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A Dynamic Programming Algorithm for Constructing
Optimal “ ”-Ended Binary Prefix-Free Codes

Sze-Lok Chan and Mordecai J. Golin, Member, IEEE

Abstract—The generic Huffman-Encoding Problemof finding a min-
imum cost prefix-free code is almost completely understood. There still
exist many variants of this problem which are not as well understood,
though. One such variant, requiring that each of the codewords ends
with a “ 1,” has recently been introduced in the literature with the best
algorithms known for finding such codes running in exponential time.
In this correspondence we develop a simple ( ) time algorithm for
solving the problem.

Index Terms—Dynamic programming, one-ended codes, prefix-free
codes.

I. INTRODUCTION

In this correspondence we discuss the problem of efficiently con-
structing minimum-cost binary prefix-free codes having the property
that each codeword ends with a “1.”

We start with a quick review of basic definitions. Acode is a set
of binary wordsC = fw1; w2; � � � ; wng � f0; 1g�. A word w =
�i �i � � ��i is a prefix of another wordw0 = �0

i �0

i � � � �0

i if w

is the start ofw0. Formally, this occurs ifl � l0 and, for allj � l,
�i = �0

i . For example,00 is a prefix of00011. Finally, a code is said
to beprefix-freeif for all pairsw;w0 2 C; w is not a prefix ofw0.

LetP = fp1; p2; p3; � � � ; png be a discrete probability distribution,
that is,8i, 0 � pi � 1 and

i
pi = 1. The cost of codeC with

distributionP is

Cost (C;P ) =
i

jwij � pi

wherejwj is the length of wordw; Cost (C;P ) is, therefore, the av-
erage length of a word under probability distributionP . The prefix-
coding problemis, givenP , to find a prefix-free codeC that minimizes
Cost (C;P ). It is well known that such a code can be found in
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Fig. 1. Code C is an optimal prefix-free code for the distribution
(1=6); (1=6); (1=6); (1=6); (1=6); (1=6). C is an optimal One-ended
prefix-free code for the same distribution.C is an optimal one-ended code for
the distribution0:9; 0:09; 0:009; 0:0009; 0:00009; 0:00001.

O(n logn) time using the greedyHuffman-Encodingalgorithm, see,
e.g., [5] or evenO(n) time if thepi are already sorted [6].

In 1990, Berger and Yeung [1] introduced a new variant of this
problem. They defined afeasibleor 1-endedcode to be a prefix-free
code in which every word is restricted to end with a “1.” Such codes
are used, for example, in the design of self-synchronizing codes [3]
and testing. GivenP , the problem is to find the minimum-cost1-ended
code. Fig. 1 gives some examples.

In their paper, Berger and Yeung derived properties of such codes,
such as the relationship of a min-cost feasible code to the entropy of
P , and then described an algorithm to construct them. Their algorithm
works by examining all codes of a particular type, returning the min-
imum one. They noted that experimental evidence seemed to indicate
that their algorithm runs in time exponential inn. A few years later,
Capocelli, De Santis, and Persiano [4] noted that the min-cost code
can be shown to belong to apropersubset of the code-set examined by
Berger and Yeung. They, therefore, proposed a more efficient algorithm
that examines only the codes in their subset. Unfortunately, even their
restricted subset contains an exponential number of codes1 so their al-
gorithm also runs in exponential time.

In this correspondence we describe another approach to solving the
problem. Instead of enumerating all of the codes of a particular type it
uses dynamic programming to find an optimum one inO(n3) time.

II. TREES ANDCODES

There is a very well-known standard correspondence between
prefix-free codes and binary2 trees. In this section we quickly dis-
cuss its restriction to the1-ended code problem. This will permit
us to reformulate the min-cost feasible code problem as one that
finds a min-cost tree. In this new formulation we will require that
p1 � p2 � � � � � pn � 0 but will no longer require that

i
pi = 1.

Definition 1: Let T be a binary tree. A leafu 2 T is a left leaf if
it is a left child of its parent; it is aright leaf if it is a right child of its
parent.

Thedepthof a nodev 2 T , denoted bydepth (v), is the number of
edges on the path connecting the root tov.

We build the correspondence between trees and codes as follows.
First letT be a tree. Label every left edge inT with a0 and every right
edge with a1. Associate with a leafv the wordw(v) read off by fol-
lowing the path from the root ofT down tov. Now letv1; v2; � � � ; vn be
the set of right leaves ofT . ThenC(T ) = fw(v1);w(v2); � � � ; w(vn)g
is the code associated withT . Note that this code is feasible since all
of its words end with a1. Note also that there can be many trees corre-
sponding to the same feasible code. See Fig. 2 for an example.

1The proof of this fact is a straightforward argument that recursively builds
an exponentially sized set of codes that belong to the restricted subset. Because
of space considerations we do not include it here but the interested reader can
find the details in [2].

2In this correspondence we use the slightly nonstandard convention that a
binary tree is a tree in which every internal node hasone or twochildren.

0018–9448/00$10.00 © 2000 IEEE
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Fig. 2. Two trees with depth4 having seven right leaves. Note that these two trees both correspond to the codef0001; 001; 01; 1001; 101; 1101; 111g. The
left tree is nonfull while the right one is full.

Fig. 3. The left tree is nonfeasible because, at depth3 it contains both an internal right nodeanda left leaf. The right tree is feasible.

Now letC = fw1; w2; � � � ; wng be any feasible code. LetT (C) be
the smallest tree that contains all of the paths corresponding to thewi.
SinceC is prefix-free we have that the right leaves ofT (C) are exactly
the nodes corresponding to the words ofC.

Let T be a tree withn right leaves labeledv1; v2; � � � ; vn; P =
fp1; p2; p3; � � � ; png and define

Cost (C;T ) =
i

depth (vi) � pi:

This is theweighted-external path lengthof T restricted to right leaves
(external nodes). In all that followsP = fp1; p2; p3; � � � ; png will be
considered fixed and the dependence of quantities such asCost (C;T )
onP will be implicitly assumed.

Now suppose thatT corresponds to some codeC andv 2 T is a
right leaf corresponding tow 2 C; by definitiondepth (v) = jwj.
Thus

Cost (C;T ) =
i

depth (vi) � pi

=
i

jwij � pi = Cost (C;P ):

Since every feasible code corresponds to some tree(s) and every tree
corresponds to one feasible code this last equation tells us that we can
find a min-cost code by constructing a min-code tree and returning the
feasible code corresponding to it.

There is a technical problem that we need to address before
proceeding. It is that our definition of cost formally requires that the
right leaves ofT be labeled1; 2; � � � ; n. Different labelings of the
right leaves could lead to different costs. We note though that, for a
particular tree, the minimum cost over all labelings isalwaysachieved
when the highest node in the tree is assigned the largest weightp1, the
second highest node the second highest weightp2, and in general the
ith highest node (with height ties broken arbitrarily) theith weight
pi. Since we are interested in finding a minimum cost tree we will
always assume that the labeling used for any particular tree is the
canonical labeling withvi being theith highest node. For example, if

the weights are7; 6; 5; 4; 3; 2; 1; then the trees in Fig. 2 have cost
2 � 7 + 3 � (6 + 5 + 4) + 4 � (3 + 2 + 1) = 83.

The Optimal Feasible Coding Problem is now seen to be equivalent
to the following tree problem.

Definition 2: TheOptimal Tree ProblemGivenp1�p2�� � ��pn
find a tree�T with n right leaves with minimum cost over all trees with
n right leaves, i.e.,

cost ( �T ) = minfcost (T ) : T hasn right leavesg:

We end this section by pointing out that there must be an optimal
tree with a very specific structure.

Definition 3: A treeT is full if every internal node inT has two
children.

A treeT is feasibleif T is full and it also has the additional property:
if u 2 T is a right node and internal thenall left nodesv 2 T with
depth (v) = depth (u) are also internal.

Fig. 2 illustrates a nonfull tree and a full one. Fig. 3 illustrates a
nonfeasible tree and a feasible one.

Lemma 1: For every probability distribution

P = fp1; p2; p3; � � � ; png

there exists an optimal treeT that is feasible.

The proof of the lemma is straightforward but technical. To avoid
breaking the flow of the correspondence it has, therefore, been rele-
gated to the Appendix.

III. T RUNCATED TREES ANDSIGNATURES

Our approach will be a modification of one developed in [7]. The
problem considered there was to build a min-costlopsided tree(tree
in which edges have different length). The solution was to build trees
from the top, root node, down, accumulating the cost as levels were
added. We will follow the same approach in this correspondence to
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Fig. 4. The treesT ; T ; T ; T are the truncations of the right tree in Fig. 2 which we will callT . EachT is ani-level tree for that value ofi and the dotted
horizontal line across each tree is the truncation level. Note thatT = Trunc (T ) with sig (T ) = (7; 0).

construct min-cost feasible trees. Since Lemma 1 guarantees that trees
thus constructed will be min-cost trees amongall trees we will have
solved the problem.

To use this approach we need to define the following.

Definition 4: Let T be a tree andi a nonnegative integer. The
ith-level truncation ofT is the treeTrunci(T ) containing all nodes
in T of depth at mosti + 1

Trunci(T ) = fu 2 T : depth (u) � i+ 1g:

A tree T is an i-level treeif all the internal nodesv 2 T satisfy
depth (v) � i.

See Fig. 4 for examples. We note thatTrunci(T ) is always ani-level
tree and that truncation preserves feasibility, i.e., ifT is a feasible tree
thenTrunci(T ) is also a feasible tree. We also note that ifT has depth
d then8i � d � 1, Trunci(T ) = T .

The dynamic programming algorithm will strongly use the idea of
subproblem optimality, i.e., if a feasible treeT is optimal then all of
its i-level truncationsTrunci(T ) are also optimal. In order for this
observation to make sense we must define what it means for a feasible
i-level tree (that might have fewer thann right leaves) to be optimal.
That is, we must define a cost function oni-level trees.

Definition 5: Let T be a feasiblei-level tree. Thei-level signature
of T is an ordered pair

sig
i
(T ) = (m; b)

in which

m = jfv 2 T : v is a right leaf; depth (v) � ij

is the number of right leaves inT with depth at mosti and

b = jfv 2 T : v is a right leaf; depth (v) = i+ 1gj

is the number of right leaves inT at leveli + 1 (bottom level). Note
that there are2b (left and right) leaves at leveli + 1.

Now let T be ani-level tree withsig
i
(T ) = (m; b) with m � n.

The i-level partial costof T is

Costi(T ) =

m

t=1

depth (vt) � pt + i �

n

t=m+1

pt (1)

wherev1; � � � ; vm are them highest right leaves ofT ordered by depth,
e.g., those withdepth � i.

Note thatCosti(T ) is not only dependent uponT but also upon
i. For example, the right treeT in Fig. 2 is both a three-level and a
four-level tree;sig3(T ) = (4; 3) andsig4(T ) = (7; 0). Its associated
i-level costs are

Cost3(T ) = 2p1 + 3(p2 + p3 + p4) + 3(p5 + p6 + p7)

Cost4(T ) = 2p1 + 3(p2 + p3 + p4) + 4(p5 + p6 + p7)

which are obviously not the same.

We can now define what it means for a tree with fewer thann right
leaves to be optimal.

Definition 6: Let (m; b) be a valid signature, i.e.,m; b � 0. Set
OPT [m; b] to be the minimum cost over alli and all feasiblei-level
treesT with signature(m; b). More precisely

OPT [m; b] = minfCosti(T ) : 9i; T;

T is a feasiblei-level tree withsig
i
(T ) = (m; b)g

A tree T is min-costor optimal if, for some i, it is an i-level tree,
sig

i
(T ) = (m; b) andCosti(T ) = OPT [m; b].
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Fig. 5. The tree in the top row is our original treeT which is a one-level tree withsig (T ) = (0; 2). The next two rows are the four possible expansions
Expand (T; 1),Expand (T; 2),Expand (T;3), andExpand (T;4). We do not drawExpand (T; 0) which is simplyT .

Note that ifT is a feasible tree withn right leaves and depthd � i

thensig
i
(T ) = (n; 0) so, ifT 0 is an optimal feasible tree (withn right

leaves), then

OPT [n; 0] = Costi(T
0) =

n

t=1

depth (vt) � pt:

ThusOPT [n; 0] is exactly the cost of the optimal tree that we are
trying to calculate. We will calculate its value by using a dynamic pro-
gramming approach to fill in the OPT table. Backtracking the dynamic
programming will permit us to constructT 0.

Before continuing we briefly digress to explain why we defined
OPT [m; b] to be the minimum cost only amongfeasibletrees and not
among all trees.3 The reason is that we will be building optimal trees
level-by-level. Since Lemma 1 tells us that our final result is a feasible
tree and we know that all truncations of feasible trees are feasible trees
our construction will work by building feasible trees level by level,
always storing the min-cost ones.

Now suppose thatT is ani-level tree withsigi(T ) = (m; b). What
feasible(i+1)-level trees canT be grown into? The only way to grow
a feasible tree is by making some of the2b nodes on leveli+1 internal
and making the remainder of the nodes leaves. From Lemma 1 we know
that all of the left nodes must be made internal before any of the right
ones are. We therefore define anExpansionoperator as follows.

Definition 7: Let T be ani-level tree withsigi(T ) = (m; b). Let
0 � q � 2b. Theqth expansion ofT is the tree

T
0 = Expand (T; q)

constructed by makingq of the leaves at leveli + 1 (bottom level) of
T internal nodes as follows:

• if q � b, makeq left nodes at leveli + 1 internal.

• if q > b, make allb left nodes andq� b right nodes at leveli+1
internal.

3The algorithm to be presented actually remains correct even if we optimized
over all trees and not just all feasible ones. The reason for the restriction to
feasible trees is that it makes the result both easier to understand and prove.

In Fig. 5 we see a tree and all of its expansions.
Onceq is fixed bothCosti+1(T 0), the number of nodes at leveli+2,

and the signaturesigi+1(T
0) of T 0 can be found.

Lemma 2: SupposeT is ani-level tree withsigi(T ) = (m; b). Let
T 0 = Expand(T; q) be itsqth expansion. ThenT 0 is ani + 1-level
tree with

Costi+1(T
0) = Costi(T ) +

m<t�n

pt

and

• if 0 � q � b thensigi+1(T
0) = (m+ b; q),

• if b+ 1 � q � 2b, thensigi+1(T
0) = (m+ 2b� q; q).

Proof: Let (m0; b0) = sigi+1(T
0). SinceT 0 has exactlym0�m

right leaves on leveli + 1 we find

Costi+1(T
0) =

m

t=1

depth(vt) � pt + (i+ 1) �

n

t=m +1

pt

=

m

t=1

depth(vt) � pt + (i+ 1) �

m

t=m+1

pt

+ (i+ 1) �

n

t=m +1

pt

= Costi(T ) +
m<t�n

pt:

The proof of the second part of the lemma follows directly from the
definition of theExpandoperator.

This lemma tells us that to calculate the extra cost added by a level-i

expansion ofT and the signature of the new expanded tree it is not
necessary to knowT or i but only sigi(T ). We can, therefore, de-
fine a recurrence relationship for calculatingOPT [; ]. In what follows
M(m0; b0) is exactly the set of signatures(m; b) that have some ex-
pansion with signature(m0; b0).
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Fig. 6. These three trees have the property thatsig (S ) = sig (S ) = sig (S ) = (4; 3). In fact, these three trees are the only way to realize the signature
(4;3) and thusM(4; 3) = f(0; 4); (1; 3); (3;2)g.

Lemma 3: Set

M(m0
; b
0) = (m; b) : (m; b) 6= (m0

; b
0) and

9q s.t.0 � q � b and(m0
; b
0) = (m+ b; q)

or 9q s.t.b+ 1 � q � 2b

and(m0
; b
0) = (m+ 2b� q; q) :

Then

OPT [0; 1] = 0 (2)

and, for(m0; b0) 6= (0; 1)

OPT [m0
; b
0] = min

(m;b)2M(m ;b )
OPT [m; b] +

m<t�n

pt : (3)

Proof: Fig. 6 illustrates an example ofM(m0; b0).
To prove (2) we note that theonly feasible tree with signature(0; 1)

is the0-level tree consisting of the root and its two children and this
tree has0-level cost0.

To prove (3) first suppose thatOPT [m0; b0] is realized by ani+ 1-
level treeT 0 with sigi+1(T

0) = (m0; b0) and

Costi+1(T
0) = OPT [m0

; b
0]:

Now setT = Trunci(T
0) and letq be the number of internal nodes

on leveli+1 of T . Also set(m; b) = sigi(T ). Then, by the definition
of theTruncandExpandoperators we have thatT 0 = Expand (T; q).
Thus from Lemma 2 and the definition ofOPT [; ]

OPT [m0
; b
0] = Costi+1(T

0)

= Costi(T ) +
m<t�n

pt

� OPT [m; b] +
m<t�n

pt

� min
(m;b)2M(m ;b )

OPT [m; b] +
m<t�n

pt :

To see the other direction let(m; b) 2M(m0; b0) and setT to be such
that

sigi(T ) = (m; b) and OPT [m; b] = Costi(T ):

Let q be such that

sigi+1Expand(T; q) = (m0
; b
0):

Such aq must exist by the definition ofM(m0; b0). Let T 0 =
Expand(T; q). Then from Lemma 2sigi+1(T

0) = (m0; b0) and

Costi+1(T
0) = Costi(T ) +

m<t�n

pt

= OPT [m; b] +
m<t�n

pt:

Since this is true for every(m; b) 2 M(m0; b0) we thus find that

OPT [m0
; b
0] � min

(m;b)2M(m ;b )
OPT [m; b] +

m<t�n

pt

completing the proof.

IV. THE ALGORITHM

Using Lemma 3 we can directly design an algorithm for calculating
theOPT [; ] values and constructing an optimal tree. Code for the al-
gorithm is given in Fig. 7 and a worked example is shown in Table I
and Fig. 8. In the algorithm, the entryQ[m0; b0] stores the pair(m; b) 2
M(m0; b0) such that

OPT [m0
; b
0] = OPT [m; b] +

m<t�n

pt:

We will now prove the correctness of the algorithm and then show
that it runs inO(n3) time. We start by recalling the definition of a
lexicographical orderingon pairs.

Definition 8: Let (m; b); (m0; b0) be given. Then(m; b) is lexico-
graphically smallerthan(m0; b0)

(m; b) � (m0
; b
0)

if and only if

m < m
0 or m = m

0 and b < b
0
:

It is now easy to see that

Lemma 4: Let (m; b); (m0; b0) be signatures such that(m; b) 2
M(m0; b0). Then(m; b) � (m0; b0).

Proof: This follows from the definition ofM(m0; b0). We first
point out thatb 6= 0 because it is impossible for(m; b) 2 M(m0; b0)
if b = 0. Thusb � 1.

There are two cases. In the first case9q � b such that(m0; b0) =
(m+b; q). In this case, sinceb � 1 we have thatm < m0 so(m; b) �
(m0; b0).

In the second case,9q with b + 1 � q � 2b such that(m0; b0) =
(m+2b�q; q). In this case, ifq < 2b then againm < m0 som < m0
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Fig. 7. The dynamic programming algorithm plus backtracking. The
algorithm will output the number of right leaves on every level of some optimal
tree.

TABLE I
VALUES FORn = 7 WITH WEIGHTS7; 6; 5; 4; 3; 2; 1

so(m; b) � (m0; b0). If q = 2b thenm0 = m+ 2b� q = m but then
b < 2b = b0 so we still have(m; b) � (m0; b0).

We now show that the algorithm correctly fills in theOPT (m; b)
values (using a standard dynamic programming correctness proof).4

4We quickly sketch a second way of proving this, one similar to that developed
in [7]. Essentially, one can create a weighted graphG = (V;E) in whichV in
the set of all signatures and((m; b); (m ; b )) 2 E if (m; b) 2 M(m ; b ).
The weight of this edge is defined to be p . ThenOPT [m; b] can
be shown to be equal to the cost of theminimum-cost pathconnecting(0; 1)
to (m; b) in G. The graphG can be shown to be acyclic and the algorithm
presented in Fig. 8 is exactly the code for finding shortest paths in a directed
acyclic graph, see, e.g., [8].

Fig. 8. An optimal tree forn = 7 with weights7; 6; 5; 4; 3; 2; 1. This tree
is derived from Table I.

Note that if(m; b) 2 M(m0; b0) then either(m0; b0) = (m+ b; q)
or (m0; b0) = (m + 2b � q; q). In both of these cases we find that
m+ b � m0 + b0. Now note that the set of signatures processed by the
algorithm is exactly

M = f(m; b) : 0 � m � n; 0 � b � n�mg

= f(m; b) : 0 � m; b; m+ b � ng:

Thus if (m0; b0) 2 M and(m; b) 2 M(m0; b0) thenm+ b � m0 +
b0 � n so(m; b) 2 M. Therefore,M(m0; b0) � M.

Next note that the algorithm actually processes the signatures in
M in lexicographical orderso, from Lemma 4,all signatures in
M(m0; b0) are processed before(m0; b0) and no such signatures are
processed after it.

Correctness now follows by induction on(m0; b0), the induction
order being the lexicographic order. The induction hypothesis is that,
at the time immediately preceding the processing of(m0; b0) the value
of OPT [m; b] will already have been correctly set.

The first signature processed is(0; 1) and sinceOPT [0; 1] is orig-
inally set to0 and never changed afterwards, the statement is correct
for (0; 1). Now suppose all signatures preceding(m0; b0) in the lex-
icographic order have already been processed and it is now the turn
of (m0; b0). In particular, this implies that all(m; b) with (m; b) 2
M(m0; b0) have already been processed. By the induction hypothesis,
at the time such an(m; b) was processedOPT [m; b] was already cor-
rectly set. Thus the statement executed at the time of processing(m; b)
was equivalent to

OPT [m0

; b
0] = minfOPT[m0

; b
0];OPT [m; b] + Pmg:

Since this is done for all(m; b) 2 M(m0; b0) but no other(m; b)’s,
the value stored inOPT [m0; b0] is exactly

min
(m;b)2M(m ;b )

OPT[m; b] +
m<t�n

pt ;

completing the proof that theOPT [; ] table is filled in correctly.
While filling in the table, the algorithm also keeps track of where the

optima came from by storing the appropriateQ[m0; b0] = (m; b) such
that

OPT[m0
; b
0] = OPT[m; b] +

m<t�n

pt:

After filling in the table, the algorithm then uses theQ[; ] table to
backtrack and print out the number of right nodes on every level of the



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 4, JULY 2000 1643

Fig. 9. Cases I and II in the proof.

Fig. 10. Cases III and IV in the proof.

Fig. 11. Illustration of why some optimal tree must be feasible.

optimal tree. Since the tree is full with every right node being matched
by some left node this gives the full tree and we are done.

Finally, we note that for each of theO(n2) signatures(m; b) gener-
ated, the algorithm doesO(n) work (the twofor loops overq). Thus
the algorithm runs inO(n3) total time.

Table I contains a worked example forn = 7 with weights7; 6;
5; 4; 3; 2; 1. The top element in each entry isOPT [m; b] and the
bottom one isQ[m; b]. The1 entries are signatures that are unreal-
izable by any feasible tree. The boldface entries are the ones that cor-
respond to the optimal tree found by the backtracking section of Fig. 7.
Reading them off we find that the number of right nodes on the levels
of the optimal tree are, starting from the top level and working down,
1; 2; 2; 2; 1. The tree itself can be seen in Fig. 8. Note that this tree
has (optimal) cost78 as compared to the trees in Fig. 2. These have
cost83 for the same weights

V. CONCLUSION

In this correspondence we have shown that it is possible to calcu-
late optimal one-ended binary prefix-free codes inO(n3) time im-
proving upon the old exponential time algorithms. Our approach used

dynamic programming on an appropriate subproblem space. The main
open question is whether it is possible to improve the algorithm, per-
haps even toO(n) time, matching the linear time used by the standard
Huffman-encoding algorithm.

APPENDIX

In this section we prove Lemma 1, that there is always a feasible
optimal tree.

Proof (of Lemma 1):We first show that there exists an optimal
full tree. If T is a tree andu 2 T an internal node we will callu badif
it has only one child. If a tree has no bad nodes it is a full tree.

LetB be the minimal number of bad nodes an optimal tree can have.
If B = 0 there is a full optimal tree and we are done. Otherwise, let
T be an optimal tree withB bad nodes and the fewest total number
of nodes among all optimal trees withB bad nodes. We will show a
contradiction by building a new optimal tree with fewer bad nodes or
the same number of bad nodes and fewer total nodes.

Let u be a highest bad node inT . Note thatu cannot be the root
because if the root were bad we could simply erase it; its (only) child
then becomes the root of the new tree and, since the depth of every
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leaf has been decreased by1, this new tree is cheaper than the old one,
contradicting optimality.

In what follows refer to Figs. 9 and 10 for illustration as we do a
case-by-case analysis.

(Case I) Ifu had a right child but no left one we could simply add
its left child to get a new tree with the same cost but fewer bad nodes,
contradicting the definition ofT . Thusu must have a left childv but
no right child. There are two cases.

(Case II) Ifv is the root of some treeT 0 then we could moveT 0 to be
rooted at the right child ofu and leavev a leaf. The new resulting tree
has the same cost but fewer bad nodes, again leading to a contradiction.

Otherwise,v is itself a leaf. Letx be the parent ofu.
(Case III) Ifu is a left child ofx then we simply removev, leaving

u as a left leaf. The cost of the resulting tree is the same as before but
it has one fewer bad node. Again a contradiction.

(Case IV) Otherwise,u is the right child ofx and removingu could
add a new right child to the tree, possibly even raising its cost. There-
fore, in this case we removebothu andv. Sincex was not bad before
(because it is higher thanu) removingu does not add a new right leaf
to the tree so the cost of the resulting tree remains the same. Sincex

has now become bad the new tree still hasB bad nodes but it has fewer
total nodes thanT , again causing a contradiction.

We have just seen that there exists some optimal full treeT . We now
prove thatT is feasible. See Fig. 11 for illustration.

SupposeT is not feasible. Then there exists some right internal node
v 2 T and left leafu 2 T such thatdepth (v) = depth (u). LetS be
the subtree rooted atv, y the deepest right nodey 2 S, andx the left
sibling of y (x andy must exist becauseT is full). Also suppose that
probabilitypi is assigned toy. Now detachS from v and attach it to
u, erasey and assignpi to nodev. Denote the new tree thus created by
T 0. Since the only probability whose assigned right leaf has changed is
pi we find that

Cost (T 0) = Cost (T ) + (depth (v)� depth (y))pi:

But depth (v) < depth (y) soCost (T 0) < Cost (T ) contradicting
optimality ofT . ThusT must be feasible.
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A Quantum Analog of Huffman Coding

Samuel L. Braunstein, Christopher A. Fuchs, Daniel Gottesman, and
Hoi-Kwong Lo

Abstract—We analyze a generalization of Huffman coding to the
quantum case. In particular, we notice various difficulties in using
instantaneous codes for quantum communication. Nevertheless, for the
storage of quantum information, we have succeeded in constructing a
Huffman-coding-inspired quantum scheme. The number of computational
steps in the encoding and decoding processes of quantum signals
can be made to be of polylogarithmic depth by a massively parallel
implementation of a quantum gate array. This is to be compared with the
( ) computational steps required in the sequential implementation by

Cleve and DiVincenzo of the well-known quantum noiseless block-coding
scheme of Schumacher. We also show that ( (log ) ) sequential
computational steps are needed for thecommunication of quantum
information using another Huffman-coding-inspired scheme where the
sender must disentangle her encoding device before the receiver can
perform any measurements on his signals.

Index Terms—Data compression, Huffman coding, instantaneous codes,
quantum coding, quantum information, variable-length codes.

I. INTRODUCTION

There has been much recent interest in the subject of quantum infor-
mation processing. Quantum information is a natural generalization of
classical information. It is based on quantum mechanics, a well-tested
scientific theory in real experiments. This correspondence concerns
quantum information.

The goal of this correspondence is to find a quantum source coding
scheme analogous to Huffman coding in the classical source coding
theory [3]. Let us recapitulate the result of classical theory. Consider
the simple example of a memoryless source that emits a sequence of
independent and identically distributed signals each of which is chosen
from a listw1; w2; � � � ; wn with probabilitiesp1; p2; � � � ; pn. The
task of source coding is to store such signals with a minimal amount
of resources. In classical information theory, resources are measured
in bits. A standard coding scheme to use is the optimally efficient
Huffman coding algorithm, which is a well-known lossless coding
scheme for data compression.

Apart from being highly efficient, it has the advantage of being in-
stantaneous, i.e., unlike block coding schemes, the encoding and de-
coding of each signal can be done immediately. Note also that code-
words of variable lengths are used to achieve efficiency. As we will see
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