
Paging Mobile Users Efficiently and Optimally
Amotz Bar-Noy

Computer & Information Science Department
Brooklyn College

Email:amotz@sci.brooklyn.cuny.edu

Yi Feng
Department of Computer Science

The Graduate Center, CUNY
Email: yfeng@gc.cuny.edu

Mordecai J. Golin
Department of Computer Science

Hong Kong U.S.T
Email: golin@cs.ust.hk

1 Abstract— A mobile user is roaming in a zone composed of
N cells in a cellular network system. When a call to the mobile
user arrives, the system pages the mobile user in these cells since
it never reports its location unless it leaves the zone. The N cells
are associated with a probability vector (p1, . . . , pN ) where pi is
the probability that the mobile user resides in the ith cell and
all the probabilities are independent. A delay constraint paging
strategy must find the mobile user within D (1 ≤ D ≤ N ) paging
rounds; in each round a subset of the N cells is paged. The
goal is to minimize the expected number of paged cells until the
mobile user is found. Solutions based on dynamic programming
that yield optimal strategies are known. The running time of the
known implementations is Θ(N2D). Our first contribution is to
improve the running time to Θ(ND) by proving that the dynamic
programming recursive formulation satisfies the Monge property,
permitting us to use various dynamic programming speedup
techniques. A Θ(N) heuristic solution is also known. Our second
contribution is a heuristic whose running time is Θ(N log D). Our
heuristic outperforms the known heuristic while running faster
for D << N . We compare the non-optimal heuristics with the
optimal solution demonstrating the tradeoff between optimality
and running time efficiency of various solutions.

I. INTRODUCTION

Cellular phone systems make it possible to talk with people
even if they are not residing in predetermined locations. These
systems require efficient methods to find specific mobile users.
In this paper, we design, analyze, and test searching strategies
that are based on some known statistics on the location of the
mobile users. We demonstrate a tradeoff between how fast a
mobile user is found (efficiency) and how much of the wireless
links the search strategy consumes (optimality).

Consider cellular systems with many cells and many mobile
users (mobiles) that are roaming among the cells. If a mobile
reports its new location whenever it crosses boundaries of
cells, then the cellular system would know its exact loca-
tion at any time and finding (paging) a mobile becomes a
trivial task. However, future cellular networks are expected
to have more cells (mini-cells or micro-cells) and mobiles
are expected to move very fast. As a result, a mobile might
cross boundaries of cells very frequently, making it infeasible
for the mobile to report its new location each time it enters
a new cell. This is mostly due to the scarcity of up-link
wireless communication and the short life of hand-held device
batteries. Indeed, many existing location management schemes
(reporting and paging strategies) allow mobiles to report less

1The work of the first and second author was supported by the NSF program
award CNS-0626606; the work of the third author was supported partially by
Hong Kong RGC CERG grant HKUST6312/04E.

often. A common location management framework partitions
the cells into location areas (zones) each composed of many
cells where a mobile reports its new location only when
it crosses boundaries between zones (e.g., [10], [20], [21]).
When a call to a mobile arrives, the system may need to locate
the cell where the mobile currently resides by paging some
or all the cells in a particular zone. Although the choice of
a location management scheme to minimize the overall use
of wireless bandwidth depends on many parameters, such a
paging step is common to most of the schemes.

Suppose that the mobile user is roaming in a zone composed
of the N cells C1, . . . , CN , and that it is possible to page any
subset of these N cells in a unit of time (paging round) and
find out if the mobile is located in one of the cells paged.
The trivial solution would page all the N cells in the first and
only round (a blanket search); this clearly uses the highest
possible amount of wireless bandwidth while requiring the
lowest possible time. The other extreme is to page the cells
sequentially in N rounds terminating once the user is found
(a sequential search). Without any a-priory knowledge on the
whereabouts of the mobile this strategy would page (N +1)/2
cells on average if the cells are paged in a random order.

In many cases, some a-priori knowledge about the where-
abouts of the user is known. This knowledge can be modeled
with N probability values, one value associated with each of
the N cells: with probability pi the mobile resides in cell
Ci and all the probabilities are independent. This a-priory
knowledge could either be supplied by the mobile user itself,
be extracted from history logs maintained by the system, or
be based on recent reports and calls involving this mobile
user. It is not hard to see that the best sequential search (N
rounds) would page the cells in a non-increasing order of their
associated probabilities and that the expected number of paged
cells is

∑N
i=1 ipi.

The goal is to minimize both the number of paging rounds
and the expected number of cells paged until the mobile
is found. These are the two main criteria in evaluating the
efficiency of a specific paging strategy. The first corresponds
to the delay incurred until the mobile is found and the second
corresponds to the amount of wireless bandwidth used. The
first criterion is important to the mobile users and the second
criterion is crucial to the system.

The papers [9], [13], [16], [11] describe how to trade band-
width for time. They show how to find a paging strategy that
uses at most D rounds (1 ≤ D ≤ N ) and that minimizes the



expected number of cells paged until the mobile is located. The
running time of their algorithms that are based on a dynamic
programming formulation is Θ(N2D). Since the probability
vector may change frequently, more efficient solutions are
desired. This is the subject of this paper.

Given the parameters N and D, a paging strategy can
be viewed as a schedule that partitions the N cells into D
disjoint sets. For example, if there are N cells, N even, and
the probability of finding the mobile in a cell is 1/N , then
the best 2-round strategy is the one that pages half of the
cells in the first round and pages the other half in the second
round only if the mobile was not found among the cells that
were paged in the first round. The expected number of cells
paged by this strategy is (3/4)N . This is evidently a gain but
at the cost of sometimes conducting two paging rounds. To
demonstrate the tradeoff between the number of rounds and
the expected number of cells paged, consider the following
example. Suppose it is known that a mobile resides either in
cell A or in cell B with an equal probability of being in each.
There are two possible strategies. In the first strategy, both
cells are paged at the same time and, therefore, the mobile is
found after one round. However, two cells are always paged.
In the second strategy, first cell A is paged and then cell B
is paged only if the mobile was not found in cell A. Both the
expected number of rounds and the expected number of cells
paged in the second strategy is equal to 1.5.

1) Prior art and related work: Modeling uncertainty of
locations of mobiles as a probability distribution vector is stud-
ied in e.g. [15], which discusses a framework for measuring
uncertainty. The paper [12] provides a simple strategy for two
paging rounds. The papers [9], [13], [16], [11] describe the
optimal solution for any given N ≥ 1 cells and 1 ≤ D ≤ N
rounds. These papers show how to find a D-round paging
strategy that locates a mobile with minimum expected number
of cells paged using dynamic programming. The papers [16],
[11] also study how to minimize the expected number of
paged cells given the expected (as opposed to worst-case)
delay using relaxation to a continuous model ([16]) or with
a weakly polynomial dynamic programming solution [11].
The papers [18], [19] present sub-optimal solutions but are
computationally more efficient than the dynamic programming
algorithms. The effect of queuing on paging delay when
paging requests arrive to the system according to some random
process and each request is to page a single mobile user is
studied by [17], [9], [8]. The problem of paging more than
one mobile user for a conference call is studied in [5]. The
combined cost of reporting and paging is studied by many
papers. (See the survey [2] on location management for mobile
users.) The main issue in this line of research is to see how
mobiles can reduce the overall wireless cost by reporting their
new location according to some rules. Algorithms for efficient
maintenance, in the backbone network, of data structures for
locating mobiles have been studied in many papers, see e.g.
[14], [3].

2) Contributions: The running time of the known algo-
rithms that are based on the dynamic programming solution

is Θ(N2D) ([9], [13], [16], [11]). This complexity could be
too slow for dynamic systems in which the probability vector
changes frequently and for large systems where N is very
large. Our goal is therefore to design optimal strategies with
a faster running time and near optimal strategies with even
faster running time.
Our first contribution is to introduce two new algorithms for
designing optimal strategies; the running time of these two new
algorithms is Θ(ND), saving a factor of N over the Θ(N2D)
running time of the previously known optimal algorithms.
Our approach is to show that the dynamic programming
recursive formulation satisfies the Monge property [6] and the
SpeedUp property [7]. Each property enables us to apply a
dynamic programming speedup technique. We also describe
the original Θ(N2D) implementation and another simple
algorithm whose running time is Θ(N log ND). The four
optimal algorithms demonstrate a tradeoff between simplicity
and running time.

Our second contribution is the design of two near-optimal
heuristic solutions. The running time of the first is Θ(N log D)
and the running time of the second is Θ(ND). The first
heuristic is an efficient generalization of the simple solution for
the case D = 2 (the dynamic programming is another gener-
alization). This heuristic outperforms a known heuristic whose
running time is Θ(N) while running faster for D << N . The
second heuristic is not faster than one of our optimal solution;
nevertheless it is much simpler to describe and implement.
Moreover, this heuristic provides the optimal solution for all
the instances tested by our simulations. We conjecture that it
is actually an optimal solution.

We support our results with a comprehensive simulation
study. We implemented all the optimal and heuristic solutions
that are described in the paper. Our main objective was to
demonstrate the tradeoff between optimality and running time
efficiency. We tested the solutions on various distributions for
the probability vector: Zipf, Gaussian, Uniform, and Step.
For each of them, we run the algorithms on different values
for the two main parameters N and D and the parameters that
are related to the distribution. In general, the results coincide
with the worst-case running time analysis. Nevertheless, there
are some differences, mainly because the worst-case analysis
ignores constants and due to some required preprocessing.

3) Paper organization: Section II provides some prelim-
inaries. Section III describes the recursive formulation of
the optimal dynamic programming solution and presents and
analyzes the running time of four algorithms that are based on
the recursive formulation. Section IV describes and analyzes
the running time of several near-optimal heuristics. Section V
presents the simulation work that compares the running time
and performance of the various optimal and heuristic solutions
on a “real” machine. Section VI discusses a more general
scope and some open problems.

II. PRELIMINARIES

Assume that the system is looking for a mobile that is
roaming in a zone composed of the N cells C1, . . . , CN . For



1 ≤ i ≤ N , let pi be the probability that the mobile is in
cell Ci at the time of search where all the probabilities are
independent. It follows that

∑N
i=1 pi ≤ 1 and with probability

q = 1 − ∑N
i=1 pi the mobile is off the system. For simplicity,

we assume that the mobile is on and therefore q = 0. The
algorithms and the analysis can be adapted to the more general
case in a straightforward manner. Without loss of generality
assume that p1 ≥ p2 ≥ · · · ≥ pN .

Definition 1: Let p(S) =
∑

i∈S pi for S ⊆ {1, . . . , N}
and let Qk = p(S) for S = {1, . . . , k}.

Paging the mobile is conducted in rounds. In each round
a subset of the cells is paged until a subset that contains the
actual location of the mobile is found. The goal is to minimize
the expected number of paged cells under the constraint that
the paging must be complete in at most D rounds for a given
parameter 1 ≤ D ≤ N . In other words, the goal is to find
an ordered partition of the cells into D disjoint subsets that
minimizes the expected number of paged cells.

Definition 2: Let cost(S) be the expected number of paged
cells given an ordered partition S of the cells, and a location
probability vector (p1, . . . , pN ). Denote by OPT (D) the cost
of the optimal partition for D paging rounds.

It is not hard to see that given the bound D ≤ N , it is always
better to page at least one cell in each round. The following
observation relates the location probabilities and the order of
paging the cells.

Observation 1: The optimal paging must follow the non-
decreasing order of probabilities: for any rounds i and j, 1 ≤
i < j ≤ D, all the cells that are paged in round j are associated
with smaller or equal probabilities than all the probabilities
associated with cells that are paged in round i.

For D = 1, all the cells must be paged in the first and only
round and the cost of this strategy is OPT (1) = N . For
D = N , the paging strategy is implied by Observation 1. The
optimal solution OPT pages cell i in round i for 1 ≤ i ≤ N .
In this case, the cost is cost(OPT ) = OPT (N) =

∑N
i=1 ipi.

For D = 2, the goal is to find a subset of the cells to be paged
in the first round. If the mobile is not found, then the rest of the
cells must be paged in the second round. By Observation 1, the
goal is to find a strategy Tk that pages the cells {1, . . . , k} in
the first round for some 1 ≤ k ≤ N . It follows that cost(Tk) =
Qkk + (1 − Qk)N since with probability Qk =

∑k
i=1 pi the

user is in cells C1, . . . , Ck. In general, for any 1 ≤ D ≤ N ,
let S = {S1, . . . , SD} be an ordered partition of 1, . . . , N ,
and let ni be the size of the subset Si. Then

cost(S) =
D∑

i=1




i∑
j=1

nj


 p(Si) . (1)

Equation (1) is true since with probability p(Si) the search
strategy that is based on this partition paged

∑i
j=1 nj cells.

III. OPTIMAL ALGORITHMS

In this section, we provide four algorithms to compute the
value of OPT (D) and the corresponding search strategy for

a given probability vector (p1, . . . , pN ) and 1 ≤ D ≤ N .
The first algorithm is a straightforward implementation of the
dynamic programming recursion. This is the known Θ(N2D)
algorithm that appeared in the literature. The second algorithm
reduces the running time to Θ(N log ND) with another simple
implementation of the dynamic programming. The third and
the fourth algorithms further reduce the running time to
Θ(ND). Both algorithms are somewhat complicated and are
based on non-trivial properties of the dynamic programming
recursion.

A. The dynamic programming

We now define the recursive solution formulation to find
OPT (D). We ignore the computation of the optimal partition
of the cells into D sets that yields the optimal cost. We note
that in implementing dynamic programming solutions, it is a
standard technique to find the actual solution by first filling
in the table and then working backwards from the optimal
solution. This adds a negligible overhead in the running time
complexity. We also assume that the vector of probabilities is
given in a non-increasing order (p1 ≥ p2 ≥ · · · ≥ pN ). Using
radix-sort for example, the sorting can be done in Θ(N) time
assuming that the set of all possible values for probabilities is
not too large.

Let 1 ≤ n ≤ N and 1 ≤ d ≤ D be given. Define h(n, d)
to be the optimal cost of finding the mobile user in the first
n cells, C1, . . . , Cn, in d rounds. By definition: OPT (D) =
h(N,D). The initial values for h(n, d) are the two extreme
cases where there is only one round or the number of rounds
is the same as the number of cells. In these cases,

∀1≤n≤N h(n, 1) = n
∑n

i=1 pi

∀1≤d≤D h(d, d) =
∑d

i=1 ipi . (2)

There are two approaches to formulate the optimal recursion
for h(n, d). In the first ([9], [13], [16]), the size of the first
set of cells to be paged in the first round is fixed and then the
rest of the cells are recursively and optimally paged in d − 1
rounds. In the second ([11]), the size of the last set of cells
to be paged in the last round is fixed and then the rest of the
cells are recursively and optimally paged in d− 1 rounds. We
adopt the second approach. The proof of the following lemma
can be found in the appendix of [11].

Lemma 2:

h(n, d) = min
d−1≤j≤n−1

{h(j, d − 1) + n

n∑
i=j+1

pi}

= min
d−1≤j≤n−1

{a(n, d, j)} (3)

where by definition

a(n, d, j) = h(j, d − 1) + n

n∑
i=j+1

pi (4)

is the cost of paging the first j cells in (d−1) rounds optimally
and paging the rest of the n − j cells in the last round.



Our objective is to implement the recursion defined in
Lemma 2 in a dynamic programming fashion. All of our im-
plementations are based on the following schematic algorithm:

Dynamic Programming Schema:
• Step-1:Compute h(n, 1) = n

∑n
i=1 pi for n = 1, . . . , N .

• Step-d, 2 ≤ d ≤ D: compute h(n, d) for n = 1, . . . , N ,
using Equation (3) given that the values of h(j, d − 1)
has already been computed for all d − 1 ≤ j ≤ n − 1.

Step-d can be reduced to the Row-Minima problem for
matrices. The input to the Row-Minima problem is an N ×N
matrix A and the objective is to find the N minimum values
of all the N rows. Alternatively, the objective is to find the
indices in the N rows for which the minimum is obtained. We
note that in this formulation, A is only given implicitly and
not explicitly. That is, we are provided with a function that,
given the indices n and j, permits us to calculate A[n, j] in
constant time.

Definition 3: Fix d for some 2 ≤ d ≤ D, let A be an N×N
matrix such that A[n, j] = a(n, d, j) for d ≤ n ≤ N and
d − 1 ≤ j ≤ n − 1. Otherwise A[n, j] =

∑n
i=1 pi (maximum

possible value).

First observe that it is possible to compute A[n, j] in constant
time. To achieve this, we first assume that we have, in Θ(N)
time, precomputed all of the prefix sums Qk =

∑k
i=1 pi. Then

by Equation (4)

a(n, d, j) = h(j, d − 1) + n

n∑
i=j+1

pi

= h(j, d − 1) + n(Qn − Qj)

can be computed in constant time. Note that since d is fixed,
we have already computed h(j, d − 1) before we compute
a(n, d, j). This observation reduces any implementation of
Step-d of the Dynamic Programming Schema to the Row-
Minima problem for the matrix A (Definition 3).

Definition 4: For 1 ≤ n ≤ N , let j(n) be the index of
the minimum value in row n of the matrix A as defined in
Definition 3. In case of ties, j(n) will be the largest index that
minimizes A[n, j(n)].

We analyze the running time of any of our implementations
for the dynamic programming as follows. We first analyze the
running time of the solution to the Row-Minima problem.
Then we multiply this running time by a factor of D to get
the running time of implementing Step-d of the Dynamic
Programming Schema for all values of d. Clearly, Step 1
of the Dynamic Programming Schema can be implemented
in Θ(N) time. We note that implementing this schema re-
quires running time of Ω(ND) because one must compute
Ω(ND) values of the function h(n, d). The above discussion
is summarized in the following proposition.

Proposition 3: Assume that algorithm X solves the Row-
Minima problem for the matrix A in time Θ(T (N)). Then the
overall running time of X is Θ(T (N)D).

B. Algorithms

We now describe four algorithms that are based on the
Dynamic Programming Schema. For each of them, we first
show how to find the vector (j(d), . . . , j(N)) and thus solve
the Row-Minima problem for the matrix A (or a shifted
matrix B of A in one of the algorithms). Then we state the
overall time complexity that is implied by Proposition 3.

1) The Θ(N2D) straightforward implementation:
Algorithm-N2D, Row-Minima(A): Fix d − 1 ≤ n ≤ N .
Define m = minn−1

j=d−1 {A[n, j]} and let j(n) be the largest
index such that A[n, j(n)] = m.

Finding the minimum in each row can be done in Θ(N)
time and therefore solving the Row-Minima problem on A can
be done in Θ(N2) time. The following proposition is implied
by Proposition 3.

Proposition 4: The running time of Algorithm-N2D is
Θ(N2D).

2) The Θ(N log ND) implementation: The next lemma
implies that the sequence of indices j(1), . . . , j(N) is non-
decreasing.

Lemma 5: j(n1) ≤ j(n2) for 1 ≤ n1 < n2 ≤ N .

Proof: Let X = A(n, i)−A(n, j) and Y = A(n+1, i)−
A(n + 1, j) for d − 1 ≤ i < j ≤ n − 1. By definition,

X = a(n, d, i) − a(n, d, j)

= ((h(i, d − 1) − h(j, d − 1)) + n

j∑
k=i+1

pk

Y = a(n + 1, d, i) − a(n + 1, d, j)

= (h(i, d − 1) − h(j, d − 1)) + (n + 1)
j∑

k=i+1

pk

Therefore,

Y − X =
j∑

k=i+1

pk ≥ 0 ⇒ Y ≥ X .

Since h(n1, d) = A(n1, j(n1)) it follows that A(n, i) >
A(n, j(n1)) for all d − 1 ≤ i < j(n1). By the above
inequality, this implies that A(n + 1, i) > A(n + 1, j(n1)) for
all d−1 ≤ i < j(n1). Consequently, h(n2, d) = A(n2, j(n2))
for some j(n2) ≥ j(n1).

Algorithm-N log ND, Row-Minima(A): Instead of computing
j(n) sequentially, compute it in a binary fashion. Informally
(ignoring ceilings and floors), the algorithm has log2(N)
stages. In the first stage, it computes j(N/2); in the second
stage, it computes j(N/4) and j(3N/4); and in general, in the
ith stage it computes j(kN/2i) for all odd numbers k between
1 and 2i.

By Lemma 5, each stage can be computed in Θ(N) time
because each one of the 2i−1 values that is computed in
stage i is computed over a unique range and the total size
of all these ranges is N . Since there are log2(N) stages,



the running time of Algorithm-N log ND for the Row-Minima
problem is Θ(N log N). The following proposition is implied
by Proposition 3.

Proposition 6: The running time of Algorithm-N log ND is
Θ(N log ND).

3) The first Θ(ND) algorithm: We prove a stronger prop-
erty for the matrix A, called the Monge property, that in
particular implies Lemma 5.

Definition 5: An N × N matrix M satisfies the Monge
property [6] if for any 1 ≤ n, j < N :

M [n, j] + M [n + 1, j + 1] ≤ M [n + 1, j] + M [n, j + 1] .

Lemma 7: The matrix A defined in Definition 3 satisfies
the Monge property.

Proof: By definition, proving that A[n, j]+A[n+1, j +
1] ≤ A[n + 1, j] + A[n, j + 1] is equivalent to proving that

a(n, d, j)+a(n+1, d, j +1) ≤ a(n+1, d, j)+a(n, d, j +1) .

Let
X = a(n, d, j) − a(n, d, j + 1)

and
Y = a(n + 1, d, j) − a(n + 1, d, j + 1) .

We need to show that X ≤ Y . By definition,

X = npj+1 + h(j, d − 1) − h(j + 1, d − 1)
Y = (n + 1)pj+1 + h(j, d − 1) − h(j + 1, d − 1) .

Therefore, Y − X = pj+1 ≥ 0.

Paper [1] introduces an algorithm that solves the Row-Minima
problem for Monge matrices in Θ(N) time. Paper [6] gives
an alternative description of this algorithm (called SMAWK
after the authors of [1]) along with many later applications.

Theorem 8: If an N × N matrix satisfies the Monge
property, then all of its row minima can be found in Θ(N)
time.

Algorithm-SMAWK, Row-Minima(A): Apply algorithm
SMAWK from [1] to solve the Row-Minima problem for the
matrix A.

The following proposition is implied by Theorem 8 and
Proposition 3.

Proposition 9: The running time of Algorithm SMAWK is
Θ(ND).

4) The second Θ(ND) algorithm: While the SMAWK
technique does imply a Θ(ND) algorithm for solving the
problem, it can be a bit tricky to be implemented properly. We
now describe another property of a shifted version of A that
yields a simpler (but still complicated) Θ(ND) algorithm to
solve the Row-Minima problem. The shifted matrix is defined
as follows:

Definition 6: Fix d for some 2 ≤ d ≤ D, let B be the
N×N matrix such that B[n, j] = a(n+(d−1), d, j+(d−2))
for d ≤ n ≤ N and d−1 ≤ j ≤ n−1. Otherwise B[n, j] = ∞.

Definition 7: An N ×N matrix M satisfies the SpeedUp
property if

M [n + 1, j] − M [n, j] = C(n) + D(j)

for 1 ≤ j ≤ N and 1 ≤ n < N where C(n) is a function of
n and D(j) is a monotonically decreasing function of j.

Note that this property can be shown to imply the Monge
property.

Lemma 10: The matrix B defined in Definition 6 satisfies
the SpeedUp property.

Proof:

B[n + 1, j] − B[n, j]
= a(n + d, d, j + d − 2) − a(n + d − 1, d, j + d − 2)

= (n + d)




n+d∑
i=j+d−1

pi


 − (n + d − 1)




n+d−1∑
i=j+d−1

pi




= (n + d)pn+d +
n+d−1∑

i=1

pi −
j+d−2∑

i=1

pi

= C(n) + D(j)

for C(n) = (n + d)pn+d +
∑n+d−1

i=1 pi and D(j) =
−∑j+d−2

i=1 pi. It follows that D(j) is a monotonic decreasing
function. Note, that we assume that d is fixed and therefore
C is a function of n and D is a function of j.

We can show that for matrices that satisfy the SpeedUp
property there exists an algorithm, called FGZ, that solves
the Row-Minima problem in Θ(N) time. This algorithm is a
modification of the one given in [7] for solving the dynamic
program describing placing K medians on a line.

Theorem 11: If an N × N matrix satisfies the SpeedUp
property, then all of its row minima can be found in Θ(N)
time.

Algorithm-SpeedUp, Row-Minima(A): Apply algorithm
FGZ to solve the Row-Minima problem for the matrix B.

The following proposition is implied by Theorem 11 and
Proposition 3.

Proposition 12: The running time of Algorithm SpeedUp
is Θ(ND).

IV. NON-OPTIMAL HEURISTICS

In the previous section, we show how to reduce the running
time complexity of algorithms for finding optimal strategies
from Θ(N2D) to Θ(N log ND) and then to Θ(ND). In
highly dynamic systems the probabilities might change fre-
quently and for large N even Θ(ND) might be too slow.
Moreover, in all of the optimal algorithms, we found out that
the actual constant in the running time is not small enough.
We therefore propose several non-optimal heuristics whose
running time is smaller than Θ(ND).

We first present three oblivious solutions that for given
values of N and D ignore the values of the probabilities
and provide the same partition. These algorithms are very fast



to compute and each performs sufficiently well under some
conditions. Next, we describe a heuristic that was proposed
in [19] whose running time is Θ(N) and propose a new
heuristic whose running time is Θ(N log D) with a small
constant coefficient. In the next section, we will demonstrate
that for D << N , our heuristic outperforms the heuristic of
[19] in both categories: performance and running time. Our last
heuristic has a Θ(ND) running time and is much simpler to
describe and implement than the two optimal Θ(ND) running
time algorithms. Moreover, this heuristic provided the optimal
solution for all the instances tested by our simulations. We
conjecture that it is actually an optimal solution.

A. Oblivious heuristics

The following three heuristics depend only on the value of
N and D and ignore the values of p1, . . . , pN . All of them can
be computed in Θ(D) time assuming the cells are ordered by a
non-decreasing order of their associated probabilities. The first
two are folklore and the third is based on a known technique
and is discussed in another paper by the authors [4].

Algorithm-LargeSuffix: In rounds 1 to D − 1 page only one
cell. In the last round page the rest of the N − D + 1 cells.

This heuristic performs very well when the mobile user is
likely to be found in D−1 cells. It performs poorly when the
values of the N probabilities are almost the same.

Algorithm-Uniform: In the first (D − (N mod D)) rounds
page �N/D� cells; in the last N mod D rounds page 	N/D

cells.

This heuristic performs very well when the values of the
N probabilities are almost the same. It performs poorly when
the mobile user is likely to be found in one particular cell.
In a way, Algorithm-Uniform and Algorithm-LargeSuffix
complement each other.

Algorithm-Doubling: Find a parameter α such that α + α2 +
· · · + αD = N (α ≈ N1/D). For 1 ≤ d ≤ D, in round d
page either sd =

⌊
αd

⌋
or sd =

⌈
αd

⌉
cells. The floor and

ceiling decisions are made such that s1 + · · · + sD = N
and s1 ≤ s2 ≤ · · · ≤ sD. This heuristic is a “compromise”

between Algorithms-Uniform and Algorithm-LargeSuffix.
The Doubling technique (usually α = 2) is a well known
and useful technique when some of the parameters are not
known in advance. Indeed, in another paper ([4]), we show
that Algorithm-Doubling has the best worst-case performance
against an adversary that may choose maliciously the values
for p1, . . . , pN .

B. The Boundaries heuristic

The heuristic described in [19] starts with some initial
partition of the cells into D sets. Then cells in the boundaries
of the sets are moved from one set to an adjacent set if
some conditions are not satisfied. These conditions, that are
necessary conditions for a paging partition to be optimal, are
stated in the next lemma.

Lemma 13: Let {S1, . . . , SD} be a partition of the N
cells, let ni be the size of the subset Si, let �i be the largest
probability in Si, and let si be the smallest probability in Si.
Then, the forward boundary condition is

�i+1(ni+1 − 1) ≤
∑
j∈Si

pj

and the backward boundary condition is

si(ni−1 + 1) ≥
∑
j∈Si

pj .

Algorithm-Boundaries: Partition the N cells into D sets of
almost the same size (�N/D� or 	N/D
). Let the partition be
{S1, . . . , SD}. In the first stage, from S1 to SD−1, check the
forward boundary condition and move a cell to the next set
each time the condition is violated. In the second stage, from
SD to S2, check the backward boundary condition and move
a cell to the previous set each time the condition is violated.

The first stage is a forward scan of almost all the N cells
and the second stage is a backward scan of almost all the
N cells. Each scan can be implemented in Θ(N) time and
therefore,

Proposition 14: The running time of Algorithm-
Boundaries is Θ(N).

We note that the initial partition could be any of the
partitions generated by the three oblivious heuristics. Our
simulations show that the choice made by [19] was the best
for most of the instances tested by the simulation.

C. The Θ(N log D) heuristic

We propose a new non-optimal heuristic whose running time
is Θ(N log D). The basic idea is to apply 	log2(D)
 times the
optimal algorithm for the case D = 2 that can be implemented
efficiently in Θ(N) time. For simplicity assume that D is a
power of 2.

Algorithm-N log D: In stage 1, find the best partition of the N
cells into two sets such that each set gets D/2 paging rounds.
For 2 ≤ i ≤ log2 D, in stage i, partition the N cells into 2i

sets such that each set gets D/2i paging rounds. The final
partition is the one after stage log2 D.
The method used to find the best partition in each stage for
each range is an adaptation of the way an optimal partition
is found for the case D = 2. This implies a running time
which is linear in the number of cells to be partitioned. Since
in each stage all the ranges are disjoint, it follows that the
running time of each stage is Θ(N). To make sure that there
are log2(D) stages, if one of the sets in a partition gets n cells
and d rounds where n < d, then the algorithm extends this set
to have d cells and allocates one round for each cell.

Proposition 15: The running time of Algorithm-N log D is
Θ(N log D).

D. The Θ(ND) heuristic

We now define another property for matrices called the
OneMinimum property.



Definition 8: An N ×N matrix M satisfies the OneMini-
mum property if the global minimum j(n) is the only local
minimum in the nth row. That is, M [n, j] is a monotonically
non-increasing function of j for 1 ≤ j ≤ j(n) and a
monotonically non-decreasing function of j for j(n) ≤ j ≤
N .

We cannot prove that matrix A (Definition 3) satisfies the
OneMinimum property. We based the following conjecture
on the fact that for all the instances tested by our simulation,
the algorithm that relies on the existence of the OneMinimum
property always provided the optimal solution.

Conjecture 16: The matrix A defined in Definition 3 sat-
isfies the OneMinimum property.

We note that a stronger property for which A[n, j] is a concave
function as a function of j is wrong. It fails on the following
parameters: N = 3, D = 1, p1 = 4

9 , p2 = 4
9 , and p3 = 1

9 .
Algorithm-OneMinimum, Row-Minima(A): Fix d − 1 ≤
n ≤ N . Informally, starting from j(n − 1) (j(0) = 1),
find j(n) as the first local minimum in the nth row. That is
A[n, j(n)] ≤ A[n, j(n)− 1] and A[n, j(n)] < A[n, j(n) + 1].
Lemma 5 allows the search for j(n) to start from j(n − 1)

and Conjecture 16 would justify stopping after detecting the
first local minimum. The search for all values of j(n) takes
Θ(N) time since the minimum search ranges overlap only
at their extremes. The following proposition is implied by
Proposition 3 and Conjecture 16.

Proposition 17: The running time of Algorithm OneMini-
mum is Θ(ND).

V. SIMULATION

We coded all the algorithms presented in this paper with
Matlab 7 Release 14 with SP3. We run the codes on a
workstation with the following specifications: AMD Opteron
165 CPU, Dual Core 2GHz×2, 1MB Cache×2, 2GB 400MHz
RAM. The operating system of this machine is Windows
Server 2003 Standard Edition with SP1. We tested the cor-
rectness of the optimal algorithms, the performance of the
heuristics, and the time complexity of all the algorithms by
running them on different input scales (N and D) as well as
different distributions with various parameters. We considered
the following distributions for the probability vector (p1 ≥
p2 ≥ · · · ≥ pN ): Uniform, Zipf, Gaussian, and Step.

The Uniform distribution is the most natural distribution to
test. Each pi is a random number between 0 and 1 that is
normalized by the sum of all the N original random numbers.
Formally, pi = qi∑ N

i=1 qi
for 1 ≤ i ≤ N where qi = rand(0, 1).

The Zipf distribution is motivated by the observation that
frequency of occurrence of some event as a function of the
rank when the rank is determined by the above frequency of
occurrence, is a power-law function. Formally, pi = i−α∑ N

i=1 i−α

for 1 ≤ i ≤ N and a parameter 0 ≤ α. The Gaussian is a
continuous distribution that is another common distribution to
model the notion of ranking that is based on some frequency
of occurrence. Formally, pi = qi∑ N

i=1 qi
for 1 ≤ i ≤ N where

0 200 400 600 800 1000
0

1

2

3

4

5

6

7

Number of cells

R
un

ni
ng

 ti
m

e 
(in

 u
ni

t o
f 0

.1
 s

ec
on

d)

Complexity of 5 optimal algorithms
under Zipf cells distribution (α=1.5)

 

 

N2D
NlogND
SMAWK
SpeedUp
OneMinimum

Fig. 1. Complexity of optimal algorithms

0 5 10 15 20
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of rounds (delay constraint)

R
un

ni
ng

 ti
m

e 
on

 r
ea

l m
ac

hi
ne

s 
(in

 u
ni

t o
f 0

.1
 s

ec
on

d)

Complexity linearity on different delay constraints (D)
on 1000 cells under Zipf distribution (α=1.5)

 

 

SMAWK
SpeedUp

Fig. 2. Linearity of ND algorithms

qi = 2
σ
√

2π
exp− i2

2σ2 for a parameter 0 < σ. The Step
distribution is a semi-uniform distribution in which the cells
are partitioned into groups such that all the cells in a group are
associated with the same location probability. This distribution
provided us with a counter example to a stronger property
for the dynamic programming formulation that would have
implied that our simplest Θ(ND) implementation is optimal.
Formally, pi = αk

∑ s
k=1

∑ N/s
j=1 αk

for 1 ≤ i ≤ N , a step-ratio

parameter α, and a step-number parameter s.
The rest of this section reports three sample tests out of

the many tests conducted by our simulations. When running
time was measured, each test was repeated 100−−1000 times
and the average running time is reported. For each test, only a
representative figure for some specific parameters is provided.

a) First test: We tested the actual running time of the
optimal implementations and the one that is only conjectured
to be optimal. Figure 1 illustrates the results for the Zipf



0 200 400 600 800 1000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Number of cells

R
un

ni
ng

 ti
m

e 
(in

 u
ni

t o
f 0

.1
 s

ec
on

d)
Time complexity of Algorithms Boundaries, NlogD and SpeedUp

on Zipf distribution (α=1.5)

 

 

Boundaries
NlogD
SpeedUp

Fig. 3. Complexity of heuristics

distribution with parameter α = 1.5 and D = 10, where N
varies from N = 100 to N = 1000. Indeed, the plot coincide
with the worst-case analysis. We note, that similar behavior
was found for all the distributions and for many other param-
eters. Interestingly, we found out that although Algorithm-
OneMinimum is very simple to implement, its actual running
time is inferior to the one of Algorithm-SpeedUp. This
implies that the complications of the latter save in the running
time. Figure 2 compares only the two Θ(ND) algorithm. It
illustrates the results for the Zipf distribution with parameter
α = 1.5 and N = 1000 where D varies from D = 1 to
D = 20. The plot coincides with the worst-case analysis
by showing the linearity of both algorithms as a function of
D. In all the parameters we checked, Algorithm-SpeedUp
outperforms Algorithm SMAWK. This was expected from the
exact details of both algorithms. From now on, we adopt
Algorithm-SpeedUp as the optimal implementation. We note
that there were some irregularities in the linearity property for
small D due to the preprocessing.

b) Second test: We compared the running time and per-
formance of the two non-optimal heuristics Algorithm-N log D
and Algorithm-Boundaries with the optimal solution. Figure
3 illustrates the results for the running time for the Zipf dis-
tribution with parameter α = 1.5 and D = 10 where N varies
from N = 100 to N = 1000. Both heuristics, as expected,
were faster than the optimal solution. For this set of parameters
and for all the instances we checked where D << N , we
found out that Algorithm-N log D runs faster than Algorithm-
Boundaries. When D is not much smaller than N or when
N is small, the Θ(N) time Algorithm-Boundaries was faster
than the Θ(N log D) time Algorithm-N log D. Nevertheless,
for small N , the optimal implementation already runs very
fast, and when D approaches N already oblivious solutions
perform well. We demonstrate the superiority in performance
of Algorithm-N log D to Algorithm-Boundaries in Figure 4.
This figure illustrates the performance ratio over the optimal

0 200 400 600 800 1000
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

Number of cells

P
ag

in
g 

co
st

 n
or

m
al

iz
ed

 b
y 

m
in

im
um

 p
ag

in
g 

co
st

 (
O

P
T

)

Performances of algorithms NlogD and Boundaries on Zipf (α=1.5) 
and Gaussian (σ=0.25N) distributions normalized by optimal solution cost

 

 
NlogD Gaussian
Boundaries Gaussian
NlogD Zipf
Boundaries Zipf

Fig. 4. Optimality of heuristics

0 200 400 600 800 1000
0

50

100

150

200

250

300

350

400

450

500

Number of cells

E
xp

ec
te

d 
nu

m
be

r 
of

 p
ag

ed
 c

el
ls

Optimality of Algorithms SpeedUp, NlogD and Doubling
on Gaussian (σ=0.25N) and Uniform distributions 

 

 

Doubling Uniform
NlogD Uniform
SpeedUp (Opt) Uniform
Doubling Gaussian
NlogD Gaussian
SpeedUp (Opt) Gaussian

Fig. 5. Optimality of complexity class hierarchy

cost for D = 10 where N varies from N = 100 to N = 1000.
It shows the results for the Zipf distribution with parameter
α = 1.5 and for the Gaussian distribution with parameter
σ = 0.25N . The advantage of Algorithm-N log D is more
impressive for the Zipf distribution.

c) Third test: Figure 4 coupled with Figure 3 depict
one of the main contributions of our paper. They show a
clear tradeoff between optimality and running time efficiency.
Figure 6 coupled with Figure 5 emphasize this tradeoff by
adding Algorithm-Doubling to the charts. We selected the
best algorithm in each of the following complexity class of
algorithms: the above linear class of algorithms (Algorithm-
SpeedUp), the almost linear class of algorithms (Algorithm-
N log D), and the sub linear class of algorithms (Algorithm-
Doubling). Figure 6 illustrates the results for the running time
and Figure 5 illustrates the results for the performance each
for the Uniform distribution and for the Gaussian distribution



0 200 400 600 800 1000
10

−4

10
−3

10
−2

10
−1

10
0

Number of cells

R
un

ni
ng

 ti
m

e 
on

 r
ea

l m
ac

hi
ne

s 
(in

 u
ni

t o
f 0

.1
 s

ec
on

d)
Time complexity of Algorithms SpeedUp, NlogD and doubling 

on distributions of Gaussian (σ=0.25N) and Uniform

 

 
Doubling Uniform
NlogD Uniform
Speedup Uniform
Doubling Gaussian
NlogD Gaussian
Speedup Gaussian

Fig. 6. Complexity of complexity class hierarchy

with parameter σ = 0.25N . In both figures, D = 10 and N
varies from N = 100 to N = 1000. The results speak for
themselves. We emphasize again that this tradeoff between
time complexity and performance repeated itself for all the
instances tested by our simulations.

VI. DISCUSSION AND OPEN PROBLEMS

We described, analyzed, and tested optimal and heuristic
solutions to the problem of paging a mobile user in N cells
within D rounds. We improved the complexity of optimal
solutions from Θ(N2D) to Θ(ND) and demonstrated the
tradeoff between the time complexity and optimality.

The scope of this paper is very general. Let mobile data be
an abstraction of any entity in a network whose exact location
is not known to the system at the time a specific query is
looking for this data. Instead, the system knows that the mobile
data may be found in one out of N locations. Furthermore,
the system has a profile for the data which is represented as
a vector of probabilities: with probability pi the data is in
location Li and all the probabilities are independent. Paging
mobile users in cellular networks is one application to this
general setting but there are more applications. Consider a
wireless sensor network that accumulates some information
(e.g. weather). A mobile data may be any information that
can be found in this sensor network. In order to save battery
energy, the sensors do not push the information but only reply
to queries. As a result, the system needs to pull the data by
probing the sensors. The above framework models the pull
task where the objectives are to minimize the time it takes to
get the data and to minimize the expected number of sensors
that are probed. The above two applications are for wireless
networks, but one could think of other applications in wired
networks. For example, the task of looking for an information
in the Internet or looking for an IP-address of a user.
Open Problems: We were not able to prove the correctness
of our conceptually simplest Θ(ND) implementation of the

dynamic programming solution. This algorithm produced the
optimal solution for all the instances tested by our simulation.
We concentrated on reducing the running time complexity of
the implementations. We have ideas how to reduce the space
complexity from Θ(ND) to Θ(N) for Algorithm-SpeedUp.
The tradeoff between the running time and optimality can be
refined and possibly improved. In particular, it is not clear that
we have the best Θ(N) heuristic. Finally, in dynamic systems
the location probabilities might change their value frequently.
The best solution we have is to re-compute the dynamic
programming after each change. We are looking for algorithms
and data structures that would improve the amortized running
time of T executions of the algorithm. That is, we are looking
for a total running time which is better than Θ(TND).

REFERENCES

[1] A. Aggarwal, M. Klawe, S. Moran, P. Shor, and R. Wilber. Geometric
Applications of a Matrix Searching Algorithms. Algorithmica, 2:195-208
(1987).

[2] I. F. Akyildiz, J. Mcnair, J. S. M. Ho, H. Uzunalioğlu, and W. Wang.
Mobility Management in Next-Generation Wireless Systems. IEEE Pro-
ceedings Journal, 87:1347–1385 (1999).

[3] B. Awerbuch and D. Peleg. Online Tracking of Mobile Users. J. of the
ACM, 42:1021–1058 (1995).

[4] A. Bar-Noy and J. Klukowska. Paging Mobile User Under Delay
Constraints: Privacy vs. Efficiency. Submitted Manuscript.

[5] A. Bar-Noy and G. Malewicz, Establishing Wireless Conference Calls
Under Delay Constraints. Journal of Algorithms, 51:145–169 (2004).

[6] R. E. Burkard, B. Klinz, and R. Rudolf. Perspectives of Monge Properties
in Optimization. Discrete Applied Mathematics, 70:95–161 (1996).

[7] R. Fleischer, M .J. Golin, and Y. Zhang. Online Maintenance of K-
Medians and K-Covers on a Line. Proceedings of the 9th Scandinavian
Workshop on Algorithm Theory, pp. 102–113 (2004).

[8] R. H. Gau and Z. J. Haas. Concurrent Search for Mobile Users in Cellular
Networks. ACM/IEEE Transactions on Networking, 12:117–130 (2004).

[9] D. J. Goodman, P. Krishnan, and B. Sugla. Minimizing Queuing Delays
and Number of Messages in Mobile Phone Location. Mobile Networks
and applications, 1:39–48 (1996).

[10] R. Jain, Y. Lin, and S. Mohan. Location Strategies for Personal
Communications Service. The Mobile Communications Handbook, ed.
J. Gibson (CRC Press, 1996).

[11] B. Krishnamachari, R. H. Gau, S. B. Wicker, and Z.J. Haas. Optimal
Sequential Paging in Cellular Wireless Networks. Wireless Networks
10:121–131 (2004).

[12] G. L. Lyberopoulos, J. G. Markoulidakis, D V. Polymeros, D. F. Tsirkas,
and E. D. Sykas. Intelligent Paging Strategies for Third Generation
Mobile Telecommunication Systems. IEEE Transactions on Vehicular
Technology, 44:543-553 (1995).

[13] S. Madhavapeddy, K. Basu, and A. Roberts. Adaptive Paging Algorithms
for Cellular Systems. Wireless Information Networks: Architecture,
Resource Management and Mobile Data 83–101 (1996).

[14] S. J. Mullender and P. B. M. Vitányi. Distributed Match-Making.
Algorithmica, 3:367–391 (1988).

[15] C. Rose and R. Yates. Location Uncertainty in Mobile Networks: a
Theoretical Framework. IEEE Communications Magazine, 35 (1997).

[16] C. Rose and R. Yates. Minimizing the Average Cost for Paging Under
Delay Constraints. Wireless Networks, 1:211–219 (1995).

[17] C. Rose and R. Yates. Ensemble Polling Strategies for Increased Paging
Capacity in Mobile Communication Networks. Wireless Networks, 3:159–
167 (1997).

[18] W. Wang and I. F. Akyildiz. An Optimal Paging Scheme for Minimizing
Signaling Costs Under Delay Bounds. IEEE Communication Letters,
5:43–45 (2001).

[19] W. Wang, I. F. Akyildiz, and G. L. Stüber. Effective Paging Schemes
with Delay Bounds as QoS Constraints in Wireless Systems. Wireless
Networks, 7:455–466 (2001).

[20] ETSI/TC. Mobile Application Part (MAP) Specification, version 4.8.0.
Technical Report, Recommendation GSM 09.02 (1994).

[21] EIA/TIA. Cellular Radio-Telecommunications Intersystem Operations.
EIA/TIA Technical Report IS-41 Revision C (1995).


