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In 1990, Berger and Yeung [1] introduced a new variant of this
problem. They defined geasibleor 1-endedcode to be a prefix-free
code in which every word is restricted to end withla™Such codes
are used, for example, in the design of self-synchronizing codes [3]
and testing. Giver®, the problem is to find the minimum-coktended
code. Fig. 1 gives some examples.

In their paper, Berger and Yeung derived properties of such codes,
such as the relationship of a min-cost feasible code to the entropy of
P, and then described an algorithm to construct them. Their algorithm
works by examining all codes of a particular type, returning the min-

Abstract—The generic Huffman-Encoding Problemof finding a min-  imum one. They noted that experimental evidence seemed to indicate
imum cost prefix-free code is almost completely understood. There still that their algorithm runs in time exponential+#n A few years later,
tel")l(iSt hmagy Vafiafgs °f_thits problem V‘t’:]“cth areh ”C}t tf]s Weg U”d%rStOOg' Capocelli, De Santis, and Persiano [4] noted that the min-cost code
e s s v ot e sont €A be shown 10 blong (Gaopersubset of he code-set examined by
algorithms known for finding such codes running in exponential time. Bergerand Yeung. They, therefore, proposed a more efficient algorithm
In this correspondence we develop a simpl@(=n?) time algorithm for ~ that examines only the codes in their subset. Unfortunately, even their
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Optimal “ 1"-Ended Binary Prefix-Free Codes
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solving the problem. restricted subset contains an exponential number of écxtetheir al-
Index Terms—Dynamic programming, one-ended codes, prefix-free 9orithm also runs in exponential time.
codes. In this correspondence we describe another approach to solving the

problem. Instead of enumerating all of the codes of a particular type it
uses dynamic programming to find an optimum on®im?) time.
I. INTRODUCTION

In this correspondence we discuss the problem of efficiently con- II. TREES AND CODES
structing minimum-cost binary prefix-free codes having the property
that each codeword ends with &.*

We start with a quick review of basic definitions. @deis a set
of binary wordsC' = {w;, w2, -, w,} C {0,1}*. Awordw =
0i, 04y - - 05, IS aprefix of another wordw' = o} oi, -0}, if w
is the start ofw’. Formally, this occurs if < ' and, for all; < I,
oi; = o}.. For example)0 is a prefix of00011. Finally, a code is said

to beprefix-freeif for all pairsw, w' € C, w is not a prefix ofu’. Definition 1: Let T be a binary tree. A leaf € T is aleft leafif

Let” = {p1,p2,ps,---.pn } be adiscrete probability distribution, it is a left child of its parent; it is aight leafif it is a right child of its
that is,Vi, 0 < p; < 1 and}’; pi = 1. The cost of code” with  parent.
distribution P is

There is a very well-known standard correspondence between
prefix-free codes and binatyrees. In this section we quickly dis-
cuss its restriction to thé-ended code problem. This will permit
us to reformulate the min-cost feasible code problem as one that
finds a min-cost tree. In this new formulation we will require that
> p2 > -+ > pa > 0 butwill no longer require thal ", p; = 1.

Thedepthof a nodev € T', denoted bylepth (v), is the number of
Cost (C, P) = Z |w;| - pi edges on the path connecting the root to
i We build the correspondence between trees and codes as follows.
FirstletT be a tree. Label every left edgeThwith a0 and every right

wherelw| is the length of wordw; Cost (C', P) is, therefore, the av- edge with al. Associate with a leaf the wordw(v) read off by fol-

erage length of a word under probability distributidh The prefix- .

9 g L - P ] y - p . lowing the path from the root &f down tov. Now letwy, vz, - - -, v, be
coding problems, givenP, to find a prefix-free cod€’ that minimizes ihe set of right leaves &F. ThenC'(T) = {w (1), w(vs) w(on)}
Cost (C, P). It is well known that such a code can be found in . - ) = AWAOL), WhT2), "5 WA,

ost (€ P) Is the code associated wifh. Note that this code is feasible since all
of its words end with 4. Note also that there can be many trees corre-
Manuscript received March 8, 1998; revised October 6, 1999. This work wgponding to the same feasible code. See Fig. 2 for an example.
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Fig. 2. Two trees with deptt having seven right leaves. Note that these two trees both correspond to thg@é6de 001, 01, 1001, 101, 1101, 111}. The
left tree is nonfull while the right one is full.

Fig. 3. The left tree is nonfeasible because, at d8ptttontains both an internal right nodada left leaf. The right tree is feasible.

Now letC = {w1, w2, -, w, } be any feasible code. L&t(C') be the weights are, 6, 5, 4, 3, 2, 1, then the trees in Fig. 2 have cost
the smallest tree that contains all of the paths corresponding to;the 2- 74+ 3 - (64+5+4) +4-(3+ 2+ 1) = 83.
SinceC' is prefix-free we have that the right leavesiafC') are exactly The Optimal Feasible Coding Problem is now seen to be equivalent
the nodes corresponding to the wordsCaf to the following tree problem.

Let T be a tree withn right leaves labeled, vs,---,v,, P =

{pr,p2sps -~ pn} and define Definition 2: The Optimal Tree ProblenGivenp, > p2 > --->py
Ll ’ Ll s n

find a treel” with n right leaves with minimum cost over all trees with
Cost (C,T) = Zdepth (vi) - pi. n right leaves, i.e.,

o ) . ) cost (T') = min{cost (T) : T hasn right leaves.
This is theweighted-external path lengtf T restricted to right leaves

(external nodes). In all that follows = {p1,p2, ps,- -+, pa} Will be We end this section by pointing out that there must be an optimal
considered fixed and the dependence of quantities suchasC,T)  iree with a very specific structure.
on P will be implicitly assumed.

Now suppose thaf' corresponds to some codéandv € T is a Definition 3: A tree T is full if every internal node ifl” has two
right leaf corresponding to € C'; by definition depth (v) = |w|. ~ children.

Thus AtreeT isfeasiblef T is full and it also has the additional property:
Cost (C,T) = Zdeth (v;) - pi if w € T is aright node and internal thall left nodesv € T with
3 depth (v) = depth (v) are also internal.
_ Z lw;| - p; = Cost (C, P). Fig. 2 illustrates a nonfull tree and a full one. Fig. 3 illustrates a

nonfeasible tree and a feasible one.

Since every feasible code corresponds to some tree(s) and every trgeemma 1: For every probability distribution
corresponds to one feasible code this last equation tells us that we can P (ot oo ee ]
find a min-cost code by constructing a min-code tree and returning the = {pr.p2pscpnd
feasible code corresponding to it. there exists an optimal trég that is feasible.
There is a technical problem that we need to address befor
proceeding. It is that our definition of cost formally requires that th
right leaves ofT" be labeledl, 2, -- -, n. Different labelings of the
right leaves could lead to different costs. We note though that, fo
particular tree, the minimum cost over all labelingsaliwaysachieved
when the highest node in the tree is assigned the largest weigtite
second highest node the second highest wegighand in general the  Our approach will be a modification of one developed in [7]. The
ith highest node (with height ties broken arbitrarily) thk weight problem considered there was to build a min-dogsided treg(tree
pi. Since we are interested in finding a minimum cost tree we wilh which edges have different length). The solution was to build trees
always assume that the labeling used for any particular tree is fn@m the top, root node, down, accumulating the cost as levels were
canonical labeling withy; being theith highest node. For example, if added. We will follow the same approach in this correspondence to

The proof of the lemma is straightforward but technical. To avoid
Ereaking the flow of the correspondence it has, therefore, been rele-
rggted to the Appendix.

I1l. TRUNCATED TREES AND SIGNATURES
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To = Trunce(T) Ty = Trunc, (T")
sige(To) = (0,1) sigy (Th) = (0,2)

VARNAR

Tp = Trunce(T) T3 = Truncs(T) =T
sigy(T2) = (1,3) sig3(T3) = (4,3)

Fig. 4. Thetreedy, T, T», T5 are the truncations of the right tree in Fig. 2 which we will cBllIEachT’; is an:-level tree for that value of and the dotted
horizontal line across each tree is the truncation level. NoteTthat Trunc,(T") with sig,(T4) = (7,0).

construct min-cost feasible trees. Since Lemma 1 guarantees that tieélse number of right leaves ifi with depth at most and
thus constructed will be min-cost trees amailgtrees we will have
solved the problem.

To use this approach we need to define the following. is the number of right leaves ifi at leveli + 1 (bottom level). Note
that there ar@b (left and right) leaves at leveél+ 1.

Now letT be ani-level tree withsig, (7)) = (m,b) with m < n.
The:-level partial costof 7" is

b= |{v €T :visarightleafdepth (v) =i+ 1}

Definition 4: Let T be a tree and a nonnegative integer. The
ith-level truncation off" is the tre€Truuc,; (1) containing all nodes
in T" of depth at most + 1

Trunc;(T) = {u € T : depth (u) < i+ 1}. Costi(T) = ;depth (vi) -peti- t_Erlpt @
whereuvy, - - -, v,,, are then highestright leaves dF ordered by depth,

A treeT is ani-level treeif all the internal nodes € T satisfy

depth (U) < g e.g., those Withlt‘pth < i.

Note thatCost;(T') is not only dependent upof but also upon
See Fig. 4 for examples. We note tHaunc; (') is always ari-level  i. For example, the right tre€ in Fig. 2 is both a three-level and a
tree and that truncation preserves feasibility, i.€l; i§ a feasible tree four-level treesig, (7)) = (4, 3) andsig, (T') = (7,0). Its associated
thenTrunc, (T') is also a feasible tree. We also note th&f ifias depth i-level costs are
dthenVi > d — 1, Trunc,(T) = T. )
The dynamic programming algorithm will strongly use the idea of Costs (1) = 2p1 + 3(p2 + p3 +pa) + 3(ps + s +p7)
subproblem optimality, i.e., if a feasible tr@eis optimal then all of Costy(T) = 2p1 + 3(p2 + p3 + pa) + 4(ps + ps + p7)
its i-level truncationsItunc, (7') are also optimal. In order for this _ . .
. - ; which are obviously not the same.
observation to make sense we must define what it means for a feasible
i-level tree (that might have fewer thanright leaves) to be optimal. ~ We can now define what it means for a tree with fewer thaight
That is, we must define a cost function dfevel trees. leaves to be optimal.

Definition 5: Let T be a feasiblé-level tree. The-level signature Definition 6: Let (m,b) be a valid signature, i.em,b > 0. Set
of T is an ordered pair OPT [m, b] to be the minimum cost over alland all feasible-level
treesT” with signature(mn, b). More precisely

sig,(T) = (m, b) OPT [m, b] = min{Cost;(T) : 3. T,

in which T is a feasible-level tree withsig, (T') = (m,b)}

A tree T is min-costor optimal if, for someji, it is ani-level tree,
m = |{v € T : vis arightleafdepth (v) < i| sig,(T') = (m,b) andCost;(T) = OPT [m, b].
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Fig. 5. The tree in the top row is our original tré&éwhich is a one-level tree witkig, (T") = (0,2). The next two rows are the four possible expansions
Expand (T,1), Expand (T. 2), Expand (T, 3), andExpand (T, 4). We do not dravExpand (T, 0) which is simplyT".

Note that ifT is a feasible tree with right leaves and depth < ¢ In Fig. 5 we see a tree and all of its expansions.
thensig; (T') = (n,0) so, ifT" is an optimal feasible tree (withright Oncey is fixed bothCost; 1 (1), the number of nodes at levie}- 2,
leaves), then and the signatursig,  , (7") of 7" can be found.
OPT [n, 0] = Cost;(T") = Zdepth (01) - pe. lLemma 2: Supposé’ i_s ani-level tree Withsig,;gr) = (m, b). Let
= T" = Expand (T, ¢) be itsqth expansion. Theil” is ani + 1-level
Thus OPT [n, 0] is exactly the cost of the optimal tree that we ardree with
trying to calculate. We will calculate its value by using a dynamic pro- Costisr (T') = Costi(T) + Z e

gramming approach to fill in the OPT table. Backtracking the dynamic
programming will permit us to construgt’.

Before continuing we briefly digress to explain why we define@nd
OPT [m, b] to be the minimum cost only amorfigasibletrees and not
among all tree8. The reason is that we will be building optimal trees
level-by-level. Since Lemma 1 tells us that our final result is a feasible « if » +1 < ¢ < 2b, thensig, , (T") = (m + 2b — q,q).
tree and we know that all truncations of feasible trees are feasible trees . ) e , ,
our construction will work by building feasible trees level by level, . ~T00f Let (m',b') = sig, , (T"). SinceI" has exactlyn’ —m
always storing the min-cost ones. right leaves on level + 1 we find

m<t<n

 if 0 < ¢ < bthensig, 1 (T') = (m +b,q),

Now suppose thdf is ani-level tree withsig, (T') = (m,b). What m’ n
feasible(i + 1)-level trees cafi’ be grown into? The only way to grow Costiy1(T') = Z depth(ve) - pe+ (i +1)- Z Dt
afeasible tree is by making some of tHienodes on level + 1 internal t=1 t=m’+1
and making the remainder of the nodes leaves. From Lemma 1 we know m’
that all of the left nodes must be made internal before any of the right = Zdepth(m) pe+(E+1)- Z P
ones are. We therefore define Brpansioroperator as follows. t=1 t=m+1
Definition 7: LetT" be ani-level tree withsig, (T') = (m,b). Let +(i+1)- Z P
0 < ¢ < 2b. Thegqth expansion of’ is the tree t=m/+1
T" = Expand (T, q) = Cost;(T) + Z Pt
constructed by making of the leaves at level+ 1 (bottom level) of metsn
T internal nodes as follows: The proof of the second part of the lemma follows directly from the
definition of theExpandoperator. O

* if ¢ < b, makeq left nodes at level + 1 internal.
This lemma tells us that to calculate the extra cost added by adevel-

. ?f ¢ > b, make alb leftnodes ang — b right nodes atlevel+ 1 expansion off' and the signature of the new expanded tree it is not
internal. necessary to knoW or i but onlysig;(7). We can, therefore, de-

3The algorithm to be presented actually remains correct even if we optimizgge arecurrence relationship for calculatiof’T'[. ]. In what follows

overall trees and not just all feasible ones. The reason for the restriction4d! (7', ') is exactly the set of signaturés:, b) that have some ex-
feasible trees is that it makes the result both easier to understand and provgpansion with signaturém’,b’).
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Fig. 6. These three trees have the property ¢hat(S:) = sig,(S2) = sig,(Ss) = (4,3). In fact, these three trees are the only way to realize the signature
(4,3) and thusM (4, 3) = {(0,4),(1,3).(3,2)}.

Lemma 3: Set Such ag must exist by the definition of\(m’,b'). Let T" =

Expand (T, ¢). Then from Lemma 2ig, ,(T") = (m',") and

M(m' b)) = {(m,b) : (m,b) # (m',b) and
Jgst.0<g<band(m',b") = (m+0b,q)
ordgstb+1<¢<2b

Cost; 41 (T") = Cost,; (T) + Z pe

mt<n

= OPT [m,b] + Z De-

and(m',b') = (m—|—2b—q,q)}. m<i<n
Then Since this is true for everym,b) € M(m',v") we thus find that
OPT[0,1] =0 2 .
[0.1] @ OPT [m/,b'] < min OPT [m, b] + Z Dt

(m,BYEM(m,b) m<t<n

and, for(m', ") # (0,1) -

completing the proof. O
OPT[m', 0] = min OPT [m, b] + pt ». (3
(bl (m,b)EM(m’ b') [m. 9] Z b ®) IV. THE ALGORITHM

m<t<n

o ] L Using Lemma 3 we can directly design an algorithm for calculating
Proof: Fig. 6 illustrates an example oé (", b'). the OPT[,] values and constructing an optimal tree. Code for the al-

~ To prove (2) we note that thenly feasible tree with signatui®, 1) gorithm is given in Fig. 7 and a worked example is shown in Table |

is theO-level tree consisting of the root and its two children and thigp, q Fig. 8. In the algorithm, the entfy[’, b'] stores the paifin., b) €

tree had)-level costo. M(m',b') such that
To prove (3) first suppose th&PT [m', b'] is realized by an + 1- o
level treeT” with sig, (T") = (m/,b’) and OPT [m',b'] = OPT [m.b] + Z .

Costi1 (T') = OPT [m', ¥']. s
We will now prove the correctness of the algorithm and then show
Now set? = Trunc;(7") and letg be the number of internal nodesthat it runs inO(»?*) time. We start by recalling the definition of a
onlevel: +1 of T'. Also set(m, b) = sig,(T'). Then, by the definition lexicographical orderingon pairs.
of the TruncandExpandoperators we have th# = Expand (T, q).

i . Y f H inAL
Thus from Lemma 2 and the definition 6fPT [, ] Definition 8: Let (m,b), (m’,b") be given. Ther{m, b) is lexico

graphically smalletthan (', v")
OPT [n',b'] = Costig1 (T)

(m,b) < (m',b")
=Cost:(I)+ Y. m

m<t<n if and only if
ZOPT[m’b]—i_m;Snpt m<m' or m=m' and b<¥.
S i OPT [m.b] 4 Z b It is now easy to see that
(m.byeM(m’,b7) metn Lemma 4: Let (m,b), (m’,b’) be signatures such thét,b) €
M(m', V). Then(m,b) < (m’,b').
To see the other direction lét, b) € M(m/,b") and sefl” to be such Proof: This follows from the definition ofA1(m/,b"). We first
that point out thath # 0 because it is impossible fom,b) € M(m',b")
if b = 0. Thusb > 1.
sig;(T) = (m.b) and OPT [m,b] = Cost;(T). There are two cases. In the first cage < b such that(m',0") =
(m+0,q).Inthis case, sinck > 1 we have thatn < m’ so(m,b) <
Let ¢ be such that (m',0").

In the second casély with b + 1 < ¢ < 2b such that(m',b') =
sig, ,; Expand(T, ¢) = (m',b"). (m+2b—q,q). Inthis case, iy < 2b then againn < m’ som < m’
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The Algorithm

Initialize the OPT],] table

Ym,n, 0<m<n, 1<b<n—m,
Set OPT[m, b] := oc;

Vm,0<m <nSet Pyi=3 cicn Pt

OPT0,1] := 0; OPT[n,0] := o0;

Calculate OPT],] values
form:=0ton
forb:=1ton-m
Process the pair (m,b)
forg:=0tob
X :=min (OPTm,b] + Ppn, OPT[m + b, q])
if X < OPTIm + b, 4]
{OPTim + b,q) := X; Q[m +b,q] := (m,b);}
forg:=b+1to2b
X :=min (OPT[m,b] + P, OPTIm + 2b - q,q])
if X < OPTim + 2b—q,q]
{OPTIm + 2b - q,q] := X;
Q[m +2b- g, q] = (m7 b)a }

Backtracking and outputting tree

m:=n; b:=0;

repeat {(m,b) = Q[m,b]; print ¢; }
until (m,b) = (1,0)
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Fig. 8. An optimal tree for. = 7 with weights7, 6, 5, 4, 3, 2, 1. This tree
is derived from Table I.

Note that if(mm,b) € M(m/,b") then eithe(m’,b") = (m + b, ¢)
or (m',v') = (m + 2b — ¢,q). In both of these cases we find that
m+b < m'+0b'. Now note that the set of signatures processed by the
algorithm is exactly

M

{(m,0):0<m<n, 0<b<n—m}
={(m,b):0<m,b, m+b<n}.

Thus if (m', V") € M and(m,b) € M(m',b') thenm +b < m' +
b < nso(m,b) € M. Therefore M(m',b') C M.

Fig. 7. The dynamic programming algorithm plus backtracking. The Next note that the algorithm actually processes the signatures in
algorithm will output the number of right leaves on every level of some optimal 4 lexicographical orderso, from Lemma 4all signatures in

tree.
TABLE |
VALUES FORn = 7 WITH WEIGHTS7, 6, 5, 4, 3, 2. 1
b=0 1 2 3 4 5 6 7
m=0 00 0 28 00 56 ) 00 | 00
(0,1 (0,2)
1 28 28 49 56 70 ) 77
(0,1)] (0,1 | (1,1) | (0,2) | (1,2) (1,3)
2 49 49 56 70 71 77
(1,1 1,1 ](0,2) | (1,2) | (2,2) | (1,3)

3] 64| 64| w0 71| 77
201 2Y] 1,222 ]1,3)
Z I 5 W B 6 O
2,2) | 2,2 (2,2) | (1,3)
51 77| 77| 80
CRRNCR N NCR))

6] 77| 77
4,2) | (4,2)

7| 78
(6,1)

so(m,b) < (m',b"). If ¢ = 2bthenm’ = m + 2b — ¢ = m but then

b < 2b =1’ so we still havegm,b) < (m',b').

We now show that the algorithm correctly fills in thEPT (m, b)

M(m',b") are processed befofe:’,b’') and no such signatures are
processed after it.

Correctness now follows by induction dme’, "), the induction
order being the lexicographic order. The induction hypothesis is that,
at the time immediately preceding the processingnef, ) the value
of OPT [m, b] will already have been correctly set

The first signature processed(is 1) and sinceDPT [0, 1] is orig-
inally set to0 and never changed afterwards, the statement is correct
for (0,1). Now suppose all signatures preceding’,b') in the lex-
icographic order have already been processed and it is now the turn
of (m',d"). In particular, this implies that allm,b) with (m,b) €
M(m',b") have already been processed. By the induction hypothesis,
at the time such afmn, b) was processe@PT [m, b] was already cor-
rectly set. Thus the statement executed at the time of processirig
was equivalent to

OPT [m',b'] = min{OPT [m',b'], OPT [m, b] + P, }.

Since this is done for allm,b) € M(m',b’) but no other(m,b)’s,
the value stored iDPT [m', '] is exactly

OPT[m,b] + Z Pt P

min
(m,byeM(m’ b’
T () m<t<n

completing the proof that th@PT [, ] table is filled in correctly.

values (using a standard dynamic programming correctness groof). While filling in the table, the algorithm also keeps track of where the

optima came from by storing the approprig}e»’, '] = (m,b) such

4We quickly sketch a second way of proving this, one similar to that developélat
in [7]. Essentially, one can create a weighted grépk (V, E) in whichV' in
the set of all signatures ar{@m, b), (m’,b’)) € E if (m,b) € M(m’, V).
The weight of this edge is defined to B€,. _, ., p«. ThenOPT [m, b] can
be shown to be equal to the cost of timnimum-cost patitonnecting(0, 1)
to (m,d) in G. The graphG can be shown to be acyclic and the algorithm - i i
presented in Fig. 8 is exactly the code for finding shortest paths in a directedAfter filling in the table, the algorithm then uses th#, | table to
acyclic graph, see, e.g., [8]. backtrack and print out the number of right nodes on every level of the

OPT[m/,b'] = OPT[m,b] + Z Dt-

m<t<n
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A>K -

Fig. 9. Cases | and Il in the proof.

fﬂguﬂ oo |

Fig. 10. Cases lll and IV in the proof.

Fig. 11. lllustration of why some optimal tree must be feasible.

optimal tree. Since the tree is full with every right node being matcheynamic programming on an appropriate subproblem space. The main
by some left node this gives the full tree and we are done. open question is whether it is possible to improve the algorithm, per-
Finally, we note that for each of th@(n?) signaturegsn, b) gener- haps even t@(n) time, matching the linear time used by the standard
ated, the algorithm do&3(n) work (the twofor loops overg). Thus Huffman-encoding algorithm.
the algorithm runs irD(»?) total time.
Table | contains a worked example for= 7 with weights7, 6, APPENDIX
E’ 4, 3,2, 1..The top element in .each enFry @PT [m. b] and the In this section we prove Lemma 1, that there is always a feasible
ottom one i)[m, b]. Theoo entries are signatures that are unreal- .
izable by any feasible tree. The boldface entries are the ones that (E)(?rt-'maI tree.
respond to the optimal tree found by the backtracking section of Fig. 7. Proof (of Lemma 1): We first show that there exists an optimal
Reading them off we find that the number of right nodes on the leveflsl tree. If T is a tree and: € 7" an internal node we will calt badif
of the optimal tree are, starting from the top level and working dowit,has only one child. If a tree has no bad nodes it is a full tree.
1,2, 2, 2, 1. The tree itself can be seen in Fig. 8. Note that this tree Let B be the minimal number of bad nodes an optimal tree can have.
has (optimal) cosT8 as compared to the trees in Fig. 2. These haué B = 0 there is a full optimal tree and we are done. Otherwise, let
cost83 for the same weights T be an optimal tree witl3 bad nodes and the fewest total number
of nodes among all optimal trees wif® bad nodes. We will show a
contradiction by building a new optimal tree with fewer bad nodes or
the same number of bad nodes and fewer total nodes.
In this correspondence we have shown that it is possible to calculet « be a highest bad node ifi. Note thatu cannot be the root
late optimal one-ended binary prefix-free codesifn®) time im-  because if the root were bad we could simply erase it; its (only) child
proving upon the old exponential time algorithms. Our approach uséetn becomes the root of the new tree and, since the depth of every

V. CONCLUSION
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leaf has been decreasedhythis new tree is cheaper than the old one, A Quantum Analog of Huffman Coding
contradicting optimality.
In what follows refer to Figs. 9 and 10 for illustration as we do aSamuel L. Braunstein, Christopher A. Fuchs, Daniel Gottesman, and
case-by-case analysis. Hoi-Kwong Lo
(Case 1) Ifu had a right child but no left one we could simply add
its left c_hil_d to getaheyy tree with the same cost but fewer_ bad nodes, Abstract_We analyze a generalization of Huffman coding to the
Cont.radlctlrlg the definition of". Thusu must have a left chila but quantum case. In particular, we notice various difficulties in using
no right child. There are two cases. instantaneous codes for quantum communication. Nevertheless, for the
(Case Il) Ifv is the root of some tre®’ then we could mov&” tobe  storage of quantum information, we have succeeded in constructing a
rooted at the right child of and leaver a leaf. The new resulting tree Huffman-coding-inspired quantum scheme. The number of computational

has the same cost but fewer bad nodes, again leading to a contradicfifiifs In the encoding and decoding processes ¥ quantum signals
. R can be made to be of polylogarithmic depth by a massively parallel
Otherwise 'Sj itself a Iegf. Let: be the pa_lrent ok ) implementation of a quantum gate array. This is to be compared with the
(Case Ill) Ifu is a left child ofx then we simply remove, leaving  O(IN?) computational steps required in the sequential implementation by
u as a left leaf. The cost of the resulting tree is the same as before 6leve and DiVincenzo of the well-known quantum noiseless block-coding
it has one fewer bad node. Again a contradiction. scheme of Schumacher. We also show th&®(IN?(log IN)%) sequential

. . - j ) - computational steps are needed for thecommunication of gquantum
(Case IV) Otherwisey is the right child of and removing: could information using another Huffman-coding-inspired scheme where the

add a new right child to the tree, possibly even raising its cost. Thei@nder must disentangle her encoding device before the receiver can
fore, in this case we remowmthu andv. Sincex was not bad before perform any measurements on his signals.

(because itis higher thar) remo"'“g" does not a‘?'d anew right Iegf Index Terms—Data compression, Huffman coding, instantaneous codes,
to the tree so the cost of the resulting tree remains the same. BinGg,antum coding, quantum information, variable-length codes.
has now become bad the new tree still Bakad nodes but it has fewer
total nodes thafi’, again causing a contradiction.
We have just seen that there exists some optimal fullfre&e now I. INTRODUCTION

prove thatl is feasible. See Fig. 11 for illustration. There has been much recent interest in the subject of quantum infor-
Supposéd is not feasible. Then there exists some right internal noggation processing. Quantum information is a natural generalization of
v €T and leftleafu € T such thatlepth (v) = depth (u). LetS be  cjassical information. It is based on guantum mechanics, a well-tested

the subtree rooted ai y the deepest right node€ 5, andz the left  scientific theory in real experiments. This correspondence concerns
sibling of y (= andy must exist becausE is full). Also suppose that guantum information.

probability p; is assigned tg. Now detachS from v and attach itto  The goal of this correspondence is to find a quantum source coding

u, erasey and assigp; to nodev. Denote the new tree thus created bcheme analogous to Huffman coding in the classical source coding
T". Since the only probability whose assigned right leaf has changeqigory [3]. Let us recapitulate the result of classical theory. Consider

pi we find that the simple example of a memoryless source that emits a sequence of
independent and identically distributed signals each of which is chosen
Cost (T") = Cost (T) + (depth (v) — depth (y))p;. from a listw;, ws, - - -, w, with probabilitiesp, p2, ---, p.. The

task of source coding is to store such signals with a minimal amount
But depth (v) < depth (y) soCost (T') < Cost (T) contradicting ©f resources. In classical information theory, resources are measured
optimality of 7. ThusT must be feasible. ] in bits. A standard coding scheme to use is the optimally efficient
Huffman coding algorithm, which is a well-known lossless coding
scheme for data compression.
Apart from being highly efficient, it has the advantage of being in-
stantaneous, i.e., unlike block coding schemes, the encoding and de-
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