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Abstract

There exist several general techniques in the literature for speeding up
naive implementations of dynamic programming. Two of the best known
are the Knuth-Yao quadrangle inequality speedup and the SMAWK algo-
rithm for finding the row-minima of totally monotone matrices. Although
both of these techniques use a quadrangle inequality and seem similar they
are actually quite different and have been used differently in the literature.

In this paper we show that the Knuth-Yao technique is actually a direct
consequence of total monotonicity. As well as providing new derivations
of the Knuth-Yao result, this also permits to solve the Knuth-Yao prob-
lem directly using the SMAWK algorithm. Another consequence of this
approach is a method for solving online versions of problems with the
Knuth-Yao property. The online algorithms given here are asymptotically
as fast as the best previously known static ones. For example, the Knuth-
Yao technique speeds up the standard dynamic program for finding the
optimal binary search tree of n elements from Θ(n3) down to O(n2), and
the results in this paper allow construction of an optimal binary search
tree in an online fashion (adding a node to the left or the right of the
current nodes at each step) in O(n) time per step.

1 Introduction

1.1 History

The construction of optimal binary search trees is a classic optimization prob-
lem. We have n search keys with known order Key1 < Key2 < · · · < Keyn. The
input is 2n + 1 weights (probabilities) p1, . . . , pn and q0, q1, . . . , qn. The value
of pl is the weight that a search is for the value of Keyl; such a search is called
successful. The value of ql is the weight that a search is for a value between
Keyl and Keyl+1 (we set Key0 = −∞ and Keyn+1 = ∞); such a search is called
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unsuccessful. Note that we use weight instead of probability, so that the pl and
ql are not required to add up to 1.

The binary search tree we construct will have n internal nodes corresponding
to the successful searches, and n + 1 leaves corresponding to the unsuccessful
searches. The depth of a node is the number of edges from the node to the root.
Let d(pl) denote the depth of the internal node corresponding to pl, and d(ql)
the depth of the leaf corresponding to ql. A successful search requires 1 + d(pl)
comparisons, and an unsuccessful search requires d(ql) comparisons. So, the
expected number of comparisons is

∑

1≤l≤n

pl (1 + d(pl)) +
∑

0≤l≤n

ql d(ql). (1)

The goal is to construct an optimal binary search tree that minimizes (1).
It is not hard to see that this problem reduces to solving the following

recurrence:

Bi,j =















0, if i = j;
j

∑

l=i+1

pl +
j

∑

l=i

ql + min
i<t≤j

(Bi,t−1 + Bt,j), if i < j,
(2)

where the cost of the optimal binary search tree is B0,n. The naive way of
calculating Bi,j requires Θ(j − i) time, so calculating all of the Bi,j would seem
to require Θ(n3) time. In fact, this is what was done by Gilbert and Moore in
1956 [9]. More than a decade later, in 1971, it was noticed by Knuth [10] that,
using a complicated amortization argument, the Bi,j can all be computed using
only Θ(n2) time. Around another decade later, in the early 1980s, Yao [18, 19]
simplified Knuth’s proof and, in the process, showed that this dynamic pro-
gramming speedup worked for a large class of problems satisfying a quadrangle
inequality property.

Many other authors then used the Knuth-Yao technique, either implicitly or
explicitly, to speed up different dynamic programming problems. (See e.g., [3,
4, 15].)

In the 1980s, a variety of researchers developed various related techniques
for exploiting properties such as convexity and concavity to yield dynamic pro-
gramming speedups; a good early survey is [8]. A high point of this strand
of research was the development in the late 1980s of the linear time SMAWK
algorithm [1] for finding the row-minima of totally monotone matrices. The
work in [7] provides a good survey of the techniques mentioned as well as ap-
plications and later extensions. One particular extension we mention (since we
will use it later) is the LARSCH algorithm by Larmore and Schieber [11] which,
in some cases, permits finding row-minima even when entries of the matrix can
depend upon other entries of the same matrix (a case SMAWK cannot handle).
Very recently [5] gives new results based on the LARSCH algorithm for certain
bottleneck path problems (which extends the earlier work in [11]) and in the
the same paper the LARSCH algorithm is used to find a bottleneck-shortest
pyramidal traveling salesman tour in O(n) time.
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As we shall soon see, both the Knuth-Yao (KY) and SMAWK techniques
rely on an underlying quadrangle inequality in their structure and have a similar
“feel”. In spite of this, they have until now usually been thought of as being
different approaches. (See, e.g., [13] which uses both KY and SMAWK to speed
up different problems.) In [2] Aggarwal and Park demonstrate a relationship
between the KY problem and totally-monotone matrices by building a 3-D
monotone matrix based on the KY problem and then using an algorithm due
to Wilber [16] to find tube minima in that 3-D matrix. They leave, as an open
question, the possibility of using SMAWK directly to solve the KY problem.

The main theoretical contribution of this paper is to show that the KY
technique is really just a special case of the use of totally monotone matrices.
We first show a direct solution to the KY problem by decomposing it into O(n)
totally-monotone O(n) × O(n) matrices, permitting direct application of the
SMAWK algorithm to yield another O(n2) solution. After that we describe
how the Knuth-Yao technique itself is actually a direct consequence of total-
monotonicity of certain related matrices. Finally, we show that problems which
can be solved by the KY technique statically in O(n2) time can actually be
solved in an online manner using only O(n) worst case time per step. This is
done by using a new formulation of the problem in terms of monotone-matrices,
along with the LARSCH algorithm.1 We conclude by discussing various exten-
sions of the standard KY speedup problem in the literature, and showing that
these extensions are simply special cases of the use of totally monotone matrices.

1.2 Definitions

Definition 1 A two dimensional upper triangular array a(i, j), 0 ≤ i ≤ j ≤ n

satisfies the quadrangle inequality (QI) if for all i ≤ i′ ≤ j ≤ j′,

a(i, j) + a(i′, j′) ≤ a(i′, j) + a(i, j′). (3)

Note: In some applications we will write ai,j instead of a(i, j).

Definition 2 A 2 × 2 matrix is monotone if the rightmost minimum of the
upper row is not to the right of the rightmost minimum of the lower row. More

formally,

[

a b

c d

]

is monotone if b ≤ a implies that d ≤ c.

Definition 3 A matrix is totally monotone if every 2×2 submatrix2 is mono-
tone.

Definition 4 A matrix M is Monge if for all i < i′ and j < j′,

Mi,j + Mi′,j′ ≤ Mi′,j + Mi,j′ . (4)

1We should point out that, as discussed in more detail at the end of Section 3, an alternative
online algorithm to the one presented here could be derived by careful deconstruction of the
static Aggarwal-Park [2] method; somehow, this never seems to have been remarked before in
the literature.

2In this paper, a submatrix is allowed to take non-adjacent rows/columns from the original
matrix.
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The important observations (all of which can be found in [7]) are

Observation 1 Every Monge matrix is totally monotone.

Observation 2 An m × n matrix M is Monge if

M(i, j) + M(i + 1, j + 1) ≤ M(i + 1, j) + M(i, j + 1) (5)

for all 1 ≤ i < m and 1 ≤ j < n.

Combining the above leads to the test that we will often use:

Observation 3 Let M be an m × n matrix. If

Mi,j + Mi+1,j+1 ≤ Mi+1,j + Mi,j+1 (6)

for all 1 ≤ i < m and 1 ≤ j < n, then M is totally monotone.

1.3 Mathematical Framework

Even though both the SMAWK algorithm [1] and the Knuth-Yao (KY) speedup
[10, 18, 19] use an implicit quadrangle inequality in their associated matrices,
on second glance, they seem quite different from each other.

In the SMAWK technique, the quadrangle inequality is on the entries of a
given m × n input matrix, which can be any totally monotone matrix.3 It is
not necessary for the input matrix to actually be given: in many applications,
including those in this paper, the entries are implicit, i.e., they are computed
only as they are needed. All that the SMAWK algorithm requires is that, when
needed, the entries can be calculated in O(1) time. The output of the SMAWK
algorithm is a vector containing the row-minima of the input matrix. If m ≤ n,
the SMAWK algorithm outputs this vector in O(n) time, an order of magnitude
speedup over the naive algorithm that scans all mn matrix entries.

The KY technique, by contrast, uses a quadrangle inequality in the upper-
triangular n× n matrix B. That is, it uses the QI property of its result matrix
to speed up the evaluation, via dynamic programming, of the entries in the
same result matrix.

More specifically, Yao’s result [18] was formulated as follows: For 0 ≤ i ≤
j ≤ n let w(i, j) be a given function and

Bi,j =

{

0, if i = j;
w(i, j) + min

i<t≤j
(Bi,t−1 + Bt,j), if i < j. (7)

Definition 5 w(i, j) is monotone in the lattice of intervals if [i, j] ⊆ [i′, j′]
implies w(i, j) ≤ w(i′, j′).

3Note that Monge Matrices satisfy a quadrangle inequality, but in general, a totally mono-
tone matrix may not. However, in practice, most applications of the SMAWK algorithm make
use of Monge matrices. If the input matrix is triangular, the missing entries are assigned the
default value ∞, preserving total monotonicity.
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As an example, it is not difficult to see that the w(i, j) =
∑j

l=i+1 pl +
∑j

l=i ql of
the BST recurrence (2) satisfies the quadrangle inequality and is monotone in
the lattice of intervals.

Definition 6 Let

KB(i, j) = max{t : w(i, j) + Bi,t−1 + Bt,j = Bi,j},

i.e., the largest index which achieves the minimum in (7).

Yao then proves two Lemmas (see Figure 1 for an example):

Lemma 1 (Lemma 2.1 in [18])
If w(i, j) satisfies the quadrangle inequality as defined in Definition 1, and is
also monotone on the lattice of intervals, then the Bi,j defined in (7) also satisfy
the quadrangle inequality.

Lemma 2 (Lemma 2.2 in [18])
If the function Bi,j defined in (7) satisfies the quadrangle inequality then

KB(i, j) ≤ KB(i, j + 1) ≤ KB(i + 1, j + 1) ∀ i < j.

Lemma 1 proves that a QI in the w(i, j) implies a QI in the Bi,j . Suppose
then that we evaluate the values of the Bi,j in the order d = 1, 2, . . . , n, where,
for each fixed d, we evaluate all of Bi,i+d, i = 0, 1, . . . , n − d. Then Lemma 2
says that Bi,i+d can be evaluated in time O(KB(i+1, i+ d)−KB(i, i+ d− 1)).
Note that

n−d
∑

i=0

(KB(i + 1, i + d) − KB(i, i + d − 1)) ≤ n,

and thus all entries for fixed d can be calculated in O(n) time. Summing over
all d, we see that all Bi,j can be obtained in O(n2) time.

As mentioned, Lemma 2 and the resultant O(n2) running time have usually
been viewed as unrelated to the SMAWK algorithm. While they seem somewhat
similar (a QI leading to an order of magnitude speedup) they appeared not to
be directly connected.

The main theoretical result of this paper is the observation that if the w(i, j)
satisfy the QI and are monotone in the lattice of intervals, then the Bi,j defined
by (7) can be derived as the row-minima of a sequence of O(n) different totally
monotone matrices, each of size O(n) × O(n), where the entries in a matrix
depend upon the row-minima of previous matrices in the sequence.4 In fact,
we will show three totally different decomposition of the Bi,j into O(n) totally
monotone matrices. In particular, our first decomposition, will permit the direct
use of SMAWK.

4See [17] for a solution to a different type of problem via finding the row-minima of a
sequence of dependent totally monotone matrices.

5



1.4 Online Algorithms

Generally, an online problem is defined to be a problem where a stream of
outputs must be generated in response to a stream of inputs, and where those
responses must be given under a protocol which requires some outputs be given
before all inputs are known. The performance of such an online algorithm is
usually compared to the performance of an algorithm that does not have a
restriction on the input stream and thus knows the entire input sequence in
advance. For many optimization problems it is impossible to give an optimal
solution without complete knowledge of future inputs. In such situations online
algorithms are analyzed in terms of competitiveness, a measure of the perfor-
mance that compares the decision made online with the optimal offline solution
for the same problem, where the lowest possible competitiveness is best.

The online versions of the problems in which we are interested are given
below, and do not involve competitiveness. Instead, our goal is to achieve the
optimal result, while maintaining the same asymptotic time complexity as the
offline versions.

Let L ≤ R be given along with values w(i, j) for all L ≤ i ≤ j ≤ R that
satisfy the QI and the “monotone on lattice of intervals” property. Let

Bi,j =

{

0, if i = j;
w(i, j) + min

i<t≤j
(Bi,t−1 + Bt,j), if i < j,

and assume all Bi,j for L ≤ i ≤ j ≤ R have already been calculated
and stored.

The right-online problem is:
Given new values w(i, R + 1) for L ≤ i ≤ R + 1, such that w(i, j)
still satisfy the QI and the “monotone on lattice of intervals” property,
calculate all of the values Bi,R+1 for L ≤ i ≤ R + 1.

The left-online problem is:
Given new values w(L − 1, j) for L − 1 ≤ j ≤ R, such that w(i, j)
still satisfy the QI and the “monotone on lattice of intervals” property,
calculate all of the values BL−1,j for L − 1 ≤ j ≤ R.

These online problems restricted to the optimal binary search tree would
be to construct the OBST for items KeyL+1, . . . ,KeyR, and, at each step, add
either KeyR+1, a new key to the right, or KeyL, a new key to the left. Every time
a new element is added, we want to update the Bi,j (dynamic programming)
table and thereby construct the optimal binary search tree of the new full set of
elements. See Figure 1. To achieve this, it is certainly possible to recompute the
entire table; however this comes at the price of O(n2) time, where n = R − L

is the number of keys currently in the table, leading to a total running time of
O(n3) to insert all of the keys. What we are interested in here is the question
of whether one can maintain the speedup while inserting the keys in an online
fashion. Our goal is an algorithm in which a sequence of n online key insertions
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will result in a worst case O(n) per step to maintain an optimal tree, yielding
an overall run time of O(n2).

Unfortunately, the KY speedup cannot be used to do this. The reason that
the speedup fails is that the KY speedup is actually an amortization over the
evaluation of all entries when done in a particular order. In the online case,
adding a new item n to previously existing items 1, 2, . . . , n − 1 requires using
(7) to compute the n new entries Bi,n, in the fixed order i = n, n − 1, . . . , 1, 0
and it is not difficult to construct an example in which calculating these new
entries in this order using (7) requires Θ(n2) work.

We will see later that the decomposition given in section 3 permits a fully
online algorithm with no penalty in performance, i.e., after adding the nth new
key, the new Bi,j can be calculated in O(n) worst case time. Furthermore, this
will be true for both the left-online and right-online case.

3 4 5 6 7

3 0 91 282 499 821

4 0 169 386 686

5 0 124 348

6 0 155

7 0

3 4 5 6 7

3 3 4 5 5 6

4 4 5 5 6

5 5 6 7

6 6 7

7 7

55

p7

84

p5

p6

q5

31

q6

55

69 38
q4

69

q6

20

2
p4

q3

q7

16

q6

55

p7

84

q4

69

q5

31

p5

69

p6

38

q7

16

q4

69

q5

31

p5

69

p6

38

Figure 1: An example of the online case for optimal binary search trees where
(p4, p5, p6, p7) = (2, 69, 38, 84) and (q3, q4, q5, q6, q7) = (20, 69, 31, 55, 16). The
left table contains the Bi,j values; the right one, the KB(i, j) values. The
unshaded entries in the table are for the problem restricted to only keys 5, 6.
The dark gray cells are the entries added to the table when key 7 is added to
the right. The light gray cells are the entries added when key 4 is added to
the left. The corresponding optimal binary search trees are also given, where
circles correspond to successful searches and squares to unsuccessful ones. The
values in the nodes are the weights of the nodes (not their keys).
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6
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∞
B0,8

B1,9

B2,10

B3,11

B4,12

i

0

7 8 9 10 11 12

0

1

2

3

4

5

6

7

8

9

10

11

12

∞

Figure 2: The lefthand figure shows the Bi,j matrix for n = 12. Each diagonal,
d = j − i, in the matrix will correspond to a totally monotone matrix Dd. The
minimal item of row i in Dd will be the value Bi,i+d. The righthand figure
shows D8.

2 The First Decomposition

Definition 7 For 1 ≤ d ≤ n define the (n − d + 1) × (n + 1) matrix Dd by

Dd
i,t =

{

w(i, i + d) + Bi,t−1 + Bt,i+d, if 0 ≤ i < t ≤ i + d ≤ n;
∞ otherwise.

(8)

Figure 2 illustrates the first decomposition. Note that (7) immediately
implies

Bi,i+d = min
0≤t≤n

Dd
i,t (9)

so finding the row-minima of Dd yields Bi,i+d, i = 0, . . . , n − d. Put another
way, the Bi,j entries on diagonal d = j− i are exactly the row-minima of matrix
Dd.

Lemma 3 If w(i, j) and the function Bi,j defined in (7) satisfies the QI then,
for each d (1 ≤ d ≤ n), Dd is a totally monotone matrix.

Proof : From Observation 3 it suffices to prove that

Dd
i,t + Dd

i+1,t+1 ≤ Dd
i+1,t + Dd

i,t+1 (10)

Note that if i + 1 < t < i + d, then from Lemma 1,

Bi,t−1 + Bi+1,t ≤ Bi+1,t−1 + Bi,t (11)

and
Bt,i+d + Bt+1,i+1+d ≤ Bt+1,i+d + Bt,i+1+d. (12)
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Thus,

Dd
i,t + Dd

i+1,t+1

= [w(i, i + d) + Bi,t−1 + Bt,i+d] + [w(i + 1, i + 1 + d) + Bi+1,t + Bt+1,i+1+d]

= w(i, i + d) + w(i + 1, i + 1 + d) + [Bi,t−1 + Bi+1,t] + [Bt,i+d + Bt+1,i+1+d]

≤ w(i, i + d) + w(i + 1, i + 1 + d) + [Bi+1,t−1 + Bi,t] + [Bt+1,i+d + Bt,i+1+d]

= [w(i + 1, i + 1 + d) + Bi+1,t−1 + Bt,i+1+d] + [w(i, i + d) + Bi,t + Bt+1,i+d]

= Dd
i+1,t + Dd

i,t+1

and (10) is correct (where we note that the right hand side is ∞ if i + 1 6< t or
t 6< i + d). 2

Lemma 4 Assuming that all of the row-minima of D1, D2, . . . , Dd−1 have al-
ready been calculated, all of the row-minima of Dd can be calculated using the
SMAWK algorithm in O(n) time.

Proof : From the previous lemma, Dd is a totally monotone matrix. Also,
by definition, its entries can be calculated in O(1) time, using the previously
calculated row-minima of Dd′ where d′ < d. Thus SMAWK can be applied. 2

Combined with (9) this immediately gives a new O(n2) algorithm for solving
the KY problem; just run SMAWK on the Dd in the order d = 1, 2, . . . , n and
report all of the row-minima.

We point out that this technique cannot help us solve the online problem
as defined in subsection 1.4, though. To see why, suppose that items 1, . . . , n

have previously been given, new item n + 1 has just been added, and we need
to calculate the values Bi,n+1 for i = 0, . . . , n+1. In our formulation this would
correspond to adding a new bottom row to every matrix Dd and creating a new
matrix Dn+1. In our formulation, we would need to find the row-minima of all
of the n new bottom rows. Unfortunately, the SMAWK algorithm only works
on the rows of matrices all at once and cannot help to find the minimum of a
single new row.

3 The Second & Third Decompositions

So far we have seen that it is possible to derive the KY running time via repeated
calls to the SMAWK algorithm. We now see two more decompositions into
totally-monotone matrices. These decompositions will trivially imply Lemma
2 (Lemma 2.2 in [18]), which is the basis of the KY speedup. Thus, the KY
speedup is just a consequence of total-monotonicity. These new decompositions
will also permit us to efficiently solve the online problem given in subsection
1.4.

The second decomposition is indexed by the rightmost element seen so far.
See Figure 3.

Definition 8 For 1 ≤ j ≤ n define the (j + 1) × (j + 1) matrix Rj by

R
j
i,t =

{

w(i, j) + Bi,t−1 + Bt,j , if 0 ≤ i < t ≤ j;
∞ otherwise.

(13)
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Figure 3: The lefthand figure shows the Bi,j matrix for n = 12. Each column in
the Bi,j matrix will correspond to a totally monotone matrix Rj . The minimal
element of row i in Rj will be the value Bi,j . The righthand figure shows R8.
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Figure 4: The lefthand figure shows the Bi,j matrix for n = 12. Each row in
the Bi,j matrix will correspond to a totally monotone matrix Li. The minimal
element of row j in Li will be the value Bi,j . The righthand figure shows L8.
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Note that (7) immediately implies

Bi,j = min
0≤t≤j

R
j
i,t (14)

so finding the row-minima of Rj yields Bi,j for i = 0, . . . , j − 1. Put another
way, the Bi,j entries in column j are exactly the row minima of Rj .

The third decomposition is similar to the second except that it is indexed
by the leftmost element seen so far. See Figure 4.

Definition 9 For 0 ≤ i < n define the (n − i) × (n − i) matrix Li by

Li
j,t =

{

w(i, j) + Bi,t−1 + Bt,j , if i < t ≤ j ≤ n;
∞, otherwise.

(15)

(For convenience, we set the row and column indices to run from (i + 1) . . . n

and not 0 . . . (n − i − 1).) Note that (7) immediately implies

Bi,j = min
i<t≤n

Li
j,t (16)

so finding the row-minima of Li yields Bi,j for j = i + 1, . . . , n. Put another
way, the Bi,j entries in row i are exactly the row minima of matrix Li.

Lemma 5 If the function defined in (7) satisfies the QI then Rj (resp. Li) are
totally monotone matrices for each fixed j (resp. i).

Proof : The proofs are very similar to that of Lemma 3. To prove Rj is totally
monotone, note that if i + 1 < t < j, we can again use (11); writing the entries
from (11) in boldface gives

R
j
i,t + R

j
i+1,t+1

= [w(i, j) + Bi,t−1 + Bt,j ] + [w(i + 1, j) + Bi+1,t + Bt+1,j ]

≤ [w(i + 1, j) + Bi+1,t−1 + Bt,j ] + [w(i, j) + Bi,t + Bt+1,j ]

= R
j
i+1,t + R

j
i,t+1

and thus Rj is Monge (where we note that the right hand side is ∞ if i+1 6< t)
and thus totally monotone. To prove Li is totally monotone, if i < t < j then
we again use (11) (with j replaced by j + 1) to get

Li
j,t + Li

j+1,t+1

= [w(i, j) + Bi,t−1 + Bt,j] + [w(i, j + 1) + Bi,t + Bt+1,j+1]

≤ [w(i, j + 1) + Bi,t−1 + Bt,j+1] + [w(i, j) + Bi,t + Bt+1,j]

= Li
j+1,t + Li

j,t+1

and thus Li is Monge (where we note that the right hand side is ∞ if t 6< j)
and thus totally monotone. 2
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We point out that these two decompositions immediately imply a new proof
of Lemma 2 (Lemma 2.2 in [18]) which states that

KB(i, j) ≤ KB(i, j + 1) ≤ KB(i + 1, j + 1). (17)

To see this, note that KB(i, j + 1) is the location of the rightmost minimum of
row i in matrix Rj+1, while KB(i + 1, j + 1) is the location of the rightmost
minimum of row i+1 in matrix Rj+1. Thus, the definition of total monotonicity
(Definition 3) immediately gives

KB(i, j + 1) ≤ KB(i + 1, j + 1). (18)

Similarly, KB(i, j) is the rightmost minimum of row j in Li, while KB(i, j + 1)
is the location of the rightmost minimum of row j + 1 in Li. Thus

KB(i, j) ≤ KB(i, j + 1). (19)

Combining (18) and (19) yields (17), which is what we want. Since the actual
speedup in the KY technique comes from an amortization argument based on
(17), we have just seen that the original KY-speedup itself is also a consequence
of total monotonicity.

We have still not seen how to actually calculate the Bi,j using the Rj and Li.
Before continuing, we point out that even though the Rj are totally monotone,
their row minima cannot be calculated using the SMAWK algorithm. This is
because, for 0 ≤ i < t ≤ j, the value of entry R

j
i,t = w(i, j)+Bi,t−1+Bt,j , which

is dependent upon Bt,j which is itself the row-minimum of row t in the same
matrix Rj . Thus, the values of the entries of Rj depend upon other entries in
Rj which is something that SMAWK does not allow. The same problem occurs
with the Li.

We will now see that, despite this dependence, we can still use the LARSCH
algorithm [11] to find the row-minima of the Rj . This will have the added
advantage of solving the online problem as well.

At this point we should note that our decompositions Li could also be
derived by careful cutting of the 3-D monotone matrices of Aggarwal and Park
[2] along particular planes. Aggarwal and Park used an algorithm of Wilber [16]
(derived for finding the maxima of certain concave-sequences) to find various
tube maxima of their matrices, leading to another O(n2) algorithm for solving
the KY-problem. In fact, even though their algorithm was presented as a static
algorithm, careful decomposition of what they do permits using it to solve what
we call the left-online KY-problem. (By symmetry, we can also solve the right-
online KY-problem.) This never seems to have been noted in the literature,
though. In the next section, we present a different online algorithm, based on
our decompositions and the LARSCH algorithm.

4 Online Algorithms with the KY Speedup

To execute the LARSCH algorithm, as defined in Section 3 of [11] we need only
that the matrix X satisfy the following conditions:

12



1. X is an n × m totally monotone matrix.

2. For each row index i of X, there is a column index Ci such that for j > Ci,
Xi,j = ∞. Furthermore, Ci ≤ Ci+1.

3. If j ≤ Ci, then Xi,j can be evaluated in O(1) time provided that the row
minima of the first i − 1 rows are already known.

If these conditions are satisfied, the LARSCH algorithm then calculates all of
the row minima of X in O(n + m) time. We can now use this algorithm to
derive

Lemma 6

• Given that all values Bi′,j, i < i′ ≤ j ≤ n have already been calculated, all
of the row-minima of Li can be calculated in O(n − i) time.

• Given that all values Bi,j′, 0 ≤ i ≤ j′ < j have already been calculated,
all row-minima of Rj can be calculated in O(j) time.

Proof : For the first part, it is easy to see that Li satisfies the first two conditions
required by the LARSCH algorithm with Cj = j. For the third condition, note
that, for i < t ≤ j, Li

j,t = w(i, j) + Bi,t−1 + Bt,j . The values w(i, j) and Bt,j

are already known and can be retrieved in O(1) time. Bi,t−1 is the minimum of
row t − 1 of Li but, since we are assuming t ≤ j, this means that Bi,t−1 is the
minimum of an earlier row in Li, and the third LARSCH condition is satisfied.
Thus, all of the row-minima of the (n− i)× (n− i) matrix Li can be calculated
in O(n − i) time.

For the second part set X to be the (j+1)×(j+1) matrix defined by Xi,t =

R
j
j−i,j−t. Then X satisfies the first two LARSCH conditions with Ci = i−1. For

the third condition note that Xi,t = R
j
j−i,j−t = w(j− i, j)+Bj−i,j−t−1 +Bj−t,j .

The values w(j − i, j) and Bj−i,j−t−1 are already known and can be calculated
in O(1) time. Bj−t,j is the row minima of row t of X; but, since we are assuming
t ≤ Ci = i − 1 this means that Bj−t,j is the row minima of an earlier row in X

so the third LARSCH condition is satisfied. Thus, all of the row-minima of X

and equivalently Rj can be calculated in O(j) time. 2

Note that Lemma 6 immediately solves the “right-online” and “left-online”
problems described in subsection 1.4. Given the new values w(i, R + 1) for
L ≤ i ≤ R + 1, simply find the row minima of RR+1 in time O(R − L). Given
the new values w(L − 1, j) for L − 1 ≤ j ≤ R, simply find the row minima of
LL−1.

We have therefore just shown that any dynamic programming problem for
which the KY speedup can statically improve run time from Θ(n3) to O(n2)
time can be solved in an online fashion in O(n) time per step. That is, online
processing incurs no penalty compared to static processing. In particular, the
optimum binary search tree (as illustrated in 1.4), can be maintained in O(n)
time per step as nodes are added to both its left and right.
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5 Further Applications

In this section, we consider two extensions of the Knuth-Yao quadrangle in-
equality; the first was due to Wachs [14] in 1989 and the second to Borchers
and Gupta (BG) [6] in 1994.

In our presentation we will first quickly describe the Wachs and BG exten-
sions. We then sketch how our various results, i.e., the Dd, Rj and Li Monge
matrix decompositions and their consequences, can be generalized to work for
the Wachs and BG extensions.

Note: In order to maintain the consistency of our presentation we some-
times slightly modify the statements of the theorems in [6] and [14]. After our
presentations we will note the various modifications made (with the exception
of trivial renaming of variables).

5.1 The Wachs Extension

In [14] Wachs was interested in solving the system of dynamic programming
recurrences

Bi,j =

{

0, if i = j;
v(i, j) + min

i<t≤j

(

u(i, t − 1)w(i, j) + B̄i,t−1 + Bt,j

)

, if i < j, (20)

B̄i,j =

{

0, if i = j;
v(i, j) + min

i<t≤j

(

u(t, j)w(i, j) + B̄i,t−1 + Bt,j

)

, if i < j, (21)

where v(i, j), u(i, j) and w(i, j) were functions satisfying the QI and other
special properties.

Her motivation was to calculate the binary search tree corresponding to the
optimal comparison search procedure on a tape. A tape can only be accessed
sequentially, either from left to right, or from right to left (with no cost imposed
for changing the direction). The n records on the tape are sorted in increasing
order by their keys Key1, . . . ,Keyn. As in Knuth’s original problem, denote by
pl the weight that a search is for Keyl, and by ql the weight that a search is
for an argument between Keyl and Keyl+1. Key0 = −∞ and Keyn+1 = +∞.
Denote by xl the location of Keyl on the tape. Let x0 = x1 and xn+1 = xn. The
cost of moving the tape from Keyl1

to Keyl2
(l1 < l2) is the same as moving

from Keyl2
to Keyl1

, which is a(xl2 − xl1) + b where a and b are non-negative
constants. The binary search tree constructed by Wachs lies in the random
access memory but is only used to model the search procedure on the tape.
This means, the node that represents Keyl in the binary search tree does not
contain the key value of Keyl, but only contains xl and the two child pointers.
So, in the search step at Keyl, we need to move the tape from current location
to xl, then compare with Keyl, and then decide whether to choose the left or
right branch in the binary search tree.

Define

u(i, j) =

{

a(xj+1 − xi) + b, if j ≥ i − 1;
∞, otherwise,

(22)
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which is the cost of moving the tape from Keyi to Keyj+1 when j ≥ i − 1.
Define

w(i, j) =























j
∑

l=i+1

pl +
j

∑

l=i

ql, if i ≤ j;

−pi, if j = i − 1;
∞, otherwise,

(23)

which is the weight of the subtree from Keyi+1 to Keyj when i ≤ j, as in Knuth’s
original problem. Both u(i, j) and w(i, j) satisfy the QI. It is important to note
in this subsection that u(i, j) and w(i, j) satisfy the QI as equality on their
finite elements. That is, for i ≤ i′, j ≤ j′ and j ≥ i′ − 1,

u(i, j) + u(i′, j′) = u(i′, j) + u(i, j′), (24)

w(i, j) + w(i′, j′) = w(i′, j) + w(i, j′). (25)

We call (24) and (25) the quadrangle equality (QE), and we will say u(i, j) and
w(i, j) “satisfy the QE” instead of saying “satisfy the QE on finite elements”
since the infinite elements can be defined such that the QE is satisfied on all
elements.

Let Bi,j (resp. B̄i,j) be the optimal cost of searching the subtree from Keyi+1

to Keyj , where the tape is initially at xi (resp. xj+1). Wachs showed that Bi,j

and B̄i,j satisfy (20) and (21), when u(i, j) and w(i, j) are defined as (22) and
(23), and v(i, j) ≡ 0.

The naive method of evaluating all of the Bi,j and B̄i,j requires Θ(n3) time.
Using a generalization of the KY speedup Wachs is able to reduce this down to
O(n2). In our notation, her main results are

Lemma 7 (Theorem 3.1 in [14])
If (i) v(i, j) satisfies the QI, (ii) u(i, j) and w(i, j) satisfy the QE, (iii) all
three functions are monotone on the lattice of intervals and, furthermore, (iv)
if u(i, i − 1) = b is a non-negative constant independent of i, and w(i, j) ≥ 0
for all i ≤ j, then Bi,j and B̄i,j as defined by (20) and (21) satisfy the following
stronger version of the QI: For all 0 ≤ i ≤ i′ ≤ j ≤ j′ ≤ n,

Bi′,j + Bi,j′ − Bi,j − Bi′,j′

≥ [u(i, i′ − 1) − u(i′, i′ − 1)] [w(j + 1, j′) − w(j + 1, j)] ≥ 0
(26)

B̄i′,j + B̄i,j′ − B̄i,j − B̄i′,j′

≥ [u(j + 1, j′) − u(j + 1, j)] [w(i, i′ − 1) − w(i′, i′ − 1)] ≥ 0
(27)

Lemma 8 (Theorem 3.2 in [14])
If Bi,j and B̄(i, j) satisfy the QI, then

KB(i, j) ≤ KB(i, j + 1) ≤ KB(i + 1, j + 1)

KB̄(i, j) ≤ KB̄(i, j + 1) ≤ KB̄(i + 1, j + 1)

where KB(i, j) and KB̄(i, j) are the maximum splitting points at which Bi,j and
B̄i,j, respectively, attain their minimum values.
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Lemma 8 is then used in exactly the same fashion as was Lemma 2 by Knuth
and Yao, to speed up the solution of the DP recurrence from Θ(n3) to O(n2).
Since the u(i, j) and w(i, j), as well as v(i, j) ≡ 0 in Wachs’ tape searching
problem satisfy all of the conditions of Lemma 7, this solves Wachs’ motivating
problem in O(n2) time.

Setting u(i, j) ≡ 0 or w(i, j) ≡ 0 gives Bi,j = B̄i,j for all i, j. Further setting
v(i, j) be the w(i, j) in (7) collapses Wachs’ results down to the standard KY
speedup. Thus, Wachs’ results can be seen as an extension of KY.

Note: The indices here are slightly shifted from those in Wachs’ [14]. The
statement of Theorem 3.1 in [14] assumes that v(i, j) ≡ 0. The extension to ar-
bitrary v(i, j) satisfying the QI and monotonicity is noted in the last paragraph
of [14].

We now apply our schemes to the system of recurrences of Wachs’ problem.
We first provide the analogue to our old Dd matrices.

Definition 10 For 1 ≤ d ≤ n, define the (n − d + 1) × (n + 1) matrix Dd and
D̄d by

Dd
i,t =











v(i, i + d) + u(i, t − 1)w(i, i + d) + B̄i,t−1 + Bt,i+d,

if 0 ≤ i < t ≤ i + d ≤ n;
∞, otherwise,

(28)

D̄d
i,t =











v(i, i + d) + u(t, i + d)w(i, i + d) + B̄i,t−1 + Bt,i+d,

if 0 ≤ i < t ≤ i + d ≤ n;
∞, otherwise.

(29)

Lemma 9 If Bi,j and B̄i,j both satisfy the stronger QI given by (26) and (27)
in Lemma 7, u(i, j) and w(i, j) both satisfy the QE and are monotone, and
u(i, i − 1) = b is a non-negative constant independent of i, then Dd and D̄d as
defined by (28) and (29) are Monge, i.e., for all 1 ≤ d ≤ n, 0 ≤ i < n − d and
0 ≤ t < n,

Dd
i,t + Dd

i+1,t+1 ≤ Dd
i+1,t + Dd

i,t+1 (30)

D̄d
i,t + D̄d

i+1,t+1 ≤ D̄d
i+1,t + D̄d

i,t+1 (31)

Proof : Since (30) and (31) are symmetric, we will only show the proof of (30).
If i + 1 6< t or t 6< i + d, (30) is trivially true since the right hand side is ∞. So
we assume i + 1 < t < i + d. To save space, we write f(i, j) as fi,j , where f is
v, u or w. Define

Hi,t = vi,i+d + ui,t−1wi,i+d.

Then, Dd
i,t = Hi,t + B̄i,t−1 + Bt,i+d. From Lemma 7,

B̄i+1,t−1 + B̄i,t − B̄i,t−1 − B̄i+1,t ≥ (ut,t − b) (wi,i − wi+1,i) (32)

Bt,i+d+1 + Bt+1,i+d − Bt,i+d − Bt+1,i+d+1 ≥ (ut,t − b) (wi+d+1,i+d+1

− wi+d+1,i+d)
(33)
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Denote by QI(f ; i, i′, j, j′) the QI that fi,j + fi′,j′ ≤ fi′,j + fi,j′ where i ≤ i′,
j ≤ j′ and j ≥ i − 1, and by QE(f ; i, i′, j, j′) the corresponding QE (QI as
equality).

Hi+1,t + Hi,t+1 − Hi,t − Hi+1,t+1

= (ui,t − ui,t−1)wi,i+d − (ui+1,t − ui+1,t−1)wi+1,i+d+1

≥ (ui,t − ui,t−1) (wi,i+d − wi+1,i+d+1) [QI(u; i, i + 1, t − 1, t)]

= (ut,t − ut,t−1) (wi,i+d − wi+1,i+d+1) [QE(u; i, t, t − 1, t)]

= (ut,t − b) (wi,i+d − wi+1,i+d+1) [ut,t−1 = b] (34)

Combine (32) to (34),

Dd
i+1,t + Dd

i,t+1 − Dd
i,t − Dd

i+1,t+1

=
(

B̄i+1,t−1 + B̄i,t − B̄i,t−1 − B̄i+1,t

)

+ (Bt,i+d+1 + Bt+1,i+d − Bt,i+d

− Bt+1,i+d+1) + (Hi+1,t + Hi,t+1 − Hi,t − Hi+1,t+1)

≥ (ut,t − b) [wi,i − wi+1,i + wi,i+d+ (wi+d+1,i+d+1 − wi+d+1,i+d

− wi+1,i+d+1)]

= (ut,t − b) (wi,i − wi+1,i + wi,i+d − wi+1,i+d)

[QE(w; i + 1, i + d + 1, i + d, i + d + 1)]

≥ 0 [monotonicity of u, w]

which yields the lemma. 2

Note that
Bi,i+d = min

0≤t≤n
Dd

i,t and B̄i,i+d = min
0≤t≤n

D̄d
i,t. (35)

Thus, as in Section 2, we can use the SMAWK algorithm to evaluate all of the
Bi,j and B̄i,j in O(n2) time.

We now generalize the Rj and Li matrices.

Definition 11 For 1 ≤ j ≤ n define the (j + 1)× (j + 1) matrix Rj and R̄j by

R
j
i,t =











v(i, j) + u(i, t − 1)w(i, j) + B̄i,t−1 + Bt,j

if 0 ≤ i < t ≤ j,

∞ otherwise.
(36)

R̄
j
i,t =











v(i, j) + u(t, j)w(i, j) + B̄i,t−1 + Bt,j

if 0 ≤ i < t ≤ j,

∞ otherwise.
(37)

For 0 ≤ i < n define the (n − i) × (n − i) matrix Li and L̄i by

Li
j,t =











v(i, j) + u(i, t − 1)w(i, j) + B̄i,t−1 + Bi,t

if i < t ≤ j ≤ n,

∞ otherwise.
(38)

L̄i
j,t =











v(i, j) + u(i, t)w(i, j) + B̄i,t−1 + Bi,t

if i < t ≤ j ≤ n,

∞ otherwise.
(39)
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Lemma 10 If Bi,j and B̄i,j both satisfy the stronger QI given by (26) and
(27) in Lemma 7, u(i, j) and w(i, j) both satisfy the QE and are monotone,
and u(i, i − 1) = b is a non-negative constant independent of i, then the four
matrices Rj, R̄j, Li and L̄i as defined by (36) to (39) are all Monge matrices.

Proof : We will only show the proof for R and R̄; the proof for L and L̄ is
symmetric. We will show for all 1 ≤ j ≤ n, 0 ≤ i < j and 0 ≤ t < j,

R
j
i,t + R

j
i+1,t+1 ≤ R

j
i+1,t + R

j
i,t+1 (40)

R̄
j
i,t + R̄

j
i+1,t+1 ≤ R̄

j
i+1,t + R̄

j
i,t+1 (41)

If i + 1 6< t, (40) and (41) are trivially true since the right hand side is ∞. So
we assume i + 1 < t. Then, for (40),

R
j
i+1,t + R

j
i,t+1 − R

j
i,t − R

j
i+1,t+1

=
(

B̄i+1,t−1 + B̄i,t − B̄i,t−1 − B̄i+1,t

)

+ (vi+1,j + vi,j − vi,j − vi+1,j)

+ (ui+1,t−1wi+1,j + ui,twi,j − ui,t−1wi,j − ui+1,twi+1,j)

≥ ui+1,t−1wi+1,j + ui,twi,j − ui,t−1wi,j − ui+1,twi+1,j
[

QI(B̄; i, i + 1, t − 1, t)
]

≥ ui+1,t−1wi+1,j + (ui,t−1 + ui+1,t − ui+1,t−1)wi,j − ui,t−1wi,j

− ui+1,twi+1,j [QI(u; i, i + 1, t − 1, t)]

= (ui+1,t − ui+1,t−1) (wi,j − wi+1,j)

≥ 0 [monotonicity of u, w]

For (41),

R̄
j
i+1,t + R̄

j
i,t+1 − R̄

j
i,t − R̄

j
i+1,t+1

=
(

B̄i+1,t−1 + B̄i,t − B̄i,t−1 − B̄i+1,t

)

+ (vi+1,j + vi,j − vi,j − vi+1,j)

+ (ut+1,j − ut,j) (wi,j − wi+1,j)

≥ (ut,t − ut,t−1) (wi,i − wi+1,i) + (ut+1,j − ut,j) (wi,j − wi+1,j)
[

stronger QI(B̄; i, i + 1, t − 1, t)
]

= (ut,t − ut,t−1) (wi,i − wi+1,i) + (ut+1,t − ut,t) (wi,j − wi+1,j)

[QE(u; t, t + 1, t, j)]

= (ut,t − b) (wi,i − wi+1,i − wi,j + wi+1,j) [ut,t−1 = ut+1,t = b]

= 0 [QE(w; i, i + 1, i, j)]

which yields the lemma. 2

In the same way that Lemma 5 from Section 3 implies Lemma 2, our new
Lemma 10 implies Lemma 8.

Recall too that in Section 4, we saw how Lemma 5 implies that the LARSCH
algorithm can be used to solve the two-sided KY online problem in O(n) time
per step, and in O(n2) total time. Similarly, Lemma 10 implies that LARSCH
algorithm can be used to solve the two-sided Wachs online problem in O(n)
time per step, and in O(n2) total time.
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5.2 The Borchers and Gupta Extension

In [6], motivated by various problems, Borchers and Gupta address the following
dynamic programming recurrence: For 0 ≤ i ≤ j ≤ n and 0 ≤ r ≤ k,

Bi,j,r =







ci, if i = j;

min
i<t≤j

(

w(i, t, j) + aBi,t−1,f(r) + bBt,j,g(r)

)

, if i < j,
(42)

where f(r) and g(r) are non-negative integer functions and f(r) ≤ r, g(r) ≤ r.
In comparing this to (7) one notes many differences. As far as the analysis is
concerned the major difference is that w(i, j) is replaced by w(i, t, j), which is
dependent upon the splitting-point t and therefore needs to be moved inside
the “min”. Our previous definitions of the “quadrangle-inequality” and being
“monotone in the lattice of intervals” can not apply to a function of three
variables so we need to extend them as follows:

Definition 12 w(i, t, j) satisfies the generalized quadrangle inequality (QI) if
for all i ≤ i′ < t ≤ t′ ≤ j′ and t ≤ j ≤ j′,

w(i, t, j) + w(i′, t′, j′) ≤ w(i′, t, j) + w(i, t′, j′); (43)

and, for all i < t ≤ t′ ≤ j ≤ j′ and i ≤ i′ < t′,

w(i′, t′, j′) + w(i, t, j) ≤ w(i′, t′, j) + w(i, t, j′). (44)

Definition 13 w(i, t, j) is monotone in the lattice of intervals if for all [i, j] ⊆
[i′, j′] and i < t ≤ j, w(i, t, j) ≤ w(i′, t, j′).

Note that if, for all (i, j, t) satisfying i < t ≤ j, we have w(i, t, j) = w(i, j), then
our new definitions of the QI and monotonicity collapse down to Definitions 1
and 5.

The straightforward approach to compute all of the Bi,j,r would use Θ(kn3)
time, where k is the maximum value of the non-negative integer r and the non-
negative integer functions f(r) and g(r). Borchers and Gupta [6] show they
can be computed in O(kn2) time if w(i, t, j) satisfies the generalized QI and
monotone in the lattice of intervals:

Lemma 11 (Lemma 1 in [6])
For 0 ≤ i ≤ j ≤ n and 0 < r ≤ k, let Bi,j,r be defined by (42). Furthermore let
(i) a, b ≥ 1, (ii) for all r1 < r2, f(r1) ≤ f(r2), g(r1) ≤ g(r2), and (iii) ci ≥ 0
and w(i, t, j) ≥ 0. If w(i, t, j) satisfies the generalized QI and monotone in the
lattice of intervals, then, for every fixed r, Bi,j,r satisfies the QI, i.e., for all
i ≤ i′ ≤ j ≤ j′ and all r,

Bi,j,r + Bi′,j′,r ≤ Bi′,j,r + Bi,j′,r. (45)

Lemma 12 (Lemma 2 in [6])
If Bi,j,r satisfies the QI for every fixed r, then

KB(i, j, r) ≤ KB(i, j + 1, r) ≤ KB(i + 1, j + 1, r),

where KB(i, j, r) is the maximum splitting point at which Bi,j,r attains its min-
imum value.
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As in the KY case, this last lemma provides a Θ(n) speedup, i.e., from Θ(kn3)
to O(kn2).

If we set k = 0, a = b = 1 and w(i, t, j) = w(i, j) for all t, for some function
w(i, j), (42) collapses to (7), and the Borchers-Gupta result collapses to the
standard KY speedup.

Note: Lemma 11 of this paper is essentially the same as Lemma 1 of [6].
A reader of both papers would note that our statement looks different. The
reason for this is that Lemma 11 collects the various conditions required by
their Lemma 1 in one place, and then lists them in such a way as to easily
contrast their lemma with the KY and Wachs results.

y

(x0, y0)

(x1, y1)

(x2, y2)

(x3, y3)

(x4, y4)

(x5, y5)

x

(x7, y7)

(x6, y6)

Figure 5: The Rectilinear Steiner Arborescence connecting “slide-points”
(x0, y0), . . . , (x7, y7). The slide-points are terminals and denoted by solid cir-
cles, empty circles denotes the Steiner points. The directed edges can only go
up or right.

One interesting immediate application of this result pointed out in the
BG paper [6] is finding an optimal Rectilinear Steiner Minimal Arborescence
(RSMA) of a slide. A slide is a set of points (xi, yi) such that, if i < j, then
xi < xj and yi > yj . See Figure 5. A Rectilinear Steiner Arborescence is
a directed tree in which each edge either goes up or to the right. In [12] it
was shown that the minimum cost Rectilinear Steiner Arborescence connecting
slide-points (xi, yi), (xi+1, yi+1), . . . , (xj , yj) satisfies

Bi,j = min
i<t≤j

{(xt − xi + yt−1 − yj) + Bi,t−1 + Bt,j} . (46)

[12] solved this recurrence in O(n3) time. As noted in [6] it is actually easy to
see that in the RSMA problem, w(i, t, j) = xt − xi + yt−1 − yj satisfies the QI
and is monotone in the lattice of intervals so the BG extension automatically
speeds this up to O(n2) time.

We now generalize our decompositions to the BG recurrence.
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Definition 14 For 1 ≤ d ≤ n and 0 ≤ r ≤ k define the (n − d + 1) × (n + 1)
matrix Dd,r by

D
d,r
i,t =

{

w(i, t, i + d) + aBi,t−1,f(r) + bBt,i+d,g(r), if 0 ≤ i < t ≤ i + d ≤ n;

∞, otherwise.

(47)

Before proving that these matrices are Monge we must first prove the following
utility lemma:

Lemma 13 If w(i, t, j) satisfies the QI as defined by (43) and (44), then, for
all i ≤ i′ < t ≤ t′ ≤ j ≤ j′,

w(i, t, j) + w(i′, t′, j′) ≤ w(i′, t, j′) + w(i, t′, j). (48)

Proof : From (43),

w(i, t, j) + w(i′, t′, j) ≤ w(i′, t, j) + w(i, t′, j),

w(i, t, j′) + w(i′, t′, j′) ≤ w(i′, t, j′) + w(i, t′, j′).

From (44),
w(i′, t′, j′) + w(i′, t, j) ≤ w(i′, t′, j) + w(i′, t, j′),

w(i, t′, j′) + w(i, t, j) ≤ w(i, t′, j) + w(i, t, j′).

Summing up these four inequalities, subtracting equal parts from both sides
gives

2
[

w(i, t, j) + w(i′, t′, j′)
]

≤ 2
[

w(i′, t, j′) + w(i, t′, j)
]

,

which yields the lemma. 2

We now continue and show:

Lemma 14 If the function Bi,j,r defined in (42) satisfies the QI for fixed r, and
w(i, t, j) satisfies the generalized QI, then, for each 1 ≤ d ≤ n and 0 ≤ r ≤ k,
Dd,r as defined by (47) is a Monge matrix, i.e., for all 0 ≤ i < n − d and
0 ≤ t < n,

D
d,r
i,t + D

d,r
i+1,t+1 ≤ D

d,r
i+1,t + D

d,r
i,t+1. (49)

Proof : If i + 1 6< t or t 6< i + d, (49) is trivially true since the right hand side
is ∞. So we assume i + 1 < t < i + d. Since Bi,j,r satisfies the QI,

a
(

Bi,t−1,f(r) + Bi+1,t,f(r)

)

≤ a
(

Bi+1,t−1,f(r) + Bi,t,f(r)

)

,

b
(

Bt,i+d,g(r) + Bt+1,i+1+d,g(r)

)

≤ b
(

Bt,i+1+d,g(r) + Bt+1,i+d,g(r)

)

.

From Lemma 13,

w(i, t, i + d) + w(i + 1, t + 1, i + 1 + d) ≤ w(i + 1, t, i + 1 + d) + w(i, t + 1, i + d).

Summing up these three inequalities yields (49). 2
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Thus, as in Section 2, we can use the SMAWK algorithm to evaluate all of the
Bi,j in O(n2) time.

We now again generalize the Rj and Li matrices:

Definition 15

R
j,r
i,t =

{

w(i, t, j) + aBi,t−1,f(r) + bBt,j,g(r), if 0 ≤ i < t ≤ j;

∞, otherwise.
(50)

L
i,r
j,t =

{

w(i, t, j) + aBi,t−1,f(r) + bBt,j,g(r), if i < t ≤ j ≤ n;

∞, otherwise.
(51)

Lemma 15 If the function Bi,j,r defined in (42) satisfies the QI for fixed r,
and w(i, t, j) satisfies the generalized QI, then for each 1 ≤ i < j ≤ n and
0 ≤ r ≤ k, Rj,r and Li,r as defined by (50) and (51) are Monge matrices, i.e.,
for all 0 ≤ i < j and 0 ≤ t ≤ j,

R
j,r
i,t + R

j,r
i+1,t+1 ≤ R

j,r
i+1,t + R

j,r
i,t+1, (52)

and for all i < j < n and i < t < n,

L
i,r
j,t + L

i,r
j+1,t+1 ≤ L

i,r
j+1,t + L

i,r
j,t+1. (53)

Proof : We only give the proof of Rj,r, as the proof of Li,r is symmetric. If
i + 1 6< t, (52) is trivially true since the right hand side is ∞. So we assume
i + 1 < t. Since Bi,j,r satisfies the QI,

a
(

Bi,t−1,f(r) + Bi+1,t,f(r)

)

≤ a
(

Bi+1,t−1,f(r) + Bi,t,f(r)

)

.

From (43) of Def. 12,

w(i, t, j) + w(i + 1, t + 1, j) ≤ w(i + 1, t, j) + w(i, t + 1, j).

Finally, it is trivially true that

b
(

Bt,j,g(r) + Bt+1,j,g(r)

)

= b
(

Bt,j,g(r) + Bt+1,j,g(r)

)

.

Summing up these three inequalities yields (52). 2

Again just the same way as Lemma 5 from Section 3 implied Lemma 2, our
new Lemma 15 implies Lemma 12.

As before, Lemma 15 implies that the two-sided online BG problem could
be solved in O(kn) time per step using the LARSCH algorithm. For example,
this implies that the two-sided online minimum cost Rectilinear Steiner Ar-
borescence problem (in which points could be added to the slide one at a time
from the left and the right) can be solved in O(n) worst-case time per step.
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