
Online Dynamic Programming Speedups∗

Amotz Bar-Noy† Mordecai J. Golin‡ Yan Zhang§

Abstract

Consider the dynamic program h(n) = min1≤j≤n a(n, j), where a(n, j)
is some formula that may (online) or may not (offline) depend on the
previously computed h(i), for i < n. The goal is to compute all h(n), for
1 ≤ n ≤ N . It is well known that, if a(n, j) satisfy the Monge property,
then the SMAWK [1]] algorithm can solve the offline problem in O(N)
time; a Θ(N) speedup over the naive algorithm.

In this paper we extend this speedup to the online case, that is, to
compute h(n) in the order n = 1, 2, . . . , N when (i) we do not know the
values of a(n′, j) for n′ > n before h(n) has been computed and (ii) do
not know the problem size N in advance. We show that if a(n, j) satisfy a
stronger, but sometimes still natural, property than the Monge one, then
each h(n) can be computed in online fashion in O(1) amortized time. This
maintains the speedup online, in the sense that the total time to compute
all h(n) is O(N). We also show how to compute each h(n) in the worst
case O(log N) time, while maintaining the amortized time bound.

For a(n, j) satisfying our stronger property, our algorithm is also sim-
pler than the standard SMAWK algorithm for solving the offline case.
We illustrate our technique on two examples from the literature; the first
is the D-median problem on a line, and the second comes from mobile
wireless paging.

1 Introduction

Consider the class of problems defined by

h(n) = min
1≤j≤n

a(n, j), ∀ 1 ≤ n ≤ N, (1)

where a(n, j) is some formula that might depend upon the values of h(i), for
1 ≤ i < n. Our goal is to compute all h(n) for 1 ≤ n ≤ N .

∗The research of the second and third authors was partially supported by Hong Kong RGC
CERG grant HKUST6312/04E.

†Department of Computer and Information Science, Brooklyn College, 2900 Bedford Av-
enue Brooklyn, NY 11210. E-mail: amotz@sci.brooklyn.cuny.edu.

‡Department of Computer Science, Hong Kong UST, Clear Water Bay, Kowloon, Hong
Kong. E-mail: golin@cse.ust.hk.

§Department of Computer Science, Hong Kong UST, Clear Water Bay, Kowloon, Hong
Kong. E-mail: cszy@cse.ust.hk.

1



In many applications, the values of a(n, j) do depend1 on the previously
computed values {h(i) : 1 ≤ i < n} so, (1) essentially represents a simple
dynamic program (DP). A simple example would be DPs in the form

h(n) = min
1≤j≤n

{

h(j − 1) + w(n, j)
}

, ∀ 1 ≤ n ≤ N, (2)

i.e., a(n, j) = h(j−1)+w(n, j) where h(0) is given and w(n, j) is some function
that does not depend upon any of the h(·) values.

A naive calculation of the h(n) as defined by (1) would require Θ(N2) time.
It is well known that if the a(n, j) satisfy some special conditions, e.g., the
Monge property, then this calculation can be reduced down to Θ(N) time. These
speedups require that the problem be static and do not allow online computation
of the h(n). The main result of this paper is an algorithm that, in the presence of
a stronger version of the Monge property, does permit maintaining the speedup
in an online setting.

In the remainder of this section we define our terms and then state our
results. In Section 2 we quickly review the Monge property and place our
new stronger property in context. We also discuss a possible confusion that
might occur due to the fact that the word “online” appeared previously in the
Monge literature with a different meaning. Section 3 presents our new algorithm
and Section 4 some modifications and generalizations. Section 5 presents two
applications to problems in the literature. We conclude in Section 6 with an
open question.

1.1 Definition of Online

For arbitrary functions a(n, j), it would require Θ(N2) time to compute all the
h(n). We can do better if the a(n, j) possess special properties.

Definition 1 The values of a(n, j) satisfy the Monge property ([4]), if for all
1 ≤ j < n < N ,

a(n, j) + a(n + 1, j + 1) ≤ a(n + 1, j) + a(n, j + 1). (3)

From our perspective, the major result on such functions is the SMAWK2 algo-
rithm [1] which permits finding the h(n) in linear time.

Theorem 2 (SMAWK [1]) Consider the DP defined by (1). If a(n, j) satisfy
the Monge property, and

1. for any n and j, the value of a(n, j) can be computed in O(1) time, i.e.,
a(n, j) does not depend on any h(i);

2. and the value of N is known in advance,

1In this paper we follow the standard practice of assuming that any particular a(n, j)
can be computed in O(1) time when needed, provided that the values of h(i) upon which it
depends are known.

2SMAWK is an acronym of the first letters of the last names of the authors of [1].

2



then the SMAWK algorithm can compute all of the h(n), for 1 ≤ n ≤ N , in
O(N) time.

The SMAWK algorithm therefore provides a Θ(N) speedup to the naive algo-
rithm, in the offline case. Section 2.1 provides more background on the Monge
property and the SMAWK algorithm.

The main purpose of this paper is to consider the DP problem in online
settings. In applications, “online” means that some sort of “data” arrives one at
a time, and, after each arrival, we recompute the optimal solution. Translating
to mathematics, at each step, say step n, the values of a(n, j) for 1 ≤ j ≤ n
become available, and we need to compute h(n). We will see some applications
in Section 5.

An online algorithm would allow both of

C1. the value of a(n, j) may depend on any (or all) h(i), for 1 ≤ i < n,

C2. and the value of N is not known in advance.

(C1) violates condition 1 of Theorem 2 and (C2) violates condition 2; the
SMAWK algorithm therefore can’t work in the presence of either. We call
(C1) and (C2) the online conditions.

The online condition (C2) is straightforward, but to understand (C1) we
need to clarify the meaning of “depend”. There can actually be two types of
dependencies:

1. Explicit dependency. The formula a(n, j) contains some h(i) explicitly.
For example, in (2), we have a(n, j) = h(j − 1) + w(n, j).

2. Implicit dependency. The value of a(n, j) depends on h(i) because the
problem is physically online, i.e., before computing h(i) for i < n, the
value of a(n, j) is simply not available due to the problem setting.

Our algorithm will physically calculate all of the h(i), for i < n, before calcu-
lating h(n), so it does not need to distinguish between these two types.

In Section 2.3 we briefly mention the literature solving the case in which
a(n, j) may depend on some of the values in {h(i) : i < j} (as opposed to
{h(i) : i < n}), which we call the “semi-online” problem, and discuss how it
differs from this one.

1.2 The Results

Definition 3 The values of a(n, j) satisfy the online Monge property, if for all
1 ≤ j < n ≤ N ,

a(n, j)− a(n− 1, j) = cn + δjβn, (4)

where cn, βn and δj are constants satisfying

1. for all 2 ≤ n ≤ N , βn ≥ 0,

2. and δ1 ≥ δ2 ≥ · · · ≥ δN−1.

3



The main result of this paper is

Theorem 4 Consider the DP defined by (1). If a(n, j) satisfy the online Monge
property, and

1. for any n and j, the value of a(n, j) can be computed in O(1) time, provided
that the values of h(i) for 1 ≤ i < n are known,

then there is an algorithm (Sections 3 and 4) that computes the values of h(n)
in the order n = 1, 2, . . . , N in O(1) amortized and O(log N) worst case time
for each h(n).

Note that, from the statement of the theorem, the algorithm does not need to
know the value of N in advance.

It is easy to see that the online Monge property implies that

a(n + 1, j) + a(n, j + 1)− a(n, j)− a(n + 1, j + 1) = (δj − δj+1)βn+1 ≥ 0,

i.e., it implies that a(n, j) satisfy the standard Monge property. However, the
online Monge property seems quite artificial. In Section 2.2, we will see that it
actually has a very natural interpretation in that it is equivalent to a Monge
property with rank one matrices in the standard decomposition.

As mentioned before, the SMAWK algorithm provides a Θ(N) speedup in
the calculation of the h(n) when a(n, j) satisfy the Monge property and the
problem is offline. Theorem 4 says that if a(n, j) satisfy a stronger version of
the Monge property, then this same speedup can be maintained online, in the
sense that the time to compute all h(n) is still O(N).

Note that the online Monge property only requires that cn, βn and δj exist.
It does not require that cn, βn and δj be given or computable in O(1) time.
But, if δj is given, the algorithm will be much easier to develop and understand.
So, in what follows we will start by assuming we have an extra condition:

C3. For any j, the value of δj can be computed in O(1) time, provided that
the values of h(i) for 1 ≤ i < j are known.

This condition is not really necessary and in Section 4.3, we will show how to
remove it.

We point out that Auletta et al. [2] and Fleisher et al. [6] model the problem
of placing K medians on an undirected line with N nodes by a DP that looks
as if it requires Θ(KN2) time to solve. Fleischer et al. [6] also noted that
this problem has a Monge property that permits reducing the running time
to Θ(KN) in the offline case. Both references then provide special purpose
algorithms that show how to solve the problem online, i.e., adding the nodes
one at a time to the right of the line and recomputing the medians after each
addition, without losing the DP speedup. After deconstruction, the algorithms
provided there can be seen as a very special case of the general algorithm given
in this paper.

4



2 More Background

2.1 The Monge Property and the SMAWK Algorithm

We start with a brief introduction to the Monge property and the SMAWK
algorithm. The survey [4] provides many more details. Consider an N × N
matrix M . Denote by R(n) the index of the rightmost minimum of row n of
M , i.e.,

R(n) = max{j : Mn,j = min
1≤i≤N

Mn,i}.

A matrix M is monotone if R(1) ≤ R(2) ≤ · · · ≤ R(N), M is totally monotone
if all submatrices3 of M are monotone. The SMAWK algorithm says that if
M is totally monotone, then the set of all of the R(n) for 1 ≤ n ≤ N can be
computed in O(N) time.

For our problem, if we set

Mn,j =

{

a(n, j), 1 ≤ j ≤ n ≤ N ;
∞, otherwise,

(5)

then h(n) = a(n,R(n)). Hence, if we can show that the matrix M defined by (5)
is totally monotone, then the SMAWK algorithm can solve our problem (offline
version) in O(N) time.

Total monotonicity is quite difficult to demonstrate directly. In practice, it
is usually established by demonstrating that the matrix possesses the Monge
property which is essentially what we introduced in Definition 1 if we consider
the matrix as a two-variable function.

Definition 5 An N × N matrix M is Monge, if for all 1 ≤ n < N and 1 ≤
j < N ,

Mn,j + Mn+1,j+1 ≤Mn+1,j + Mn,j+1. (6)

Note that if the a(n, j) are Monge as in Definition 1, then the associated M
given in (5) is a Monge matrix as in Definition 5.

It is easy to show [4] that if M is Monge, then it is totally monotone. So, if
a(n, j) are Monge, then the SMAWK algorithm can calculate all of the h(n), in
the offline case, in O(N) time.

2.2 Decompositions and the Online Monge Property

As already shown, the online Monge property is a special case of the Monge
property. We now make this more formal. Monge matrices can be decomposed
(Section 2.2 of [4]) as follows.

Lemma 6 An N ×N matrix M is Monge if and only if for all Mn,j 6=∞,

Mn,j = Pn + Qj +

N
∑

k=n

j
∑

i=1

Fki (7)

3In this paper, submatrices can take non-consecutive rows and columns from the original
matrix, and are not necessarily square matrices.

5



where P and Q are vectors of length N , and F is an N × N matrix, whose
entries are all nonnegative.

The matrix F is called the density matrix. We now show that the matri-
ces satisfying the online Monge property are exactly those that have rank-one
density matrices. Recall the definition of online Monge property. Let δ0 = δ1,
then

a(n, j) = a(n + 1, j)− cn+1 − δjβn+1

= a(n + 2, j)− (cn+2 + cn+1)− δj(βn+2 + βn+1)

= · · ·

= a(N, j)−

N
∑

k=n+1

ck − δj

N
∑

k=n+1

βk

= a(N, j)−

N
∑

k=n+1

ck − δ0

N
∑

k=n+1

βk + (δ0 − δj)

N
∑

k=n+1

βk

So, for the online Monge property,

Pn = −

N
∑

k=n+1

(ck + δ0βk), Qj = a(N, j), Fki = (δi−1 − δi)βk+1,

where we set βN+1 = 0. So, the online Monge property is a special case of the
Monge property where the density matrix F is of rank 1.

Conversely, if rank(F ) = 1, then Fki = UkVi where U , V are nonnegative
vectors of length N . From (7),

a(n, j)− a(n− 1, j) = Pn − Pn−1 − Un−1

j
∑

i=1

Vi.

That is, the values of a(n, j) satisfy the online Monge property with

cn = Pn − Pn−1, βn = Un−1, δj = −

j
∑

i=1

Vi.

So, what we are calling the online Monge property is exactly the Monge property
with rank one density matrices.

2.3 Semi-Online Problems

There is a series of papers discussing another type of “online” version of (1),
e.g., [12, 9, 5, 7, 8, 11]. The final ‘best’ result in this line is given by

Theorem 7 (LARSCH [11]) Consider the DP defined by (1). If a(n, j) sat-
isfy the Monge property, and

6



1. for any n and j, the value of a(n, j) can be computed in O(1) time, provided
that the values of h(i) for 1 ≤ i < j are known;

2. and the value of N is known in advance,

then the LARSCH algorithm can compute all of the h(n), for 1 ≤ n ≤ N , in
O(N) time.

We call this type of problem “semi-online” because the a(n, j) are only allowed
to depend on {h(i) : i < j}, and not on all of the {h(i) : i < n} as in the online
condition (C1). Also, the LARSCH algorithm does not support the online
condition (C2) since it requires the problem size N to be fixed in advance.

3 The Main Algorithm

In this section, we develop the online algorithm that achieves the O(1) amor-
tized bound in Theorem 4. For the purposes of this section, we assume the
slightly simpler condition δ1 > δ2 > · · · > δN−1 for simplicity. We postpone the
extension to the case where, for some i, δi = δi+1, the analysis of the worst-case
bound, and other details to Section 4.

We will show the algorithm at step n, where the values of {h(i) : 1 ≤ i <
n} have been computed, and we want to compute h(n). By the conditions
in Theorem 4 and the extra condition (C3), all the values a(n, j) and δj for
1 ≤ j ≤ n ≤ N are known.

3.1 The Lower Envelope

The key to the algorithm is the following set of straight lines:

Definition 8 For all 1 ≤ j ≤ n ≤ N , we define

Ln
j (x) = a(n, j) + δj · x (8)

So, h(n) = min1≤j≤n Ln
j (0). To compute min1≤j≤n Ln

j (x) at x = 0 efficiently,
the algorithm maintains min1≤j≤n Ln

j (x) for the entire range x ≥ 0, i.e., at step
n, the algorithm maintains the lower envelope of the set of lines {Ln

j (x) : 1 ≤
j ≤ n} in the range x ∈ [0,∞).

3.1.1 The Data Structure

The only data structure used is an array, called the active-indices array, Z =
(z1, . . . , zt) for some t ≤ n. It will be used to represent the lower envelope.
It stores, from left to right, the indices of the lines that appear on the lower
envelope in the range x ∈ [0,∞). That is, at step n, if we walk along the
lower envelope from x = 0 to the right, then we will sequentially encounter the
lines Ln

z1
(x), Ln

z2
(x), . . . , Ln

zt
(x). The slopes of the line segments forming the

lower envelope of a set of lines decreases as one sweeps from left to right. Since

7



δ1 > δ2 > · · · > δn, we have z1 < z2 < · · · < zt = n, and no line can appear
more than once in the active-indices array.

Given the active-indices array, computing h(n) is a constant time operation
since

h(n) = Ln
z1

(0) = a(n, z1).

So, the problem is how to obtain and maintain the active-indices array. Induc-
tively, at the time that the algorithm enters step n from step n−1, it maintains
the active-indices array for the step n− 1, which represents the lower envelope
of the lines {Ln−1

j (x) : 1 ≤ j ≤ n− 1}. So, the main part of the algorithm is to
update the old active-indices array to become the new active-indices array for
{Ln

j (x) : 1 ≤ j ≤ n}.
Before introducing the algorithm, we introduce another concept, the break-

point array, X = (x0, . . . , xt), where x0 = 0, xt = ∞ and xi (1 ≤ i < t) is
the x-coordinate of the intersection point of lines Ln

zi
(x) and Ln

zi+1
(x). The

break-point array is not stored explicitly, since for any i, the value of xi can be
computed in O(1) time, given the active-indices array. That is, xi is the unique
solution to the equation

a(n, zi) + δzi
· x = Ln

zi
(x) = Ln

zi+1
(x) = a(n, zi+1) + δzi+1

· x,

or

x = −
a(n, zi+1)− a(n, zi)

δzi+1
− δzi

. (9)

3.2 Updating the Lower Envelope

In step n, we need to consider n lines {Ln
j (x) : 1 ≤ j ≤ n}. The algorithm will

first deal with the n − 1 lines {Ln
j (x) : 1 ≤ j ≤ n − 1}, and then add the last

line Ln
n(x). Figure 1 illustrates the update process via an example. Figure 1(a)

shows what we have from step n − 1, Figure 1(b) shows the movements of the
first n− 1 lines, and Figure 1(c) shows the adding of the last line.

3.2.1 Updating the first n− 1 lines

For the first n − 1 lines {Ln
j (x) : 1 ≤ j ≤ n − 1}, the key observation is the

following lemma.

Lemma 9 For all 1 < n ≤ N and for all x,

Ln
j (x) = Ln−1

j (x + βn) + cn, ∀ 1 ≤ j ≤ n− 1.

Proof : By (4) and (8),

Ln
j (x) = [a(n, j)− δj βn] + δj (x + βn)

= [a(n− 1, j) + cn] + δj (x + βn)

= Ln−1
j (x + βn) + cn.

2

8



x1 x2 x3 x4Ln−1

1
(x)

Ln−1

2
(x)

Ln−1

3
(x)

Ln−1

4
(x)

Ln−1

5
(x)

Ln−1

6
(x)

Ln−1

7
(x)

1

2
4

5

7

x = 0

x1 x2

1

2
4

5

7

x = 0

4
5

7

x = −βn

cn

cn

x1 x2

1

2
4 5

7

x = 0

4 5

x = −βn

cn

cn

Ln

8 (x)

8

7

(a)

(b)

(c)

Figure 1: The update of the active-indices array from Step n − 1 to Step n,
where n = 8. The thick solid chains are the lower envelopes. Figure (a) shows
the lower envelope for the lines {Ln−1

j (x) : 1 ≤ j ≤ n − 1}, Figure (b) shows
the lower envelope for the lines {Ln

j (x) : 1 ≤ j ≤ n − 1}, and Figure (c) shows
the lower envelope for the lines {Ln

j (x) : 1 ≤ j ≤ n}. The numbers beside the
line segments are the indices of the lines. The active-indices array changes from
(a)(1, 2, 4, 5, 7), to (b)(4, 5, 7), then to (c)(4, 5, 8).

9



Lemma 9 says that if we translate the line Ln−1
j (x) to the left by βn and

upward by cn, then we obtain the line Ln
j (x). The translation is independent of

j, for 1 ≤ j ≤ n− 1.

Corollary 10 The lower envelope of the lines {Ln
j (x) : 1 ≤ j ≤ n − 1} is the

translation of the lower envelope of {Ln−1
j (x) : 1 ≤ j ≤ n− 1} to the left by βn

and upward by cn.

As an example, see Figure 1, (a) and (b). From Figure 1(a) to 1(b), the entire
lower envelope translates to the left by βn and upward by cn.

We call an active-index zi negative if the part of Ln
zi

(x) that appears on the
lower envelope is completely contained in the range x ∈ (−∞, 0). By Corollary
10, to obtain the active-indices array for {Ln

j (x) : 1 ≤ j ≤ n − 1} from the
old active-indices array, we only need to delete those active-indices that become
negative due to the translation. This can be done by a simple sequential scan.
We scan the old active-indices array from left to right, and check each active-
index to see whether it becomes negative. If it does, we delete it. As soon as
we find the first active-index that is nonnegative, we can stop the scan, since
the rest of the indices are all nonnegative.

To be precise, we scan the old active-indices array from z1 to zt. For each
zi, we compute xi, the right break-point of the segment zi. If xi < 0, then
zi is negative. Let zmin be the first active-index that is nonnegative, then the
active-indices array for {Ln

j (x) : 1 ≤ j ≤ n − 1} is (zmin, . . . , zt). See Part 2.1
of Figure 2.

3.2.2 Adding the last line

We now add the line Ln
n(x). Recall that we assume δ1 > δ2 > · · · > δN−1. Since

Ln
n(x) has a smaller slope than any line currently in the lower envelope, it must

be the rightmost segment on the lower envelope. There are now two mutually
exclusive possibilities; either (i) Ln

n(x) becomes the only line on the new lower
envelope or (ii) Ln

n(x) will not become the only line on the new lower envelope.
Possibility (i) occurs if and only if Ln

n(0) ≤ Ln
zmin

(0), which can be checked
in constant time.

If (i) does not occur, then (ii) does. In this case, since no line can appear
on the lower envelope more than once, we only need to find the intersection
point between Ln

n(x) and the lower envelope of {Ln
j (x) : 1 ≤ j ≤ n − 1}.

Assume they intersect on segment zmax; then the new lower envelope should be
(zmin, . . . , zmax, n). See Figure 1(c); in the example, zmax = 5.

To find zmax, we also use a sequential scan, but now from right to left. We
scan the active-indices array starting from zt, stepping down to zmin. For each
zi, we compute xi−1, the left break-point of segment zi, and compare the values
of Ln

n(xi−1) and Ln
zi

(xi−1). If Ln
n(xi−1) is smaller, then zi is deleted from the

active-indices array. Otherwise, we stop and let zmax be zi. See Part 2.2 of
Figure 2.

10



The Amortized O(1) Time Algorithm
1. // Initialize.

Set Z = (z1) = (1);
Output h(1) = a(1, z1);

2. While (a new step begins) // step n
{

2.1. // Deal with {Ln
j (x) : 1 ≤ j ≤ n− 1}.

// This starts with Z = (z1, . . . , zt).

For i from 1 to t
{

Compute xi;
If (xi ≤ 0)

Remove zi from array Z;
Else

End the “For” loop immediately;
}

2.2. // Adding the line Ln
n(x).

// This starts with Z = (zmin, . . . , zt).

If Ln
n(0) ≤ Ln

zmin
(0) // Ln

n is only line on envelope

Z = (n); zmin = n;

Else
For i from t down to “min”
{

Compute xi−1;

If
(

Ln
zi

(xi−1) ≥ Ln
n(xi−1)

)

Remove zi from array Z;
Else

End the “For” loop immediately; // zmax = zi.
}
Z ← (zmin, . . . , zmax, n)

2.3. Output h(n) = a(n, zmin);
}

Figure 2: The pseudo-code for the amortized O(1) time algorithm. Part 2.1 of
this figure corresponds to Section 3.2.1. Part 2.2 corresponds to Section 3.2.2.

11



3.3 Running time

The sequential scans use O(1) time for each insertion and deletion in the active-
indices array. Since each line can be inserted or deleted at most once, the
algorithm uses O(1) amortized time per step.

4 Extensions to the Analysis and the Algorithm

4.1 δ1 ≥ δ2 ≥ · · · ≥ δN−1

In Section 3, we assumed δ1 > δ2 > · · · > δN−1, which, for example, is what
occurs in the applications in Section 5. But in general, the values of δj may not
be distinct.

The only place that is affected is the adding of the last line Ln
n(x). This line

may no longer be the rightmost segment of the lower envelope when the values
of δj can be the same. To be precise, consider the case δt = δn, where t is the
index of the rightmost segment before Ln

n(x) is considered. Then, according to
(8), Ln

n(x) is the rightmost segment if and only if a(n, t) ≥ a(n, n). So it is only
necessary to modify the algorithm as follows: (i) If a(n, t) ≥ a(n, n) proceed as
in Section 3.2.2. (ii) If a(n, t) < a(n, n), leave the lower envelope unchanged
(throwing away Ln

n(x)).

4.2 The Worst-Case Bound

To achieve the worst-case bound, we can use binary search to find zmin and zmax.
Since for a given index z and any real number x, the y-coordinate of Ln

z (x) at
x can be evaluated in O(1) time, the binary search takes O(log N) time in the
worst case.

To keep both the O(1) amortized and the O(log N) worst-case time bounds
per step, we can run both the sequential search and the binary search in par-
allel, interleaving their steps, stopping when the first one of the two searches
completes. Then the total search time is at most 2 times the minimum of the
two and we maintain both time bounds.

4.3 Dropping the Extra Condition (C3)

In this section, we will show how to drop the condition

C3. For any j, the value of δj can be computed in O(1) time, provided that
the values of h(i) for 1 ≤ i < j are known.

The algorithm uses the δj to define the lines Ln
j (x) using (8) and to calculate

the break-points using (9). Most of the calculations in step n only require using
δj for j < n and we can assume, inductively, that these have already been
previously calculated and stored for our use. The only place that uses δn, i.e.,
the line Ln

n(x), in step n is the right-to-left scan when inserting line Ln
n(x) into

the lower envelope.

12



The difficulty is that, if we are not somehow explicitly given the value δn, we
cannot compute δn from other values available at step n, since the constraints
containing δn will only first appear from step n + 1. So, we will not know the
line Ln

n(x) during the end of step n when we need it.
The idea is to postpone the computation of δn and the addition of Ln

n(x)
to the lower envelope, until the beginning of step n + 1. To compute h(n) at
step n, we can evaluate the lower envelope — now without Ln

n(x) — at x = 0,
compare this value with Ln

n(0) = a(n, n), and return the smaller of the two.
What is left is to show

Lemma 11 A feasible value of δn can be computed in O(1) time at step n + 1.

Proof : We will show an algorithm that computes cn and βn at step n, and
computes δn at step n + 1.

There are actually many feasible solutions of cn, βn and δj for (4). Consider
a particular solution cn, βn and δj . If we set c′n = cn + xβn, β′

n = βn and
δ′j = δj − x for some arbitrary value x, then the new solution c′n, β′

n and δ′j still
satisfies (4). This gives us the degree of freedom to choose δ1. We choose δ1 = 0
and immediately get

cn = a(n, 1)− a(n− 1, 1), ∀ 1 < n ≤ N. (10)

So, we can compute cn at step n.
To compute βn and δj , we substitute (10) into (4):

δjβn = a(n, j)− a(n− 1, j)− cn, ∀ 1 < j < n ≤ N. (11)

β2 does not show up in (11). In fact, the value of β2 cannot affect the algorithm.
So, we can choose an arbitrary value for it, e.g., β2 = 0. All other values, βn

(3 ≤ n ≤ N) and δj (2 ≤ j < N), appear in (11), but we still have one degree
of freedom:

Consider a particular set of solutions βn and δj to (11). If we set β′
n = βn/x,

and δ′j = δj · x for some x > 0, then it is still a feasible solution. So, we can
choose δ2 to be an arbitrary negative value, say δ2 = −1. The rest is easy. In
step n, we can compute βn by

βn = [a(n, 2)− a(n− 1, 2)− cn]/δ2,

and in step n + 1, we compute δn by

δn = [a(n + 1, n)− a(n, n)− cn+1]/βn+1.

The lemma follows. 2

4.4 Removing Conditions on δj and βj

After developing the algorithm it is interesting to go back and ask whether all
of the conditions we imposed are necessary. In particular, consider the case that

13



the values of a(n, j) only satisfy (4), i.e., βn and δj can be arbitrary real values
without the nonnegative or the nonincreasing constraints. Note that in this case
the values of a(n, j) are no longer Monge.

In this case, we keep the entire lower envelope for the range x ∈ (−∞,∞).
The sequential search will fail, but the binary search still works. So, we get a
worst case O(log N) time algorithm.

Corollary 12 Consider the DP defined by (1). If for all 1 ≤ j < n ≤ N , there
exists cn, βn and δj such that (4) is satisfied and

1. for any n and j, the value of a(n, j) can be computed in O(1) time, provided
that the values of h(i) for 1 ≤ i < n are known,

then there is an algorithm that computes the values of h(n) in the order n =
1, 2, . . . , N in O(log N) worst-case time for each h(n).

5 Applications

We will now see two applications. Both will require multiple applications of our
technique, and both will be in the form

H(d, n) = min
d−1≤j≤n−1

(

H(d− 1, j) + W
(d)
n,j

)

, (12)

where the values of H(d, n) for d = 0 or n = d are given, the values of W
(d)
n,j can

be computed in O(1) time and, for each fixed d (1 ≤ d ≤ D), the W
(d)
n,j satisfy

the online Monge property in Theorem 4, i.e,

W
(d)
n,j −W

(d)
n−1,j = c(d)

n + δ
(d)
j β(d)

n ,

where δ
(d)
j decreases as j increases, and β

(d)
n ≥ 0. The goal is to compute

H(D,N). Setting

a(d)(n, j) = H(d− 1, j) + W
(d)
n,j ,

it is easy to see that for each fixed d (1 ≤ d ≤ D), the values of a(d)(n, j) satisfy
the online Monge property as well since

a(d)(n, j)− a(d)(n− 1, j) = W
(d)
n,j −W

(d)
n−1,j = c(d)

n + δ
(d)
j β(d)

n . (13)

As before, we want to compute H(d, n) in online fashion, i.e., as n increases
from 1 to N , at step n, we want to compute the set Hn = {H(d, n) | 1 ≤ d ≤
D}. By Theorem 4, for each d, the value of H(d, n) can be computed in O(1)
amortized time. So, the set of values Hn can be computed in O(D) amortized
time. This gives a total of O(DN) time to compute H(D,N), while the naive
algorithm requires O(DN2) time.

14



5.1 D-Medians on a Directed Line

The first application comes from [13]. It is the classic D-median problem when
the underlying graph is restricted to a directed line. In this problem we have N
points (users) v1 < v2 < · · · < vN , where we also denote by vi the x-coordinate
of the point on the line. Each user vi has a weight, denoted by wi, representing
the amount of service it requests. We want to choose a subset S ⊆ V as servers
(medians) to provide service to the users’ requests. The line is directed, in the
sense that the requests from a user can only be serviced by a server to its left.
So, v1 must be a server.

The cost of a server at point vl servicing w units of request by point vi is
wi(vi− vl); to minimize this a user will always be serviced by the nearest server
to its left. Denote by ℓ(vi, S) the distance from vi to the nearest server to its
left, i.e., ℓ(vi, S) = min{vi−vl | vl ∈ S, vl ≤ vi}. The minimum cost of servicing
vi will then be wiℓ(vi, S).

The objective is to choose D servers (not counting v1) to minimize the total
service cost, that is

min
|S|=D+1

N
∑

i=1

wiℓ(vi, S).

The problem can be solved by the following DP. Denote by H(d, n) the minimum
cost of servicing v1, v2, . . . , vn using exactly d servers (not counting v1). Denote
by Wn,j =

∑n

l=j+1 wl(vl−vj+1) the cost of servicing vj+1, . . . , vn by server vj+1.
Then

H(d, n) =











0 n = d
Wn,0 d = 0, n ≥ 1

min
d−1≤j≤n−1

(H(d− 1, j) + Wn,j), 1 ≤ d < n

The optimal cost we are looking for is H(D,N).
Note that

Wn,j −Wn−1,j = wn(vn − vj+1),

which gives the online Monge property with cn = wnvn, δj = −vj+1 and
βn = wn, satisfying (13). So, Theorem 4 will solve the online problem in O(D)
amortized time per step, and the total time to compute H(D,N) is O(DN).

[13] gives an offline O(DN) time algorithm for this problem, by observing
that the standard Monge property holds and applying the SMAWK algorithm
(D times).

The online problem has a physical interpretation here. Consider the users
arriving one by one, each new user arriving to the right of the previous users
(we therefore call this the one-sided online problem). After a new user arrives
we want to calculate the new set of D medians that minimizes the cost. Our
algorithm permits doing this in O(D) amortized and O(D log N) worst case
time.

We note that the corresponding online problem for solving the D-median
on an undirected line was treated in [6], where a problem-specific solution was

15



developed. As previously mentioned, the technique in this paper can be regarded
as a generalization of that algorithm.

5.2 Wireless Mobile Paging

The second application comes from wireless networking [10]. In this problem,
we are given N regions, called cells, and a user located in one of them. We want
to find which cell contains the user. To do this, we can only query a cell whether
the user is located in it; the cell will answer yes or no. For each cell i, we know
in advance the probability, denoted by pi, that it contains the user. Without
loss of generality, we assume p1 ≥ p2 ≥ · · · ≥ pN . We also approximate the real
situation by assuming the cells are disjoint, so pi is the probability that exactly
one cell contains the user.

Such a search exhibits a tradeoff between delay and (expected) bandwidth
requirement. For example, consider the following two strategies. The first
strategy queries all cells simultaneously, while the second strategy consists of
N rounds, querying the cells one by one from p1 to pN , stopping as soon as
the user is found. The first strategy has the minimum delay, which is only
one round, but has the maximum bandwidth requirement since it queries all N
cells. The second strategy has the maximum worst case delay of N rounds, but
the expected bandwidth requirement can be calculated to be

∑N

i=1 ipi queries,
which can be shown to be the minimum possible.

In the tradeoff, we are given a parameter D, which is the worst case delay
that can be tolerated, and our goal is to find an optimal strategy that minimizes
the expected number of queries.

It is obvious that a cell with larger pi should be queried no later than one with
smaller pi. So, the optimal strategy actually breaks the sequence p1, p2, . . . , pN

into D contiguous subsequences, and queries one subsequence in each round.
Let 0 = r0 < r1 < · · · < rD = N , and assume in round i, we query the cells
from pri−1+1 to pri

. Recall that the cells are disjoint. The expected number of
queries, defined as the cost, is

D
∑

i=1

ri





ri
∑

l=ri−1+1

pl



 . (14)

[10] used this equation to develop a DP formulation to solve this problem.
It is essentially the following DP. Let H(d, n) be the optimal cost for querying
cells p1, . . . , pn using exactly d rounds. Let Wn,j = n

∑n

l=j+1 pl denote the
contribution to (14) of one round that queries pj+1, . . . , pn. Then

H(d, n) =











∑n

l=1 lpl n = d
∞ d = 0, n ≥ 1

min
d−1≤j≤n−1

(H(d− 1, j) + Wn,j), 1 ≤ d < n

16



[10] applied the naive approach to solve the DP in O(DN2) time. But, since

Wn,j −Wn−1,j = npn +

n−1
∑

l=j+1

pl,

we can set cn = npn +
∑n−1

l=1 pl, δj = −
∑j

l=1 pl and βn = 1, satisfying (13).
This DP therefore satisfies the online Monge property and can thus be solved
in O(DN) time, using either the SMAWK algorithm or the online technique in
this paper.

In this problem, we know of no physical interpretation to the online prob-
lem. However due to the simplicity of our algorithm (performing simple scans),
it seems to run faster than the SMAWK algorithm in practice, as suggested
by the experiments in [3], and therefore might be more suitable for real time
applications.

6 Open Problems

It is well known that the solution of Dynamic Programs can be sped up if
they possess a Monge property. This speedup is inherently restricted to offline
problems. In this paper, we showed (Theorem 4) how, if the problem possesses
what we call an online Monge property, we can maintain the speedup in an
online setting.

In subsection 2.2 we showed that our online Monge property was equivalent
to a Monge property with rank 1 density matrices. This raises the question of
how tight our results are. Is it possible to show that there are online algorithms
that maintain the speedup for all Monge properties with rank ≤ k density
matrices for some k > 1? Or, might it be possible to show that no such general
algorithm exists for k > 1?

References

[1] Alok Aggarwal, Maria M. Klawe, Shlomo Moran, Peter W. Shor, and
Robert E. Wilber. Geometric applications of a matrix-searching algorithm.
Algorithmica, 2(1):195–208, 1987. A preliminary version appeared in Pro-
ceedings of the 2nd Annual Symposium on Computational Geometry, pages
285–292, 1986.

[2] Vincenzo Auletta, Domenico Parente, and Giuseppe Persiano. Placing re-
sources on a growing line. Journal of Algorithms, 26(1):87–100, 1998.

[3] Amotz Bar-Noy, Yi Feng, and Mordecai J. Golin. Paging mobile users effi-
ciently and optimally. In Proceedings of the 26th Annual IEEE Conference
on Computer Communications (Infocom’07), pages 1910–1918, 2007.

17



[4] Rainer E. Burkard, Bettina Klinz, and Rudiger Rudolf. Perspectives of
Monge properties in optimization. Discrete Applied Mathematics, 70(2):95–
161, 1996.

[5] David Eppstein, Zvi Galil, and Raffaele Giancarlo. Speeding up dynamic
programming. In Proceedings of the 29th Annual Symposium on Founda-
tions of Computer Science, pages 488–496, 1988.

[6] Rudolf Fleischer, Mordecai J. Golin, and Yan Zhang. Online maintenance
of k-medians and k-covers on a line. Algorithmica, 45(4):549–567, 2006. A
preliminary version appeared in Proceedings of the 9th Scandinavian Work-
shop on Algorithm Theory, pages 102–113, 2004.

[7] Zvi Galil and Raffaele Giancarlo. Speeding up dynamic programming
with applications to molecular biology. Theoretical Computer Science,
64(1):107–118, 1989.

[8] Zvi Galil and Kunsoo Park. A linear-time algorithm for concave one-
dimensional dynamic programming. Information Processing Letters,
33(6):309–311, 1990.

[9] Maria M. Klawe. A simple linear time algorithm for concave one-
dimensional dynamic programming. Technical Report 89-16, Department
of Computer Science, University of British Columbia, 1989.

[10] Bhaskar Krishnamachari, Rung-Hung Gau, Stephen B. Wicker, and Zyg-
munt J. Haas. Optimal sequential paging in cellular wireless networks.
Wireless Networks, 10(2):121–131, 2004.

[11] Lawrence L. Larmore and Baruch Schieber. On-line dynamic programming
with applications to the prediction of RNA secondary structure. Journal of
Algorithms, 12(3):490–515, 1991. A preliminary version appeared in Pro-
ceedings of the 1st Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 503–512, 1990.

[12] Robert Wilber. The concave least-weight subsequence problem revisited.
Journal of Algorithms, 9(3):418–425, 1988.

[13] Gerhard J. Woeginger. Monge strikes again: Optimal placement of web
proxies in the Internet. Operations Research Letters, 27(3):93–96, 2000.

18


