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Abstract. In this paper we discuss the problem of constructing
minimum-cost, prefix-free codes for equiprobable words under the as-
sumption that all codewords are restricted to belonging to an arbitrary
language L and extend the classes of languages to which L can belong.

Varn Codes are minimum-cost prefix-free codes for equiprobable words when the
encoding alphabet has unequal-cost letters. They can be modelled by the leaf-set
of minimum external-path length lopsided trees, which are trees in which different
edges have different lengths, corresponding to the costs of the different letters of
the encoding alphabet. There is a very large literature in the information theory
and algorithmic literature devoted to analyzing the cost [24] [18] [10] [11] [3] [16]
[21] [1] [7] [22] [7] [22] of such codes/trees and designing efficient algorithms for
building them [16] [8] [26] [9] [20] [15] [7].

It was recently shown [13] that the Varn coding problem can be rewritten as
the problem of constructing a minimum-cost prefix-free code for equiprobable
words, under the assumption that all codewords are restricted to belonging to an
arbitrary language L, where L is a special type of language, specifically a regular
language accepted by a DFA with only one accepting state. Furthermore, [13]
showed that the techniques developed for constructing Varn Codes could then be
used to construct optimal codes restricted to any regular L that is accepted by
a DFA with only one accepting state. Examples of such languages are where L
is “all words in Σ∗ ending with a particular given string P ∈ Σ∗,” i.e., L = Σ∗P
(the simplest case of such a language are the 1-ended codes, L = (0+1)∗1 [4, 5]).
A major question left open was how to construct minimum-cost prefix-free codes
for equiprobable words restricted to L when L does not fit this criterion.

In this paper we solve this open problem for all regular L, i.e., languages
accepted by Deterministic Finite Automaton, as long as the language satisfies a
very general non-degeneracy criterion. Examples of such languages are L of the
type, L is all words in Σ∗ ending with one of the given strings P1, P2, . . . , Pn ∈
Σ∗. More generally our technique will work when L is a language accepted by
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A1 = {aabca, babca, cabca, dabca}, A2 = {01, 0011, 1100, 1010, 1001}
B1 = {aabca, babca, cabca, aaabca}, B2 = {01, 10, 0011, 101010, 000111}

Fig. 1. Examples of optimal (A1, A2) and non-optimal (B1, B2) codes in L1 and L2.
cost(A1) = 20; cost(B1) = 21; cost(A2) = 18; cost(B2) = 20

any Deterministic Automaton, even automaton with a countably infinite number
of states, as long as the number of accepting states in the automaton is finite.

Our major result is a combinatorial theorem that, given language L accepted
by a Deterministic Automaton, exactly describes the general structure of all
optimal prefix-free codes restricted to L. This theorem immediately leads to a
simple algorithm for constructing such codes given the restriction language L
and the number of leaves n.

0.1 Formal Statement of the Problem

We start with a quick review of basic definitions. Let Σ be a finite alphabet, e.g.,
Σ = {0, 1}, or Σ = {a, b, c}. A code is a set of words C = {w1, w2, . . . , wn} ⊂
Σ∗. A word w = σ1σ2 . . . σl is a prefix of another word w′ = σ′

1σ
′
2 . . . σ′

l′ if w is
the start of w′. For example 01 is a prefix of 010011. Finally, a code is said to
be prefix-free if for all pairs w,w′ ∈ C, w is not a prefix of w′.

Let P = {p1, p2, p3, . . . , pn} be a discrete probability distribution, that is,
∀i, 0 ≤ pi ≤ 1 and

∑
i pi = 1. The cost of code C with distribution P is

cost(C,P ) =
∑

i |wi|·pi where |w| is the length of word w; cost(C,P ) is therefore
the average length of a word under probability distribution P. The prefix-coding
problem is, given P, to find a prefix-free code C that minimizes cost(C,P ). This
problem is well-studied and can easily and efficiently be solved by the well-
known Huffman-coding algorithm When the codewords are equiprobable, i.e., ∀i,
pi = 1/n, then cost(C,P ) = 1

n

∑
i |wi| = 1

ncost(C) where cost(C) =
∑

i |wi|.
cost(C,P ) is then minimized when cost(C) is minimized. We will call such a
code an optimal uniform-cost code.

In this paper we are interested in what happens to the uniform-cost code
problem when it is restricted so that all of the words in C must be contained
in some language L ⊆ Σ∗,. As examples consider L = L1, the set of all words
in {a, b, c}∗ that end with the pattern abca and L = L2, the set of all words in
{0, 1}∗ in which the number of ‘0’s is equal to the number of ‘1’s.

In Figure 1, the codes Ai are optimal prefix-free codes (for 4/5) words in Li

(i=1,2). That is, no codes with the same number of words in Li have smaller
cost than the Ai. The Bi are non-optimal codes in the same languages.

Let language L be fixed. We would like to answer the questions:

– What is the optimal (min-cost) prefix-free code Cn containing n words in L?
– How does Cn change with n?

We call this the L-restricted prefix-coding problem. Our major tools for attacking
this problem are generalized lopsided trees.

Note: In this extended abstract we only state our main results and provide
intuition as to why they are correct. The full proofs are omitted.
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A version of this paper with more diagrams and worked examples can be found
as 2005 HKUST Theoretical Computer Science Group research report HKUST-
TCSC-2005-04 at http://www.cs.ust.hk/tcsc/RR.

1 Generalized Lopsided Trees

Definition 1. See Figures 2 and 3.
We are given a finite set T = {t1, t2, ..., tk} and two functions

cost(·, ·) : T × N+ → N+ and type(·, ·) : T × N+ → T

where N+ is the set of nonnegative integers; T , cost() and type() are the tree
parameters.

– A generalized lopsided tree for T, cost(·, ·) and type(·, ·) is a tree (of
possibly unbounded node-degree) in which every node is labelled with one
element T .

– The label of a node is its type; equivalently, a node of type ti is a ti-node.
– By convention, unless otherwise explicitly stated, the root of a generalized

lopsided tree must be a t1-node.
– The jth child of a ti node, if it exists, will have type type(ti, j). The length

(weight) of the edge from a ti-node to its jth child, will be cost(ti, j). By
convention, we will assume that if j ≤ j′, then cost(ti, j) ≤ cost(ti, j′) .

Note that it is possible that a type ti ∈ T node could be restricted to have at
most a finite number k of possible defined children. In this case, cost(ti, j) and
type(ti, j) are undefined for j > k.

Note too that it is possible for a node to be “missing” its middle children, e.g,
the 1st and 3rd child of a node might be in the tree, but the 2nd child might not.

When designing an algorithm for constructing optimal trees we will assume
that the values cost(ti, j), type(ti, j) and Num(i,m, h) = |{j : cost(ti, j) =
h and type(ti, j) = tm}|, can all be returned in O(1) time by some oracle.

Finally, we point out that our definition restricts cost(·, ·) to be nonnegative
integers. If cost(·, ·) were arbitrary nonnegative rationals they could be scaled to
be integers and the problem would not change. Allowing cost(·, ·) to be nonneg-
ative irrationals would change the problem and require modifying many of the
lemmas and theorems in this paper. In this extended abstract we restrict our-
selves to the simpler integer case since, as we will soon see, restricted languages
can be modelled using integer costs.

Definition 2. See Figures 2 and 3. Let u be a node and Tr be a generalized
lopsided tree.

– depth(u) is the sum of the lengths of the edges on the path connecting the
root to u.

– The height of Tr is H(Tr) = maxu∈Tr depth(u).
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Fig. 2. Example: Using a lopsided tree (with only one type of node) to model a Varn
code with letter costs c1 = 1, c2 = c3 = 2. Edge costs are represented by verti-
cal distances in the diagram. Let T = {t}. Then cost(t, 1) = 1, and cost(t, 2) =
cost(t, 3) = 2. The code represented by the tree is the set of all external paths, which
is α1α2, α1α3, α2, α3α1, α3α3. The cost of the tree is 2 + 3 + 3 + 3 + 4 = 15; its
height is 4

– The leaf set of Tr is leaf(Tr), the set of leaves of Tr.
– The cost of Tr is its external path length or C(Tr) =

∑
v∈leaf(Tr) depth(v)

Tree Tr is optimal if it has minimum external path length over all trees with
|leaf(Tr)| leaves, i.e.,

cost(Tr) = min{cost(Tr′) : Tr′ a tree with |leaf(Tr′)| = |leaf(Tr)|}
Definition 3. opt(n) denotes an arbitrary generalized lopsided tree that has
minimum cost among all generalized lopsided trees with n leaves.

For given T , cost, and type the problem in which we are interested is: Given
n, characterize the combinatorial structure of opt(n) and propose an
algorithm for the construction of opt(n).

Figure 2 illustrates a case in which |T | = 1 and Figure 3 a case in which
|T | = 2.

The |T | = 1 case has been extensively studied in the literature under the
name lopsided trees (hence, generalized lopsided trees for the extension studied
here). The name lopsided trees was introduced in 1989 by Kapoor and Reingold
[16] but the trees themselves have been implicitly present in the literature at
least since 1961 when Karp [17] used them to model minimum-cost prefix-free
(Huffman) codes in which the length of the edge of the letters in the encoding
alphabet were unequal; ci represented the length of the ith letter in the encoding
alphabet (the idea of such codes was already present in Shannon [24]).

A major motivation for analyzing lopsided trees was the study of Varn-codes
[26] [21]. Suppose that we wish to construct a prefix-free encoding of n symbols
using an encoding alphabet of r letters, Σ = {α1, . . . , αr} in which the length of
character αi is ci, where the cis may all be different.
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type(sq, 1) = circ cost(sq, 1) = 1
type(sq, 2) = sq cost(sq, 1) = 2
type(sq, 3) = sq cost(sq, 1) = 3

type(circ, 1) = sq cost(circ, 1) = 1
type(circ, 2) = circ cost(circ, 2) = 2
type(circ, 3) = sq cost(circ, 2) = 2
type(circ, 4) = circ cost(circ, 3) = 4

Fig. 3. A Generalized Lopsided tree (on the top) with T = {circle(circ), square(sq)}.
Cost of the tree is 3 · 3 + 5 · 4 + 4 · 5 + 6 = 51; height is 6. The two trees on the
bottom describe the functions cost and type on the two types of nodes, (sq) and (circ).
For comparison’s sake, the functions are also explicitly written out. Note that the
second child of the root is missing

If a symbol is encoded using string ω = αi1αi2 . . . αil
, then cost(ω) =

∑
j≤l cij

is the length of the string. For example if r = 2, Σ = {0, 1} and c1 = c2 = 1
then the cost of the string is just the number of bits it contains. This last case
is the basic one encountered in regular Huffman encoding.

Now suppose that the n symbols to be encoded are known to occur with
equal frequency. The cost of the code is then defined to be

∑
i≤n cost(ωi) (which

divided by n is the average cost of transmitting or length of a symbol). Given
c1 ≤ c2 ≤ · · · ≤ cr, a Varn-code for n symbols is a minimum-cost code. Varn
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codes have been extensively studied in the compression and coding literature([21]
[2] both contain large bibliographies).

Such codes can be naturally modelled by lopsided trees in which the length of
the edge from a node to its ith child is ci. See Figure 2. Suppose that v is a leaf
in a lopsided tree and the unique path from the tree’s root to v first traverses an
ist1 edge then an ind

2 edge and so on up to an ithl edge. We can then associate with
this leaf the codeword ω = αi1αi2 . . . αil

. The cost of this codeword is exactly
the same as the depth of v in the tree, i.e.,

∑
j≤l cij

. Using this correspondence,
every tree with n leaves corresponds to a prefix-free set of n codewords and
vice-versa; the cost of the code is exactly equal to the external path length of
the tree which we will henceforth call the cost of the tree. This correspondence
is extensively used, for example, in the analysis of Huffman codes.

A lopsided tree with minimal cost for n leaves will be called an optimal
(lopsided) tree.

With this correspondence and notation we see that the problems of construct-
ing a Varn code and calculating its cost are equivalent to those of constructing
an optimal (lopsided) tree and calculating its cost. This is what was studied by
most of the papers listed in the first paragraph of this note and this problem is
now essentially fully understood.

[13] noted that if Σ = {α1, . . . , αr} and the ci are all integral then the
Varn coding problem can be modelled by introducing new alphabet Σ′ =
{x1, x2, . . . , xr} and Varn language L = (xc1

1 + xc2
2 + . . . + xcr

r )∗ ⊆ Σ′∗. A 1-
1 correspondence between character αi and string xci

i shows that there is a 1-1
correspondence between Varn codes and prefix-codes restricted to L and, simi-
larly, between lopsided trees and prefix-codes restricted to L. Thus, the problem
of finding the smallest cost prefix-code restricted to L is equivalent to finding
a min-cost lopsided tree. [13] then noted that this was true not just for codes
restricted to Varn-languages but that codes restricted to any regular L accepted
by a DFA with one accepting state (like Varn Languages) could also (almost) be
modelled by lopsided trees, thus permitting using the same techniques to find
the cost of such codes. For example let L = Σ∗P for some fixed P ∈ Σ∗, i.e., L
is all words that end in P. Such a L is always accepted by some DFA with one
accepting state, so the results in [13] permit finding optimal codes of n words
restricted to such L.

A problem that was left open in [13] was how to solve this problem if L is not
in this restricted form. For example, let Σ = {0, 1}. The simple regular language
L = Σ∗(000 + 111)Σ∗ of all words containing at least one occurance of 000 or
111 is not accepted by any DFA with only one accepting state. Another example
of a regular language not accepted by any DFA with only one accepting state
is L = 0∗1(0000∗1)∗0∗ the language containing all words in which every two
consecutive ones are separated by at least 3 zeros.

We now see that the L-restricted prefix-coding problem can be modelled using
generalized lopsided trees for regular languages L. Let L be accepted by some
Deterministic Automaton M with accepting states A = {a1, a2, ..., an}. Without
loss of generality we may assume that the empty string ε ∈ L, so the start
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state of M is in A. Now define the parameters of the lopsided tree as follows:
T = {t1, ..., tk} where ti corresponds to state ai. For any fixed i enumerate, by
increasing length (breaking ties arbitrarily) all paths in M that start at ai and
end at some node aj ∈ A, without passing through any other node in A in the
interior of the path. Let these paths be p

(1)
i , p

(2)
i , .... Set end(p) = j, where aj

terminates path p. We complete the remaining parameters of the generalized
trees by defining the functions

type(ti, j) = t
end

(
p
(j)
i

), cost(ti, j) = length
(
p
(j)
i

)
. (1)

There is then a simple one-one correspondence between prefix-free codes re-
stricted to L and the leaves of the defined generalized lopsided tree with the
cost of the code being equal to the cost (external path length) of the tree. Thus,
finding the min-cost prefix free code with n words restricted to L is exactly
equivalent to finding the min-cost generalized lopsided tree with n leaves. The
remainder of this paper will therefore be devoted to analyzing generalized lop-
sided trees and how they change as n grows.

As mentioned, the case of regular lopsided trees, i.e., when |T | = 1, is well-
understood. The difficulty in extending the results on the growth of lopsided
trees to that of generalized lopsided trees is that there is a fundamental difference
between |T | = 1 and |T | > 1. Let opt(n) be the optimal lopsided tree with n
nodes and In the set of internal (non-leaf) nodes in opt(n). In [7] it was shown
that, even though it is not necessarily true that opt(n) ⊂ opt(n + 1), i.e., the
trees can not be grown greedily, it is always true that In ⊆ In+1. So, with a little
more analysis, one can “incrementally” construct the trees by greedily growing
the set of internal nodes. Because of the interactions between the various types
of nodes, this last property is not true for generalized lopsided trees. We therefore
have to develop a new set of tools to analyze these trees, which is the purpose
of this paper.

Note: our correspondence only required that L be accepted by a Deterministic
Automaton with a finite set of accepting states. Since all regular languages are
accepted by Deterministic Finite Automatons our technique will suffice to analyze
all restrictions to regular languages.

We point out that there are many non-regular languages accepted by Non-
finite Deterministic Automata (automaton that can have countable infinite
states) with a finite set of accepting states. For example, the language L2, the
set of all words in {0, 1}∗ in which the number of “0”s is equal to the number of
“1”s, has this property. Since these can also be modelled by generalized lopsided
trees, our technique will work for restrictions to those languages as well.

2 Definitions

In this section, we introduce definitions that will be used in the sequel. In what
follows T, cost and type will be assumed fixed and given.
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Definition 4. Let Tr be a generalized lopsided tree and v a node in Tr.

– internal(Tr) is the set of internal nodes of Tr.
– type(v) is the type of v
– parent(v) is the parent of v;note that the parent of the root is undefined

Our main technique will involve building a larger tree Tr′ out of smaller tree
Tr by replacing some leaf v ∈ leaf(Tr) with some new tree T2 rooted at a type(v)-
node. The increase in the number of leaves from Tr to Tr′ is |leaf(T2)| − 1. The
average cost cost(T2)/(|leaf(T2)| − 1) of the new leaves will be crucial to our
analysis and we therefore define

Definition 5. The average replacement cost of tree Tr is

ravg(Tr) = cost(Tr)/(|leaf(Tr) − 1).

Intuitively, we prefer to use the subtree with smallest ravg to expand the
existing lopsided tree. This motivates us to study the trees with minimum ravg.
Recall that the set T represents the collection of types.

Definition 6. Let tk ∈ T . Set

MinS(tk) = min{ravg(Tr), : type(root(Tr)) = tk}. (2)

The corresponding tree attaining MinS(tk) is denoted by MinS(tk).

Note that this definition does not depend upon n, but only upon T , cost(), and
type(). There might be more than one tree that attains1 the minimum cost. In
such a case, we select an arbitrary tree attaining the minimum that contains the
least number of nodes.

We can now define certain essential quantities regulating the growth of lop-
sided trees.

Definition 7. Let l be an integer. Set bottom(l) = l + mini{�MinS(ti)�} and

levtk
(l) =

{
bottom(l) − MinS(tk) if MinS(tk) is an integer;
�bottom(l) + 1 − MinS(tk)� if MinS(tk) is not an integer. (3)

In our analysis we often manipulate unused or free nodes. In order to do so,
we must first introduce a reference tree containing all nodes.

Definition 8. The Infinite Generalized Lopsided Tree (ILT) is the rooted
infinite tree such that for each node v in the tree, the ith child’s type is type(v, i);
the length of the edge connecting v and its ith child is cost(v, i), i.e., every node
contains all of its legally defined children.

We can now define

1 It is easy to prove that the minimum is attained but we do not do so in this extended
abstract.
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Definition 9. A leaf v in the infinite lopsided tree is free with respect to tree
Tr, if v /∈ Tr and parent(v) ∈ Tr; the free set of Tr is

free(Tr) = {v : v is free with respect to Tr}.
In our study of lopsided trees we need to somehow avoid repeated paths that

do not contribute any benefit to the tree. We therefore define:

Definition 10. An improper lopsided tree is a tree containing a path p1p2....pk,
where k > |T | in which each pi has only one child (that is, p1 has only child p2,
p2 has only child p3, ...). A proper lopsided tree is a tree which is not improper.

It is not difficult to see that improper trees can not be optimal. We may therefore
restrict ourselves to studying proper trees. Note that a proper tree with n leaves
can only contain O(n) nodes in total (where the constant in the O() depends
upon the tree parameters); we will need this fact in the sequel.

We need one more definition:

Definition 11. Lopsided Tree parameters T , cost(), and type() are non-
degenerate if they satisfy the following condition:
There exists N > 0 such that, ∀l ≥ N ; if the number of nodes on level l in
ILT is 
= 0 then the number of nodes on level (bottom(l) + 1) in ILT is ≥
maxi{|leaf(MinS(ti))|}.
Essentially, the parameters are non-degenerate if deep enough into the infinite
tree, the number of nodes per level can’t get too small. A technicality occurs
because it is quite easy to construct languages in which many levels of the infinite
tree have no nodes, e.g., the language of all words in w ∈ {0, 1}∗ in which # of
0’s in w equals # of 1’s in w. In this language all words have even length, so
all odd levels are empty. The condition is stated to handle such cases as well.
While the non-degeneracy definition is quite technical, it is usually quite easy
to show that most interesting classes of languages satisfy it. For example, L of
the type, L is “all words in Σ∗ containing at least one of the specified patterns
P1, P2, . . . , Pk ∈ Σ∗” always satisfy this condition.

3 The Structure of Optimal Generalized Trees

Theorem 1. Let Tr be any optimal tree, v1, v2 two nodes in in Tr with
type(v1) = type(v2). Then if v1 is internal in Tr and v2 is a leaf then
depth(v1) ≤ depth(v2). Furthermore, there exists a constant N , dependent only
upon the tree parameters, such that if Tr has n ≥ N leaves then

1. if v is a leaf in Tr, then H(Tr) − depth(v) ≤ �MinS(type(v))� and
2. if v is internal in Tr, then H(Tr) − depth(v) ≥ �MinS(type(v))� − 1

This lemma can be read as saying that opt(n) always has a layered structure,
i.e., there exists integers l1, ...l|T |, such that (i) all ti nodes on or above level li
are internal (ii) all ti nodes below level li + 1 are leaves and (ii) ti nodes on level
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li+1 could be either internal or leaves. Furthermore, H(Tr)−(li+�MinS(ti)�) ∈
{0, 1} so (up to an additive factor of 1), it is independent of n.

The proof of this theorem is a quite technical case-by-case one and is omitted
from this extended abstract. The basic intuition behind it is quite simple, though.
First, it is easy to see that, for fixed type ti, there must be some level li above
which all ti-nodes are internal and below which all ti-nodes are leaves; otherwise,
we can swap a higher leaf with a lower internal to get a cheaper tree with the same
number of leaves. The actual location of li is derived by (i) calculations noting
that if a leaf v is higher than the given level, then the tree can be improved by
turning v into an internal node by rooting a MinST(ti) tree at it and removing
|leaf(MinST(ti))| leaves from the bottom level of the tree; and (ii) calculations
noting that if an internal node v is lower than the specified level then it and all
of its descendents can be removed and replaced by new free leaves located at the
bottom level or one level below the bottom. The existence of the nodes in (i) to
remove and nodes in (ii) to add follows from the non-degeneracy condition.

Definition 12. Set

V (l) = {v ∈ ILT |depth(v) ≤ levtype(v)(l)},
that is, for each i, V (l) contains exactly all of the ti nodes with depth ≤ levti

(l).
Now set

TreeA(l) = V (l)∪{v|v ∈ ILT and parent(v) ∈ V (l) and depth(v) ≤ bottom(l)}
and

TreeB(l) = V (l) ∪ {v|v ∈ ILT and parent(v) ∈ V (l) and depth(v) ≤ bottom(l) + 1}
=TreeA(l) ∪ {v|v∈ ILT and parent(v)∈V (l) and depth(v)=bottom(l)+1}

Note that V (l) is the set of internal nodes of TreeA(l) and also the set of internal
nodes of TreeB(l).

Lemma 1. Let l be an integer, then

|leaf(TreeA(l))| ≤ |leaf(TreeB(l))| ≤ |leaf(TreeA(l + 1))|.
Even though it is possible that, for some l, |leaf(TreeA(l))| =

|leaf(TreeA(l + 1))| it is not difficult to see that, if the non-degeneracy con-
dition is satisfied, liml→∞ |leaf(TreeA(l))| = ∞ so, for every n we can find an l
such that |leaf(TreeA(l))| ≤ n < |leaf(TreeA(l + 1))|.

We can now state our main theorem:

Theorem 2. Suppose parameters T , cost(), and type() are non-degenerate.
For a given integer l, set A(l) = leaf(TreeA(l)) and B(l) = leaf(TreeB(l))
Then

1. If n = |A(l)|, then the tree TreeA(l) is optimal.
2. If |A(l)| < n ≤ |B(l)|, then the tree obtained by appending the n − |A(l)|

highest free (with respect to TreeA(l)) leaves to TreeA(l) is optimal.
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3. If |B(l)| < n < |A(l + 1)|,
– All nodes in V (l) are internal in opt(n).
– No ti-node whose depth is greater than levti

(l) + 1 is internal in opt(n).

This suggests how to find opt(n) given n. First, find l such that A(l) ≤ n <
A(l + 1). Then, calculate B(l). If A(l) ≤ n ≤ B(l) then opt(n) is just TreeA(l)
with the highest n − A(l) free leaves in TreeA(l) added to it. The complicated
part is when B(l) < n < A(l + 1). In this case Theorem 2 tells us that the set
of ti internal nodes in opt(n) is all of the ti nodes on or above depth levti

(l) + 1
plus some ti nodes at depth levti

(l)+1. If we exactly knew the set of all internal
nodes we can easily construct the tree by appending the n highest leaves. So,
our problem reduces down to finding exactly how many ti internal nodes there
are on levti

(l) + 1. We therefore define a vector that represents these numbers:

Definition 13. Let n and l be such that B(l) < n < A(l + 1) and Let opt(n) be
an optimal tree for n leaves and vi be the number of ti-internal nodes exactly at
depth levti

(l) + 1. The feature vector for opt(n) is v = (v1, v2, ..., v|T |).

Theorem 2, our combinatorial structure theorem, now immediately yields a
straightforward algorithm for constructing opt(n). The first stage of the algo-
rithm is to find l such that A(l) ≤ n < A(l + 1). Note that this can be done
in O(|T |2l2) time by iteratively building A(1), A(2), . . . , A(l + 1) (l is the first
integer such that n < A(l + 1)). This is done not by building the actual tree
but by constructing an encoding of the tree that, on each level, keeps track of
how many ti-leaves and ti internals there are on each level. So, an encoding of
a height i tree uses O(|T |i) space. From the definition of TreeA(i) it is easy to
see that its encoding can be built from the encoding of TreeA(i−1) in O(|T |2i)
time so l can be found in

∑
i≤l+1 O(|T |2i) = O(|T |2l2).

Now note that, because the tree is proper, the total number of nodes in
opt(n) is O(n) (where the constants in the O() depend upon the parameters of
the lopsided tree) so all of the vi = O(n). In particular, this means that there
are at most O(n|T |) possible feature vectors.

Given n, l and some vector v it is easy to check, in O(|T |2l) time, whether
a tree with feature vector v actually exists. This can be done by starting with
the encoding of TreeA(l) and then, working from level l|T | down, using the
given v to decide whether there are enough type-ti leaves available on level li to
transform into internals and, if there are, then transforming them. While doing
this, we always remember how many leaves L exist above the current level. After
finishing processing level l1, we then add the highest available n−L leaves below
l1 if they exist, or find that no such tree exists. If such a tree can be built, then,
in O(|T |l) time, its cost can be calculated from the encoding.

Combining the above then gives an O
(|T |2l2n|T |) algorithm for constructing

opt(n). Simply try every possible feature vector and return the one that gives
the minimal cost. The fact that the tree is proper implies that l = O(n) so, in
the worst case, this is an O

(|T |2 n|T |+2
)

algorithm. In many interesting cases,
e.g., when all nodes have a bounded number of defined children, l = O(log n) so
this beomes an O

(
log2 n |T |2 n|T |) algorithm.
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11. I. Csiszár, G. Katona and G. Tsunády, “Information Sources with Different Cost
Scales and the Principle of Conservation of Energy,” Z. Wahrscheinlichkeitstheorie
verw, 12, (1969) pp. 185-222

12. M. Golin and G. Rote, “A Dynamic Programming Algorithm for Constructing
Optimal Prefix-Free Codes for Unequal Letter Costs,” IEEE Transactions on In-
formation Theory, 44(5) (September 1998) 1770-1781.

13. M. Golin and HyeonSuk Na, “Optimal prefix-free codes that end in a specified
pattern and similar problems: the uniform probability case.,” Data Compression
Conference, DCC’2001, (March 2001) 143-152.

14. M. Golin and Assaf Schuster “Optimal Point-to-Point Broadcast Algorithms via
Lopsided Trees,” Discrete Applied Mathematics, 93 (1999) 233-263.

15. M. Golin and N. Young, “Prefix Codes: Equiprobable Words, Unequal Letter
Costs,” SIAM Journal on Computing, 25(6) (December 1996) 1281-1292.

16. Sanjiv Kapoor and Edward Reingold, “Optimum Lopsided Binary Trees,” Journal
of the Association for Computing Machinery, 36 (3) (July 1989) 573-590.

17. R. M. Karp, “Minimum-redundancy coding for the discrete noiseless channel,” IRE
Transactions on Information Theory, 7, pp. 27-39, 1961

18. R. M. Krause, “Channels Which Transmit Letters of Unequal Duration,” Inform.
Contr., 5 (1962) pp. 13-24,

19. Harry R. Lewis and Christos H. Papadimitriou, Elements of the Theory of Com-
putation (2nd ed.), Prentice Hall. (1998).

20. Y. Perl, M. R. Garey, and S. Even. “Efficient Generation of Optimal Prefix Code:
Equiprobable Words Using Unequal Cost Letters,” Journal of the Association for
Computing Machinery, 22(2):202–214, April 1975.

21. Serap A. Savari, “Some Notes on Varn Coding,” IEEE Transactions on Information
Theory, 40(1) (Jan. 1994) 181-186.



384 M.J. Golin and Z. Liu

22. Serap A. Savari, “A Probabilistic Approach to Some Asymptotics in Noiseless
Communications,” IEEE Transactions on Information Theory, 46(4) (July 2000)
1246-1262.

23. Raymond Yeung, A First Course in Information Theory, Kluwer Aca-
demic/Plenum Publishers, New York. (2002).

24. C.E. Shannon “A Mathematical Theory of Communication,” Bell System Technical
Journal 27 (1948) 379-423, 623-656.

25. L. E. Stanfel, “Tree Structures for Optimal Searching,” Journal of the Association
for Computing Machinery, 17(3) (July 1970) 508-517.

26. B.F. Varn, “Optimal Variable Length Codes (Arbitrary Symbol Costs and Equal
Code Word Probabilities),” Informat. Contr., 19 (1971) 289-301


	Formal Statement of the Problem
	Generalized Lopsided Trees
	Definitions
	The Structure of Optimal Generalized Trees

