1

c
H(p1, . . . , pn).

We will also define thenormalized redundancyto be

NR(T ; p1, . . . , pn) = cR = cC(T) − H(p1, . . . , pn).

If the pi andT are understood, we will writeR(T) (NR(T))
or evenR (NR).
We note that many of the previous results in the literature, e.g.,
(3) from [4], were stated in terms ofNR. We will see later
that this is a very natural measure for deriving bounds. Also,
note that by the lower bound previously mentioned,C(T) ≥
1
cH(p1, . . . , pn) for all T and pi, so R(T ; p1, . . . , pn) is a
good measure of absolute error.

p1 p2 p3 p4 p5 p6

︸ ︷︷ ︸︸ ︷︷ ︸︸︷︷︸

2
−c 2

−2c
2
−3c

c1

c2 c3
p1, p2, p3

p4, p5

p6

Fig. 3. The first splitting step for a case whenn = 6 c1 = 1, c2 = 2,
c3 = 3 and the associated preliminary tree. This step groupsp1, p2, p3 as
the first group,p4, p5 as the second andp6 by itself. Note that we haven’t
yet formally explained yetwhy we’ve grouped the items this way.

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸︷︷︸

2−c(p1 + p2 + p3) 2−3c(p1 + p2 + p3)2−2c(p1 + p2 + p3)

p1 p2 p3

c1

c2 c3

p4, p5

p6

c1

c2p1

p2, p3

Fig. 4. In the second split,p1 is kept by itself andp2, p3 are grouped
together.

c1

c2 c3

p5

p6

c1

c2p1

p2

p3

p4

c1

c2

Fig. 5. After two more splits, the final coding tree is constructed. The
associated code is{σ1σ1, σ1σ2σ1, σ1σ2σ2, σ2σ1, σ2σ2, σ3}

IV. T HE ALGORITHM

All of the provably efficient heuristics for the problem, e.g.,
[3], [4], [19]–[21], use the same basic approach, which itself
is a generalization of Shannon’s original binary splittingalgo-
rithm [28]. The idea is to createt bins, where binm has weight
2−ccm (so the sum of all bin weights is1). The algorithms
then try to partition the probabilities into the bins; binm will
contain a set of contiguous probabilitiesplm , plm+1, . . . , prm

whose sum will have total weight ”close” to2−ccm . The
algorithms fix the first letter of all the codewords associated
with thepk in bin m to beσm. After fixing the first letter, the
algorithms then recurse, normalizingplm , plm+1, . . . , prm

to
sum to1, taking them as input and starting anew. The various
algorithms differ in how they group the probabilities and how
they recurse. See Fig. 3, 4 and 5 for an illustration of this
generic procedure.

Here we use a generalization of the version introduced in
[4]. The algorithm first preprocesses the input and calculates
all Pk = p1 +p2 + . . .+pk (P0 = 0) andsk = p1 +p2 + . . .+

5

CODE(l, r, U);
{Constructs codewordsUl, Ul+1, . . . , Ur for pl, pl+1, . . . , pr.
U is previously constructed common prefix ofUl, Ul+1, . . . , Ur.}

If l = r
then codewordUl is set to beU.

else {Distribute pis into initial binsI∗

m}
L = Pl−1; R = Pr; w = R − L

∀m, let Lm = L + w
∑

m−1

i=1
2−cci andRm = Lm + w2−ccm .

setI∗

m = {k | Lm ≤ sk < Rm} }

{Shift the bins to become finalIm. Afterwards,
all bins > M are empty, all bins≤ M non-empty
and ∀m ≤ M , Im = {lm, . . . rm}}

{shift left so there are no empty “middle” bins.}
M = 0; k = l;
while k ≤ r do

M = M + 1;

lM = k; rM = max
(

{k}
⋃

{i > k | i ∈ I∗

M}
)

;

k = rM + 1;

{If all pi’s are in first bin, (right) shiftpr to 2nd bin }
if r1 = r then

M = 2;
r1 = r − 1; l2 = r2 = r;

for m = 1 to M do
CODE(lm, rm, Uσm);

Fig. 6. Our algorithm. Note that the first step of creating theI∗m was written
to simplify the development of the analysis. In practice, it isnot needed since
I∗m is only used to findmax{i > k | i ∈ I∗m} and this value can be
calculated using binary search at the time it is required.

pk−1+ pk

2 . Note that if we lay out thepi along the unit interval
in order, thensk can be seen as themidpoint of interval pi.
The algorithm then partitions the probabilities into ranges, and
for each range it constructs left and right boundariesLm, Rm.
pk will be assigned to binm if, as an interval,pk “falls” into
the “range”[Lm, Rm).

If the intervalpk completely falls into the range, i.e.,Lm ≤
Pk−1 < Pk < Rm thenpk should definitely be in binm. But
what if pk spans two (or more) ranges, e.g.,Lm ≤ Pk−1 <
Rm < Pk? To which bin shouldpk be assigned? The choice
made by [4] is thatpk is assigned to binm if sk = p1 + p2 +
. . . + pk/2 falls into [Lm, Rm), i.e., the midpoint ofpk falls
into the range.

Our procedureCODE(l, r, U) will build a prefix-free code
for pl, . . . , pr in which every code word starts with prefixU .
To build the entire code we callCODE(1, n, λ), whereλ is
the empty string.

The procedure works as follows (Fig. 6 gives pseudocode
and Fig.7, 8 and 9 illustrate the concepts):

Assume that we currently have a prefix ofU assigned to
pl, . . . , pr. Let v be node in the tree associated withU. Let
w(v) =

∑r
k=l pk.

(i) If l = r then wordU is assigned topl. Correspondingly,
v is a leaf in the tree with weightw(v) = pl.

(ii) Otherwise letL = Pl−1 and R = Pr. Split R − L =

P1 P2 P3 P4 P5 P6

s1
s2 s3

s4 s5

s6

Rt = 1
L2 L3 L4 L6

0 = L1

. . .

. . .

L5

Fig. 7. The first step in our algorithm’s splitting procedure.n = 6. Li =
∑

i−1

m=1
2−ccm . Note that even though only the first 5Li are shown, there

might be an infinite number of them (ift = ∞). Note too that, for0 < i,
Li = Ri−1.

I∗
1 I∗

2

p1, p2

I∗
3

I∗
4 I∗

5 I∗
t

p3, p4

p5
p4, p5

I1 I2 I3 I4 I5 It

p1, p2

⇒

⇒

. . .

.
. . .

p3 p6
p6

Fig. 8. The splitting procedure performed on the above examplecreates the
bins I∗m on the left. The shifting procedure then creates theIm on the right.

Pi−1 Pi Pi+1 Pi+2

Lm
Lm+1

L1 = Pi−1 L2 = L1 + w2−cc1 L3 = L2 + w2−cc2 L4 L5

. . .

. . .

Rt = Pi+2

= L1 + w

t∑

i=1

2
−cci

si
si+2

si
si+1

si+2

si+1

Fig. 9. An illustration of the recursive step of the algorithm. pi, pi+1, pi+2

have been grouped together. In the next splitting step, the interval operated
on has lengthw = pi + pi+1 + pi+2.

w(v) into t ranges4 as follows.∀1 ≤ m ≤ t,

Lm = L + (R − L)

m−1
∑

i=1

2−cci ,

Rm = L + (R − L)
m
∑

i=1

2−cci .

Insert pk, l ≤ k ≤ r in bin m if sk ∈ [Lm, Rm). Bin m
will thus contain thepk in I∗m(v) = {k | Lm ≤ sk < Rm}.

We now shift the itemspk leftward in the bins as follows.
Walk through the bins from left to right. If the current bin
already contains somepk, continue to the next bin. If the
current bin is empty, take the firstpk that appears in a bin
to the right of the current one, shiftpk into the current bin
and walk to the next bin. Stop when allpk have been seen.
Let Im(v) denote the items in the bins after this shifting.

We note that it is not necessary to actually construct the
I∗m(v) first. We only did so because viewing the construction
as a two-stage procedure of first finding thew∗(v) and then the
w(v) will be useful in our later analysis. Our main reason for
introducing the left-shift is that, after it is completed, there
will be someM(v) such that all binsm ≤ M(v) will be
nonempty and all binsm > M(v) empty.

4In the description,t is permitted to be finite or infinite.

6

This observation permits constructing theIm(v) from
scratch by walking from left to right, using a binary search
each time, to find the rightmost item that should be in the
current bin. This will takeO(M(v) log(l − r)) time in total.

We then check if all of the items are inI1(v). If they are,
we takepr and move it intoI2(v) (and setM(v) = 2). We
call this aright-shift. Note that left-shifts and right-shifts can
not both occur while processing the same node.

Finally, after creating the all of theIm(v) we let lm =
min{k ∈ Im(v)} and rm = max{k ∈ Im(v)} and recurse,
for eachm < M(v) building CODE(lm, rm, Uσm)

It is clear that the algorithm builds some prefix code with
associated treeT . As defined, letNT be the set of internal
nodes ofT. Since every internal node ofT has at least two
children,

∑

v∈NT
M(v) ≤ 2n − 1.

The algorithm usesO(1) time at each of itsn leaves and
O(M(v) log n) time at nodev. Its total running time is thus
bounded by

n +
∑

v∈NT

log nM(v) = O(n log n)

with no dependence upont.
For comparison, we point out the algorithm in [4] also starts

by first finding theI∗m(v). Since it assumedt < ∞, its shifting
stage was much simpler, though. It just shiftedpl into the
first bin and pr into the tth bin (if they were not already
there). This can, using an amortization technique from [21],
be implemented inΘ(tn) time. Note the explicit dependence
upon t, which is not permissible in thet = ∞ case.

We will now see that our modified shifting procedure not
only permits a finite algorithm for infinite encoding alphabets,
but also often provides a provably better approximation for
finite encoding alphabets.

V. A NALYSIS

In the analysis we definew∗
m(v) =

∑

k∈I∗
m(v) pk, wm(v) =

∑

k∈Im(v) pk. Note that

w(v) =
t
∑

m=1

w∗
m(v) =

t
∑

m=1

wm(v) =
r
∑

k=l

pk.

Also, unlesst < ∞ is specifically noted,t is permitted to be
infinite.

Our starting point is three Lemmas from [4]. The first was
proven by recursion on the nodes of a tree and the second
followed from the definition of the splitting procedure. The
third was stated as a series of observations that could be
derived from the second via some straightforward algebraic
manipulations. Since our shifting procedure forces us to use a
slightly different notation than [4], we restate the lemmasusing
our notation. Also, since [4] implicitly assumes thatt < ∞,
we follow every lemma with a small note explaining why the
proof does/doesn’t extend to the caset = ∞ and other issues
that might affect our analysis.

Lemma 1: [4] Let T be a code tree andNT be the set of
all internal nodes ofT . Let w(v) andwm(v) be the associated
weights at the nodes and children of the nodes.

1) The costC
(

T
)

of the code treeT is

C
(

T
)

=
∑

v∈N
T

t
∑

m=1

cm · wm(v)

2) The entropyH(p1, p2, . . . , pn) is

H(p1, p2, . . . , pn) =
∑

v∈N
T

w(v)·H
(

w1(v)

w(v)
,
w2(v)

w(v)
, . . .

)

Note: As proven in [4], this lemma is valid for any code tree that
contains a finite number of edges. The proof never uses the finiteness
of t. Also, [4] states the lemma particularly for what we callw∗(v)

and w∗

m(v). The proof, though,only uses the fact that these values
are defined by the distribution of weights on a code tree and never
uses any facts abouthow the code tree was created. We therefore
state the lemma in its full generality usingw(v) and wm(v).

This lemma is valid forany code tree. In particular, we can
apply it to express the normalized redundancy of theT built
by our algorithm as

NR(T)=c · C(T) − H(p1, p2, . . . , pn)

=
∑

v∈NT

w(v)

[

t
∑

m=1

wm(v)

w(v)

(

log 2ccm + log
wm(v)

w(v)

)

]

.

Set

E(v,m) =
wm(v)

w(v)

(

log 2ccm + log
wm(v)

w(v)

)

.

Note that NR(T) =
∑

v∈NT
w(v)

(

∑t
m=1 E(v,m)

)

. For
convenience we will also define

E∗(v,m)=
w∗

m(v)

w(v)

(

log 2ccm + log
w∗

m(v)

w(v)

)

,

NR∗(T)=
∑

v∈NT

w(v)

(

t
∑

m=1

E∗(v,m)

)

The analysis proceeds by bounding the values ofNR∗(T) and
NR(T) − NR∗(T).

Lemma 2: [4]
(note: In this Lemma, thepi can be arbitrarily ordered.)
Consider any callCODE(l, r, U) with l < r. Let node v
correspond to the wordU . Let setsI∗1 , I∗2 , . . . be defined as in
procedure CODE.

a) If I∗m = ∅, thenw∗
m(v) = 0.

b) If I∗m = {e}. thenw∗
m(v) = pe.

c) If |I∗m| ≥ 2. Let e = min I∗m andf = max I∗m.

i) If 2 ≤ m < t, then w∗
m(v)

w(v) ≤ 2−ccm +
pe+pf

2w(v) ≤ 2 · 2−ccm

ii) If m = 1, then w∗
m(v)

w(v) ≤ 2−cc1 +
pf

2w(v) ≤
2 · 2−cc1 .

iii) If m = t (note that this case requirest < ∞)
then

w∗
t (v)

w(v) ≤ 2−cct + pe

2w(v) ≤ 2 · 2−cct

Note: the proof of this lemma is local. It assumes that the call
CODE(l, r, U) is given and only concerns itself with partitioning
the pi associated withU . It never uses any information abouthow

7

the call was arrived at, i.e., the rest of the tree. Thus, the fact that we
perform an extra shifting procedure before making the call does not
change the analysis. Also, the proofs of cases (a), (b) and (c -(i),(ii))
never use the finiteness oft.

Lemma 3: [4]
(note: In this Lemma, thepi can be arbitrarily ordered.)
In case (c) of Lemma 2,E∗(v,m) ≤ pe+pf

w(v) .

Furthermore, ifm = 1 thenE∗(v,m) ≤ pf

w(v) ,
while if m = t < ∞, thenE∗(v,m) ≤ pe

w(v) .
Note: This lemma follows from the previous ones by some straight-

forward algebraic manipulations that never use the fact thatt < ∞.

As mentioned, since we are only interested in general and
not alphabetic coding, we may take thepi in any arbitrary
order we like. In particular, Lemma 3 implies

Corollary 4: If the pi are sorted in nonincreasing order then
in case (c) of Lemma 2,

if m = 1, thenE∗(v,m) ≤ pf

w(v) ,

while if m > 1, thenE∗(v,m) ≤ 2pe

w(v) .
We can now prove the technical lemma which is the basis of

most of our results. This lemma explicitly uses the facts that
the pi are nonincreasing and that theci are nondecreasing to
bound the error that can result from the left and right shifts
performed by the algorithm of Fig.6.

Lemma 5:

NR − NR∗ ≤ c(c2 − c1)
∑

i∈A

pi

where

A = {i | i is right shifted by the algorithm at some step}.

Note: p1 can never be right shifted, so
∑

i∈A
pi ≤ 1 − p1.

Proof: Define

X(v) =

t
∑

m=1

w(v)E(v,m) and X∗(v) =

t
∑

m=1

w(v)E∗(v,m)

Note thatNR =
∑

v∈NT
X(v) and NR∗ =

∑

v∈NT
X∗(v)

For eachv we will compareX∗(v) and X(v). If no shifts
were performed while processingv, thenX∗(v) = X(v) and
there is nothing to do. We now examine the two mutually
exclusive cases of performing left shifts or performing a right
shift.

Left shifts:
Every step in our left-shifting procedure involves taking a
probability out of some binm and and moving it into some
currently empty binr < m. Let w′

m(v) be the weight in bin
m before that shift andp be the probability of the item being
shifted5. Note that the original weight of binr wasw′

r(v) = 0
while after the shift, binr will have weightp and binm weight
w′

m(v) − p. We use the trivial fact

∀p, q > 0, p log p + q log q ≤ (p + q) log(p + q) (5)

5To be clear; since we’re examining intermediate stages of the shifting
procedure, it’s possible thatw′(v) (w′

m(v)) is not equal to eitherw∗(v) or
w(v) (w∗

m(v) or wm(v)).

Settingq = w′
m(v) − p in (5) implies

p log
p

w(v)
+(w′

m(v)−p) log
(w′

m(v) − p)

w(v)
≤ w′

m(v) log
w′

m(v)

w(v)
.

Furthermore, the fact that theci are nondecreasing implies

p log 2ccr + (w′
m(v) − p) log 2ccm ≤ w′

m(v) log 2ccm (6)

Combining the two last equations gives that

p

(

log 2ccr + log
p

w(v)

)

+(w′
m(v) − p)

(

log 2ccm + log
w′

m(v) − p

w(v)

)

≤ w′
m(v)

(

log 2ccm + log
w′

m(v)

w(v)

)

Since moving fromX∗(v) to X(v) involves only operations
in which probabilities are shifted to the left into an empty
bucket, the analysis above implies thatX(v) ≤ X∗(v).

Note: The calculations above show that “left-shifting” does not
increase the code cost. They also imply that it might not improve
it, either. So, why include it? The reason for left-shifting wasnot to
reduce the code cost. It was, as described at the end of Section IV, to
remove any dependence ont from the running time of the algorithm.

Right shifts:
Consider nodev. Suppose that all of the probabilities inv
fall into I∗1 with I∗1 = {pe, . . . , pf} and e 6= f. Since pf

starts in bin 1,pe must be totally contained in bin 1, sope ≤
2−cc1w(v). The algorithm shiftspf to the right givingI1 =
I1−{pf} andI2 = {pf}. Thepi are nonincreasing sopf ≤ pe.

E(v, 2) =
pf

w(v)

(

log 2cc2 + log
pf

w(v)

)

≤ pf

w(v)
(cc2 − cc1).

Also E(v, 1) ≤ E∗(v, 1). Thus

w(v)

t
∑

m=1

E(v,m)=w(v)E(v, 1) + w(v)E(v, 2)

≤w(v)E∗(v, 1) + pf (cc2 − cc1)

Once apf is right-shifted it immediately becomes a leaf
and can never be right-shifted again.

Combining the analyses of left shifts and right shifts gives

NR=
∑

v∈NT

X(v) ≤
∑

v∈NT

X∗(v) + c(c2 − c1)
∑

i∈A

pi

=NR∗ + c(c2 − c1)
∑

i∈A

pi.

Lemma 6:

NR∗ ≤ 2(1 − p1) +
∑

v∈NT

∑

1≤m≤t

|I∗m(v)|=1

w(v)E∗(v,m).

Proof: We evaluateNR∗ by partitioning it into

NR∗=
∑

v∈NT

∑

1≤m≤t

|I∗m(v)|≥2

w(v)E∗(v,m)

+
∑

v∈NT

∑

1≤m≤t

|I∗m(v)|=1

w(v)E∗(v,m). (7)

8

We use a generalization of an amortization argument devel-
oped in [4] to bound the first summand. From Corollary 4 we
know that if |I∗m(v)| ≥ 2 with e = min I∗m andf = max I∗m
then w(v)E∗(v,m) is at most (a)pf or (b) 2pe, depending
upon whether (a)m = 1, or (b) m > 1.

Suppose that somepi appears as2pi in such a bound
becausei = min I∗m(v), i.e., case (b). Then, in all later
recursive steps of the algorithmi will always be the leftmost
item in bin 1 and will therefore not be used in any later case
(a) or (b) bound.

Now suppose that somepi appears in such a bound because
i = max I∗m(v), i.e., case (a). Then in all later recursive steps
of the algorithm,i will always be the rightmost item in the
rightmost non-empty bin. The only possibility for it to be used
in a later bound is if becomes the rightmost item in bin 1, i.e.,
all of the probabilities are inI∗1 (v). In this case,pi is used
for a second case (a) bound. Note that if this happens, then
pi is immediately right shifted, becomes a leaf in bin 2, and
is never used in any later recursion.

Any given probabilitypi can therefore be used either once
as a case (b) bound and contribute2pi or twice as a case (b)
bound and again contribute2 · pi. Furthermore,p1 can never
appear in a case (a) or (b) bound because, until it becomes a
leaf, it can only be the leftmost item in bin 1. Thus

∑

v∈NT

∑

1≤m≤t

|I∗m(v)|≥2

w(v)E∗(v,m) ≤ 2(1 − p1). (8)

Note: In Mehlhorn’s original proof [4] the value corresponding
to the RHS of (8) was(1 − p1 − pn). This is because the shifting
step of Mehlhorn’s algorithm guaranteed that|I∗

t (v)| 6= 0 and thus
there was a symmetry between the analysis of leftmost and rightmost.
In our situation t might be infinity so we can not assume that the
rightmost non-empty bin ist and we get2(1 − p1) instead.

Combining this Lemma with Lemma 5 gives
Corollary 7:

NR ≤ 2(1−p1)+c(c2−c1)
∑

i∈A

pi+
∑

v∈NT

∑

1≤m≤t

|I∗m(v)|=1

w(v)E∗(v,m).

We will now see different bounds on the last summand in
the above expression. Section VI compares the results we get
to previous ones for different classes ofC. Before proceeding,
we note that anypi can only appear asI∗m(v) = {pi} for at
most one(m, v) pair. Furthermore, ifpi does appear in such
a way, then it can not have been made a leaf by a previous
right shift and thuspi 6∈ A.

We start by noting that, whent ≤ ∞ our bound is never
worse than1 plus the old bound of(1− p1 − pn) + cct stated
in (3).

Theorem 1:If t < ∞ then

NR ≤ 2(1 − p1) + cct

Proof: If I∗m(v) = {pi} thenw(v)E∗(v,m) ≤ piccm so
∑

v∈NT

∑

1≤m≤t

|I∗m(v)|=1

w(v)E∗(v,m)≤
∑

v∈NT

∑

1≤m≤t

|I∗m(v)|=1

piccm

≤cct

∑

i6∈A

pi.

The theorem then follows from Corollary 7.

For a tighter analysis we will need a better bound.
Lemma 8: (a) Let v ∈ NT . Supposei is such thati ∈

I∗m(v). Then

pi

w(v)
≤ 2 ·

t
∑

j=m

1

2c·cj

(b) Further suppose there is somem′ > m such thatI∗m′ 6= ∅.
Then

pi

w(v)
≤ 2 ·

m′
∑

j=m

1

2c·cj
≤ 4 ·

m′−1
∑

j=m

1

2c·cj

Proof: Consider the callCODE(l, r, U) at nodev. The
fact thati ∈ I∗m(v) implies L +

∑m−1
j=1 2−ccj = Lm ≤ si. To

prove (a) just note that

si +
pi

2
= Pi ≤ Pr = R = L + w(v)

t
∑

i=1

2−cci .

So pi

2 ≤ w(v)
∑t

j=m
1

2c·cj .
To prove part (b) leti′ ∈ I∗m′ . Then

si +
pi

2
= Pi ≤ si′ < L + w(v)

m′
∑

j=1

2−ccj .

So pi

2 ≤ w(v)
∑m′

j=m
1

2c·cj . The final inequality follows from
the fact thatcm′−1 ≤ cm.

Definition 4: Set βm = 2ccm
∑t

i=m 2−cci and β =
sup{βm | 1 ≤ m ≤ t}.
Note: This definition is valid for botht < ∞ and t = ∞.

We can now prove our first improved bound:

Theorem 2:If β < ∞ then

NR ≤ 2(1 − p1) + max
(

c(c2 − c1), 1 + log β
)

Proof: Recall that

w(v)E∗(m, v) = w∗
m(v)

(

log 2ccm + log
w∗

m(v)

w(v)

)

.

In the special case that|I∗m(v)| = 1, i.e., I∗m(v) = {i} for
somei, Lemma 8(a) tells us that

w∗
m(v)

w(v)
=

pi

w(v)
≤ 2

t
∑

i=m

2−cci .

Using the above and Definition 4 we can bound the last
summands in Corollary 7 as

w(v)E∗(m, v)=w∗
m(v)

(

log 2ccm + log
w∗

m(v)

w(v)

)

≤w∗
m(v) log

(

2ccm2

t
∑

i=m

2−cci

)

≤w∗
m(v)(1 + log β)

9

If I∗m(v) = {i} theni was not a leaf in any previous step and
therefore could not have been right shifted, soi 6∈ A. Thus

∑

v∈NT

∑

1≤m≤t

|I∗m(v)|=1

w(v)E∗(v,m) ≤ (1 + log β)
∑

i6∈A

pi.

This immediately gives an improved bound for many finite
cases because, ift < ∞, then βm = 2ccm

∑t
i=m 2−cci ≤

t − m + 1 so β ≤ t. Thus
Theorem 3:If t is finite then

NR ≤ 2(1 − p1) + max
(

c(c2 − c1), 1 + log t
)

Definition 5: For all j ≥ 1, set

dj = |{i | j ≤ ci < j + 1}|.
This permits us to give another general bound that also

works for many infinite alphabets.
Lemma 9: If dj = O(1), thenNR = O(1). In particular,

if ∀j, dj ≤ K thenβ ≤ 2cK
1−2−c so, from Theorem 2,

NR ≤ 2(1−p1)+max

(

c(c2 − c1), 1 + c + log

(

K

1 − 2−c

))

.

Furthermore, if all of theci are integers, thenβ ≤ K
1−2−c and

NR ≤ 2(1 − p1) + max

(

c(c2 − c1), 1 + log

(

K

1 − 2−c

))

.

Proof: Sincec1 = 1 we must have2−c < 1. Thus, for
all m ≥ 1, if ℓ ≤ cm < ℓ + 1 then

βm=2ccm

t
∑

i=m

2−ccm

≤2c(ℓ+1)
∞
∑

j=ℓ

dj2
−cj

≤2cK2cℓ
∞
∑

j=ℓ

2−cj =
2cK

1 − 2−c

which is independent ofm and ℓ. The analysis when theci

are all integers is similar.
For general infinite alphabets we are not able to derive a

constant redundancy bound but we can prove
Theorem 4:If C is infinite and

∑∞
m=1 cm2−ccm < ∞, then,

for every ǫ > 0

R ≤ ǫ
1

c
H(p1, . . . , pn) + f(C, ǫ) (9)

wheref(C, ǫ) is some constant based only onC and ǫ. Note
that this is equivalent to stating that

C(T) ≤ (1 + ǫ)OPT + f(C, ǫ)

Proof: We must bound the
∑

v∈NT

∑

1≤m≤t

|I∗m(v)|=1

w(v)E∗(v,m)

term from the right hand side of Corollary 7. Recall that
|I∗m(v)| = 1 means that∃i such thatI∗m(v) = {i}, i.e.,
w∗

m(v) = pi and thusw(v)E∗(v,m) ≤ piccm.

For everyǫ > 0 we associate a valueNǫ (to be determined
later) and setmǫ = max{m | cm ≤ Nǫ}. Since no probability
appears more than once in the sum we can write

∑

v∈NT

∑

1≤m≤mǫ
|I∗m(v)|=1

w(v)E∗(v,m) ≤ cNǫ.

To analyze the remaining cases, fixv. Consider the set of
indices

Mv = {m | (m > mǫ) and |I∗m(v) = 1|}.
Sort these indices in increasing order so thatMv =
{m1,m2, . . . ,mr} for somer with m1 < m2 < · · · < mr.
Let ij be such thatI∗mj

(v) = {pij
}. Thus

∑

mǫ<m

|I∗m(v)|=1

w(v)E∗(v,m) =

r
∑

j=1

w(v)E∗(v,mj) ≤
r
∑

j=1

pij
ccmj

Lemma 8 and the fact that thecm are non-decreasing then
gives

r
∑

j=1

pij
ccmj

≤cw(v)





r−1
∑

j=1

cmj



4

mj+1−1
∑

m=mj

2−ccm



+ 2cmr

∞
∑

m=mr

2−ccm





≤4cw(v)
∞
∑

m=m1

cm2−ccm ≤ 4cw(v)
∞
∑

m≥mǫ

cm2−ccm .

We are given that
∑∞

m=1 cm2−ccm converges. Thusg(mǫ) ↓ 0
asmǫ → ∞ whereg(x) =

∑∞
m≥x cm2−ccm .

Note that asNǫ increases,mǫ increases. Givenǫ, we now
chooseNǫ to be the smallest value such thatg(mǫ) ≤ ǫ

8 . Note
that Nǫ is independent ofv.

Combine the above bounds:
∑

v∈NT

∑

1≤m≤t

|I∗m(v)|=1

w(v)E∗(v,m)=
∑

v∈NT

∑

1≤m≤mǫ
|I∗m(v)|=1

w(v)E∗(v,m)

+
∑

v∈NT

∑

mǫ<m

|I∗m(v)|=1

w(v)E∗(v,m)

≤cNǫ +
∑

v∈NT

ǫ

2
cw(v)

Recall from Lemma 1 and the fact that∀m, cm ≥ 1,

C(T)=
∑

v∈NT

t
∑

m=1

cm · wm(v)

≥
∑

v∈NT

t
∑

m=1

wm(v) =
∑

v∈NT

w(v).

Thus, we have just seen that
∑

v∈NT

∑

1≤m≤t

|I∗m(v)|=1

w(v)E∗(v,m) ≤ cNǫ +
ǫ

2
cC(T).

Plugging back into Corollary 7 gives

cC(T)−H(p1, . . . , pn) ≤ 2(1−p1)+c(c2−c1)+cNǫ+
ǫ

2
cC(T)

10

which can be rewritten as

C(T)− 1

1 − ǫ
2

1

c
H(p1, . . . , pn)

≤ 1

1 − ǫ
2

1

c
(2(1 − p1) + c(c2 − c1) + cNǫ)

We may assume thatǫ ≤ 1/2, so 1 + ǫ ≥ 1
1− ǫ

2
. Thus

C(T) − (1 + ǫ)
1

c
H(p1, . . . , pn) ≤ f(C, ǫ)

where
f(C, ǫ) =

4

3
(
2

c
+ (c2 − c1) + Nǫ). (10)

This can then be rewritten as

R = C(T) − 1

c
H(p1, . . . , pn)≤ǫ

1

c
H(p1, . . . , pn) + f(C, ǫ)

≤ǫOPT + f(C, ǫ)

proving the Theorem.

VI. EXAMPLES

We now examine some of the bounds derived in the last
section and show how they compare to the old bound of(1−
p1 − pn) + cct stated in (3). In particular, we show that for
large families of costs the old bounds go to infinity while the
new ones give uniformly constant bounds.

Case 1:Cα = (c1, c2, . . . , ct−1, α) with α ↑ ∞.
We assumet ≥ 3 and all of theci, i < t, are fixed. Let
c(α) be the root of the corresponding characteristic equation
1 = 2−cα +

∑t−1
i=1 c−cci . Note thatc(α) ↓ c̄ where c̄ is the

root of 1 =
∑t−1

i=1 c−cci . Let (NRα) Rα be the (normalized)
redundancy corresponding toCα.

For any fixedα, the old bound (3) would give

NRα ≤ (1 − p1 − pn) + c(α)α, Rα ≤ (1 − p1 − pn)

c(α)
+ α,

the right hand sides of both of which tend to∞ asα increases.
Compare this to Theorem 3 which gives a uniform bound of

NRα≤2(1 − p1) + max
(

c(α)(c2 − c1), 1 + log t
)

≤2(1 − p1) + max
(

c(ct−1)(c2 − c1), 1 + log t
)

and

Rα ≤ NRα

c(α)
≤ 2(1 − p1) + max

(

c(ct−1)(c2 − c1), 1 + log t
)

c̄
.

For concreteness, we examine a special case of the above.
Example 1:Let t = 3 with c1 = c2 = 1 and c3 = α ≥ 1.

The old bounds (3) gives an asymptotically infinite error as
α → ∞. The bound from Theorem 3 is

NRα ≤ 2(1−p1)+max
(

c(α)(c2− c1), 1+log t
)

≤ 3+log 3

independent ofα. Sincec(α) ≥ c̄ = 1 we also get

Rα =
NRα

c(α)
≤ 3 + log 3.

Case 2:A sequence of finite alphabets approaching an infinite
one.

Let C be an infinite sequence of letter costs such that there
exists aK > 0 satisfying for all j, dj = |{i | j ≤ ci <
j}| ≤ K. Let c be the root of the characteristic equation
1 =

∑∞
i=1 2−cci . Let Σ(t) = {σ1, . . . , σt} and its associated

letter costs beC(t) = {c1, . . . , ct}. Let c(t) be the root of
the corresponding characteristic equation1 =

∑t
i=1 2−cci and

(NRt) Rt be the associated (normalized) redundancy. Note
that c(t) ↑ c as t increases.

For any fixedt, the old bound (3) would beNRt ≤ (1 −
p1 − pn) + c(t)ct which goes to∞ as t increases. Lemma 9
tells us that

β(t) = max
1≤m≤t

2c(t)cm

t
∑

i=1

2c(t)ci ≤ 2cK

1 − 2−c(t)
≤ 2cK

1 − 2−c(2)
.

so, from Theorem 2 and the fact that∀t, c(2) ≤ c(t) < c, we
get

NRt ≤ 2(1−p1)+max

(

c(c2 − c1), 1 + c + log
K

1 − 2−c(2)

)

.

Note that if all of thecm are integers, then the additive factor
c will vanish.

Example 2:Let C = (1, 2, 3, . . .). i.e., cm = m. The old
bounds (3) gives an asymptotically infinite error asα → ∞.

For this casec = 1 and K = 1. c(2) is the root of the
characteristic equation1 = 2−2+2−2c. Solving gives2−c(2)

=√
5−1
2 andc(2) = 1− log(

√
5− 1) ≈ 0.694 Plugging into

our equations gives

NRt≤2(1 − p1) + max

(

c(c2 − c1), 1 + log

(

K

1 − 2−c(2)

))

=2(1 − p1) + 1 + log

(

2

3 −
√

5

)

≤ 4.388

and
Rt =

NRt

c(t)
≤ NRt

c(2)
≤ 6.232.

Case 3:An infinite case whendj = O(1).
In this case just apply Lemma 9 directly.

Example 3:Let C containd copies each ofi = 1, 2, 3, . . .,
i.e., cm = 1 + ⌊m−1

d ⌋. Note thatK = d. If d = 1, i.e.,
cm = m, thenc = K = 1 and

R = NR ≤ 2(1 − p1) + 2.

If d > 1 then A(x) =
∑∞

m=1 cmzm = dz
1−z . The solutionα

to A(α) = 1 is α = 1
d+1 , so c = − log α = log(d + 1). The

lemma gives

NR ≤ 2(1 − p1) +

(

1 + log

(

K

1 − 2−c

))

≤ 3 + log(d + 1)

R ≤ 1 +
3

log(d + 1)
.

Case 4:dj are integral and satisfy a linear recurrence relation.
In this case the generating functionA(z) =

∑∞
j=1 djz

j =
∑∞

m=1 zcm can be written asA(z) = P (z)
Q(z) whereP (z) and

Q(z) are relatively prime polynomials. Letγ be a smallest
modulus root ofQ(z). If γ is the unique root of that modulus
(which happens in most interesting cases) then it is known that

11

dj = Θ(jd−1γ−j) (which will also imply thatγ is positive
real) whered is the multiplicity of the root. There must
then exist someα < γ such thatA(α) = 1. By definition
c = − log α. Furthermore, sinceα < γ we must have that
∑∞

j=1 djjα
j =

∑∞
m=1 cmαcm also converges, so Theorem 4

applies.
Note that

h(x) =

∞
∑

j=x

djjα
j=O





∞
∑

j=x

jd−1j

(

α

γ

)j




=O

(

xd

(

α

γ

)x)

,

implying

h−1(ǫ) = logγ/α 1/ǫ + O(log log 1/ǫ)

where we define

h−1(ǫ) = max{x | h(x) ≤ ǫ, h(x − 1) > ǫ}.
Working through the proof of Theorem 4 we find that when
the cm are all integral,

∀m′, g(m′) =
∑

m≥m′

cm2−ccm=
∑

m≥m′

cmαcm

≤
∑

j≥cm′

jdjαj = h(cm′).

Recall thatmǫ = max{m | cm ≤ Nǫ}. Theng(mǫ) ≤ h(Nǫ).
Sinceg(mǫ) ≤ ǫ/8,

Nǫ ≤ h−1(ǫ/8) = logγ/α 1/ǫ + O(log log 1/ǫ)

and thus our algorithm creates a codeT satisfying

C(T)−OPT ≤ ǫOPT + logγ/α 1/ǫ + O(log log 1/ǫ). (11)

Example 4:Consider the case wheredj = Fj , the jth

Fibonacci number,F1 = 1, F2 = 1, F3 = 2,.... It’s well known
that A(z) =

∑∞
j=1 djz

j = x
1−x−x2 and Fj = φn−(1−φ)n

√
5

whereφ = 1+
√

5
2 . Thusdj = γ−j

√
5

+ en whereγ = φ−1 and

|en| < 1. Solving A(α) = 1 gives α =
√

2 − 1 ≈ .4142 . . .
(and c = − log α = 1.2715 . . .). (11) gives a bound on the
cost of the redundancy of our code withγα = 2

(1+
√

5)(
√

2−1)
≈

1.492
Example 5:As discussed in Section II, Example 3dj =

Fj arises when modelingΣ = {1, 2, 3} with associatedC =
(1, 1, 2); the problem there was to find minimal cost prefix-free
codes in which all words end with a1.

That problem was actually an illustration of the general
Section II, Example 3 situation in whichfinite alphabet
Σ = {σ1, . . . , σt}, associated cost vectorC = (c1, . . . , ct),
Σ′ ⊂ Σ andL = Σ∗Σ′ are given. We are then asked to find a
minimum cost prefix free code inL. It was shown there that
this can be modeled as an infinite alphabet problem in which
the dj satisfy a linear recurrence relation. Thus, all of these
problems fit into the Case 4 framework.

Case 5:An example for which there is no known bound.
An interesting open question is how to bound the redundancy
for the case of balanced words described in Section II,

Example 4. Recall that this haddj integral with dj = 0 for
j = 0 and oddj and for evenj > 0, dj = 2Cj/2−1 where

Ci = 1
i+1

(

2i
i

)

is theith Catalan number. It’s well known that
∑∞

j=0 Cjx
j = 1

2x (1 −
√

1 − 4x) so

A(x) =

∞
∑

m=1

xcm =

∞
∑

j=1

djx
j = 1 −

√

1 − 4x2.

Solving for A(α) = 1 givesα = 1
2 and c = − log α = 1. On

the other hand,
∞
∑

m=1

cmxcm =
∞
∑

j=1

jdjx
j=2

∞
∑

j=1

(

2(j − 1)

j − 1

)

(x2)j

=
x2

√
1 − 4x2

so this sumdoes notconverge whenx = 1/2. Thus, we can
not use Theorem 4 to bound the redundancy. Some observation
shows that thisC does not satisfy any of our other theorems
either. It remains an open question as to how to construct a
code with “small” redundancy for this problem, i.e., a code
with a constant additive approximation or something similar
to Theorem 4.

VII. C ONCLUSION AND OPEN QUESTIONS

We have just seenO(n log n) time algorithms for construct-
ing almost optimal prefix-free codes for source letters with
probabilitiesp1, . . . , pn when the costs of the letters of the
encoding alphabet are unequal valuesC = {c1, c2, . . .}. For
many finite encoding alphabets, our algorithms have provably
smaller redundancy (error) than previous algorithms givenin
[3], [4], [19], [21]. Our algorithms also are the first that give
provably bounded redundancy for some infinite alphabets.

There are still many open questions left. The first arises by
noting that, for the finite case, the previous algorithms were
implicitly constructingalphabetic codes.Our proof explicitly
uses the fact that we are only constructing general codes. It
would be interesting to examine whether it is possible to get
better bounds for alphabetic codes (or to show that this is not
possible).

Another open question concerns Theorem 4 in which we
showed that if

∑∞
m=1 cm2−ccm < ∞, then,

∀ǫ > 0, C(T) − OPT ≤ ǫOPT + f(C, ǫ).

Is it possible to improve this for some generalC to get a purely
additive error rather than a multiplicative one combined with
an additive one?

Finally, in Case 5 of the last section we gave a natural
example for which the rootc of

∑∞
i=1 2−ccm = 1 exists but

for which
∑∞

m=1 cm2−ccm = ∞ so that we can not apply
Theorem 4 and therefore have no error bound. It would be
interesting to devise an analysis that would work for such
cases as well.

REFERENCES

[1] D. A. Huffman, “A method for the construction of minimum redundancy
codes,” inProc. IRE 40, vol. 10, September 1952, pp. 1098–1101.

12

[2] I. Itai, “Optimal alphabetic trees,”SIAM J. Computing, vol. 5, pp. 9–18,
1976.

[3] R. M. Krause, “Channels which transmit letters of unequalduration,”
Inform. Contr., vol. 5, pp. 13–24, 1962.

[4] K. Mehlhorn, “An efficient algorithm for constructing nearly optimal
prefix codes,” IEEE Trans. Inform. Theory, vol. 26, pp. 513–517,
September 1980.

[5] N. M. Blachman, “Minimum cost coding of information,”IRE Transac-
tions on Information Theory, vol. PGIT-3, pp. 139–149, 1954.

[6] R. Marcus,Discrete Noiseless Coding. M.S. Thesis, MIT E.E. Dept,
1957.

[7] R. Karp, “Minimum-redundancy coding for the discrete noiseless chan-
nel,” IRE Transactions on Information Theory, vol. IT-7, pp. 27–39,
January 1961.

[8] L. E. Stanfel, “Tree structures for optimal searching,”Journal of the
Association for Computing Machinery, vol. 17, no. 3, pp. 508–517, July
1970.

[9] B. Varn, “Optimal variable length codes (arbitrary symbolcost and equal
code word probability),”Information Control, vol. 19, pp. 289–301,
1971.

[10] E. N. Gilbert, “How good is morse code,”Inform Control, vol. 14, pp.
585–565, 1969.

[11] ——, “Coding with digits of unequal costs,”IEEE Trans. Inform.
Theory, vol. 41, pp. 596–600, 1995.

[12] K. A. S. Immink, Codes for Mass Data Storage Systems. Shannon
Foundations Publishers, 1999.

[13] M. Golin and G. Rote, “A dynamic programming algorithm for con-
structing optimal prefix-free codes for unequal letter costs,” IEEE
Transactions on Information Theory, vol. 44, no. 5, pp. 1770–1781,
1998.

[14] D. E. Knuth, The Art of Computer Programming, Volume III: Sorting
and Searching. Addison-Wesley, 1973.

[15] K. Hinderer, “On dichotomous search with direction-dependent costs for
a uniformly hidden objec,”Optimization, vol. 21, no. 2, pp. 215–229,
1990.

[16] S. Kapoor and E. M. Reingold, “Optimum lopsided binary trees,”
Journal of the Association for Computing Machinery, vol. 36, no. 3,
pp. 573–590, July 1989.

[17] P. Bradford, M. Golin, L. L. Larmore, and W. Rytter, “Optimal prefix-
free codes for unequal letter costs and dynamic programming with the
monge property,”Journal of Algorithms, vol. 42, pp. 277–303, 2002.

[18] M. J. Golin, C. Kenyon, and N. E. Young, “Huffman coding with unequal
letter costs.” inProceedings of the 34th Annual ACM Symposium on
Theory of Computing (STOC’02), 2002, pp. 785–791.

[19] I. Csisz’ar, “Simple proofs of some theorems on noiseless channels,”
Inform. Contr., vol. 514, pp. 285–298, 1969.

[20] N. Cott, Characterization and Design of Optimal Prefix Codes. PhD
Thesis, Stanford University, Department of Computer Science, June
1977.

[21] D. Altenkamp and K. Melhorn, “Codes: Unequal probabilies, unequal
letter costs,” Journal of the Association for Computing Machinery,
vol. 27, no. 3, pp. 412–427, July 1980.

[22] J. Abrahams, “Code and parse trees for lossless source encoding,”
Communications in Information and Systems, vol. 1, no. 2, pp. 113–
146, April 2001.

[23] Y. N. Patt, “Variable length tree structures having minimum average
search time,”Commun. ACM, vol. 12, no. 2, pp. 72–76, 1969.

[24] T. Berger and R. W. Yeung, “Optimum ’1’ ended binary prefixcodes.”
IEEE Transactions on Information Theory, vol. 36, no. 6, pp. 1435–
1441, 1990.

[25] R. M. Capocelli, A. D. Santis, and G. Persiano, “Binary prefix codes
ending in a ”1”.” IEEE Transactions on Information Theory, vol. 40,
no. 4, pp. 1296–1302, 1994.

[26] J.-Y. Lin, Y. Liu, and K.-C. Yi, “Balance of 0, 1 bits for huffman and
reversible variable-length coding.”IEEE Transactions on Communica-
tions, vol. 52, no. 3, pp. 359–361, 2004.

[27] R. Sedgewick and P. Flajolet,An introduction to the analysis of algo-
rithms. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc., 1996.

[28] C. E. Shannon, “A mathematical theory of communication,”
The Bell System Technical Journal, vol. 27, pp. 379–423, 623–
656, July, October 1948. [Online]. Available: http://cm.bell-
labs.com/cm/ms/what/shannonday/shannon1948.pdf

Mordecai Golin received his B.Sc. in Mathematics and Computer Science
from the Hebrew University of Jerusalem in 1984, his M.A. in Computer
Science from Princeton University in 1987 and his Ph.D. in Computer Science
from Princeton University in 1990. He then served as a postdoc in Projet
Algo of the Institut National de Recherche en Informatique et en Automatique
(INRIA) in Rocquencourt, France through the end of 1992. In 1993 he joined
the Computer Science Department of the Hong Kong University ofScience
and Technology where he remains. His research interests include the design
and analysis of algorithms with special emphasis on mathematical methods,
computational geometry, combinatorics, coding theory and information theory.

Jian Li received his B.Sc. in Urban/Rural Planning and Management from
Sun Yat-sen University in 2004, Guangzhou, and his M.Sc. in Computer
Science from Fudan University, Shanghai, in 2007. He is a Ph.D. student in
Computer Science Department at University of Maryland, College Park. His
research interests include the design and analysis of algorithms with emphasis
on approximation and graph algorithms.

