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EREW PRAMSs, no variable may be accessed by more than
A new interconnection network is proposed for the construc- one processor in a given step. In contrast, CRCW (concurrent
tion of a massively parallel computer system. The systematic con- read—concurrent write) PRAMs allow simultaneous reading
struction of this |nterc_onnect|on network, denoted RCC-FULL, IS as well as simultaneous writing of each variable, with some
performed by methodically connecting together anumber of basic je gefining how to handle simultaneous writing of distinct
atoms where_a pasm atom |s_a_set of fuIIy_ interconnected nodes.variables to the same location.
Key communication characteristics are derived and evaluated for , . . .
From a programmer’s perspective, it would be ideal to

RCC-FULL and efficient routing algorithms, which need only lo- .
cal information to route messages between any two nodes, aredeveIOp parallel algorithms for the PRAM. PRAMs are very

also derived. AnO(log (N)) sorting algorithm is shown for RCC-  convenient for expressing parallel algorithms since one may
FULL and RCC-FULL is shown to emulate deterministically the ~concentrate on decomposing the problem at hand, without
CRCW PRAM model, with only O(log (N)) degradation in time having to worry about the communication between the tasks.
performance. Finally, the hardware cost for the RCC-FULL is For this reason there are many parallel algorithms written for
estimated as a function of its pin requirements and compared to the PRAM [2, 3, 11, 16, 18]. Unfortunately, the PRAM is not
that of the binary hypercube and most instances of RCC-FULL g very realistic model of parallel computation when the number
have substantially lower cost. Hence, RCC-FULL appears to be of processors grows large. Present and foreseeable technology
a particularly effective network for PRAM emulation, and might 4565 not seem to make it possible to implement this model with
be considered as a qnlversal network for future supercomputing more than a small number of processors. This has led many
systems. © 1997 Academic Press . . . .
researchers to consider the emulation of the idealized parallel
machine, the PRAM, on more realistic parallel machines using
interconnection networks such as the hypercube, the mesh, and
1. INTRODUCTION the mesh-of-trees [6, 20, 24, 32].
However, to the best of our knowledge, no practical in-
The theoretical RAM model closely matches real seri&rconnection network has been proposed to interconnect the
machines in that the observed performance of an algoritfifocessors of a parallel machine that can emwdaterministi-
on a serial machine can be expected to closely match ®&lly any of the PRAM models of the same size in better than
theoretical analysis. The parallel model that corresponds Relylogarithmic degradation in time performance. We should
the RAM is the parallel random access machine (PRAM) [ention here that there are some researchers who were able
6, 11]. A PRAM is an idealized parallel machine whicio show that certain networks are capable of emulating the
consists of a set of processors all of which have unit-tinfBRAM in better than polylogarithmic degradation in time per-
access to a shared memory. In every step of the PRARImance with high probability unlike our deterministic meth-
each of its processors may execute a private RAM instructid®fs in this paper [21]. Further, there has been some research
In particular, the processors may all simultaneously accedgnducted that shows that the PRAM can be emulated on, for
(read from or write into) the common memory. Various typegxample, the reconfigurable mesh in constant time [27]. How-
of PRAMs have been defined, differing in the conventiorgver, in this case and many other related cases the size of the
used to deal with read/write conflicts, i.e., attempts by seveginulating machine is substantially bigger than that of the emu-
processors to access the same variable in the same steplated machine (PRAM) which reduces its practicality. Thus, in
the most restrictive model, exclusive read—exclusive write 8tis paper, we investigate a class of modular networks, RCC-
FULL, which is constructed incrementally by compounding
This research was supported in part by the Hong Kong Research Cougértain primitive graphs together, and we find that this class is
und.er Grant RGC/HKUST 100/92E and the Defen;e Advanced Resea@me to emulate PRAM models with better than polylogarith-
Projects Agency under Grant AFOSR-90-0310, monitored by the Air For?ﬁic degradation in time performance. This also means that

Office of Scientific Research. . .
2E-mail: hamdi@cs.ust.hk. the RCC-FULL can emulate any interconnection network of
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the same size with better than polylogarithmic degradation (¥4, L — 1) RCC-FULLs, referred to as level transpose

time performance. links, are formed by connecting PE to PE j: for all i and
This paper is organized as follows. In Section 2 we defirge with ¢ # j, wherei andj are binary numbers of length (1/

the RCC-FULL interconnection network, we present son®log(/N) bits each. Figure 1 illustrates the construction of a

of its properties and key communication characteristics, afdl 2) RCC-FULL.

we present efficient routing strategies for the RCC-FULL. In

Section 3 we demonstrate the efficient emulation of the PRAM 2.2. Network Properties

models on the RCC-FULL. Finally, in Section 4 we analyze The number of nodesY (N4, L), of an(N4, L) RCC-

the hardware cost of the RCC-FULL and compare it to that @fyL| is simply given by N(Na, L) = N(N4, L — 1) x

the binary hypercube as a function of their pin requirementsy (N, L — 1) where N(N4, 0) = N4; thus

2L
2. RCC-FULL INTERCONNECTION NETWORK N(Na, L)=Nj . (1)

In this section we present a systematic way of construct-
ing the RCC-FULL class of interconnection networks, and w a

analyze some of its properties and communication characte! | A'\
tics. Then we present simple routing algorithms for the RC( @ 0001 001 0011
FULL, which need only local information to route message

between any two nodes in the network.

2.1. Construction @

The proposed interconnection network, RCC-FULL, is

recursively compounded graph constructed incrementally

systematically connecting together a number of basic aton f\/

A basic atom is a set of fully interconnected nodes. An RC( 1000
FULL is characterized by two parametefd/4, L), whereN 4

is the number of nodes in the basic atom dni its level of

recursion. An(N4, 0) RCC-FULL is a fully interconnected

network with N4 nodes, this is simply a single atom. An 1100 @ @ @
(Na, 1) RCC-FULL is constructed by fully interconnecting

N4 basic atoms creating a fully interconnected graph of bas

atoms. Each node in afW,, 1) RCC-FULL is specified b
by an n-bit binary number wherex = 2log(N4) and for Level 1
convenience in exposition we assumvg is a power of 23 eve 0 1
The most significantog(N.4) bits identify the atom that this RCC-FULL
node belongs to, and the least significamt(/N4) bits are

used to distinguish among nodes within the same atom. T

links between these basic atoms are formed by connecting 16 18 e 31
(processing element) to PE ji for all : and j, with ¢ # j,
where i and j are binary numbers ofog(N4) bits each?
This is similar to the construction scheme in [13, 14]. Thes
interatom links will be referred to as leveltlansposelinks. 32 | 33 | 34 47
In general, an(V4, L) RCC-FULL of sizeN is constructed -
by fully interconnectingV'/? copies of(N4, L — 1) RCC-
FULLs whereN /2 is the number of nodes in V4, L —1)
RCC-FULL. Each node in afV4, L) RCC-FULL is specified
by an m-bit binary number wheren = log(N). The most
significant (1/2)og(N) bits identify the(N4, L — 1) RCC-
FULL that this node belongs to, and the least significant (
2)log(N) bits are used to distinguish among nodes withi 240 | 241 | 242 - - - 255
the samg N4, L — 1) RCC-FULL. The links between these

[\
—
¥)]

FIG. 1. Construction of a level 2 RCC-FULL where the basic atom is
3All logarithms are taken to base 2. a 4-node fully connected network. (a) Level 1 RCC-FULL (PE indices are
4 refers to concatenation of binary numbewith binary number;. given in binary). (b) Level 2 RCC-FULL (PE indices are given in decimal).
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Some Key Characteristics (;A:[ﬁI(;ERICC-FULL and the Hypercube
Network Number of nodes Degree Diameter Network Number of nodes Degree Diameter
(4,0) RCC-FULL 4 3 1 Hypercube 4 2 2
(4,1) RCC-FULL 16 4 3 Hypercube 16 4 4
(4,2) RCC-FULL 256 5 7 Hypercube 256 8 8
(4,3) RCC-FULL 65,536 6 15 Hypercube 65,536 16 16
The diameter of an{/N4, L) RCC-FULL, defined as the 2.3. Network Communication Measures

maximum number of links that must be traversed through the_l_he capacity of an interconnection network to deliver
shortest path between any two nodes, is dendied¥ 4, L). pactty

From the construction of the RCC-FULL we see that high volume of messages per unit time is another key
D(Na, L) = 2D(Na, L — 1) + 1, where D(N4, 0) = 1 performance measure. This factor is often used to establish

. LA lower bounds on the performance of parallel algorithms and
Thus the diameter of aVs, ) RCC-FULL is given by in VLS| implementations. Algorithms, like sorting and general
divide-and-conquer approaches, usually need to transfer large
D(Ny, L) =25+ — 1. (2) quantities of data from one region of the network to the
other. There are many interconnection networks that have
communication diamete®(log(N)), but this small diameter
Hence if L is held constant and the network sizeloes not guarantee logarithmic, or even polylogarithmic time
grows by increasing the atom siz&,, the diameter of complexity for algorithms that need a high transfer of data
RCC-FULL isO(1). between different regions of the network. There is no one
The degree of a4, L) RCC-FULL, denoted)(N 4, L), definition for measuring message capacity. We have chosen
grows by 1 for each additional level of the construction. Thukree distinct measures to consider: bisection bandwidth,
A(Ny4, L) =A(Na, L —1)+1, whereA(N4, 0) = Ny —1 message traffic density, and queuing delay.
and

A(Na, L) = Na+L—1. (3) 2.3.1. Bisection Bandwidth

The bisection bandwidthB B, of an interconnection net-
work is the minimum number of links cut when a network is
Table | compares favorably the characteristics of the RC@artitioned into two equal halves over all partitions. This mea-
FULL to that of the hypercube. Thus, even though the bassare gives lower bounds for certain parallel algorithms where
atom is a fully connected network, which is an expensidarge numbers of messages must be sent between two halves
network, the way these basic atoms are interconnected togetbfethe network during algorithm execution. When a fully con-
and their relatively smaller size makes RCC-FULL a fairlyected network of siz{ is partitioned into two equal halves,
practical network as compared to the hypercube. the minimum number of links cut is equal 47 /4. Thus, if in
An (N4, L) RCC-FULL of size N can be viewed as aforming the partition we do not dichotomize any of thd/2
network containingV'/? rows of PEs, where each row is arrows of an(N4, L) RCC-FULL of sizeN nodes, the number
(N4, L—1) RCC-FULL, andN '/? columns of PEs where the of links cut when it is partitioned into two equal halves\ig4,
rows are fully interconnected together (see Fig. 1). Howevsince theN'/2 rows are fully interconnected. Moreover, if we
if we perform a parallel exchange operation of data in the PHs not dichotomize any of th&'/2 columns of the(Na, L)
that are connected by a levBltransposdink, this transposes RCC-FULL, the number of links cut when it is partitioned
the whole network and with this transpose operation all tfieto two equal halves is ¥/4 since theN'/2 columns are
columns become effectively fully connected also. This i&lly connected (e.g., see Fig. 1) and links will also be cut
a very useful property of RCC-FULL since the PEs of thacross the rows. Thus, for V4, L) RCC-FULL of size
columns are not directly interconnected; thus if we have t§, BB = N/4, if we do not dichotomize any of tha/'/2
perform operations between the PEs within the columns, waws or dichotomize any of th&'/2 columns. If we allow the
transpose the whole network and all the columns’ PEs woulithotomization of the rows and columns of @4, L) RCC-
be able to utilize the same connection structure as the FRSLL in the same partition, it is not straightforward to find
within the rows of the network. Suchteansposecharacteristic the exact number of links cut when it is partitioned into two
makes writing algorithms for the RCC-FULL quite easy as gqual halves. However, the number of links cut in that case
hides the asymmetry of the network. will be higher thanV /4. This leads to the following corollary.
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Corollary 1. Foran(Na, L) RCC-FULL of sizeV the bi- 1. s=p; andd=p,
section bandwidthBB > N/4, if we do not dichotomize any 2. s +# p; andd = p»
of the N'/2 rows or any of theV'/? columns. 3. s=p; andd # p,

4.

The bisection bandwidth of a hypercube of si¥eis N/2 s # p1andd # ps.

[13]. Hence, the bisection bandwidth of &V4, L) RCC-
FULL is close to that of the hypercube for any value iof
Further, the bisection bandwidth of the RCC-FULL grow
linearly as a function ofV.

The four cases cover all possible locationss @hdd when
ghey are in different rows and the probability of the occurrence
of each case, with the associated average distance, is given
below:

2.3.2. Message Traffic Densit

9 ) ) y_ ) Prob(s = p, and d = py) =1/NY? x 1/N'/?
The message traffic density gives an estimate on the average — 1N

number of messages passing through a bidirectional link of the -

network, when every node of the network communicates withrob(s # p1 and d = ps) =(1 - 1/N'/?) x 1/N*/?

every other node in the netwotK5, 10, 15]. The message =(NY2_1)/N
traffic density is denoted by and is defined by prob(s = py and d # ps) = 1/N1/2 x (1— 1/N1/2)
_nl/z
_ Awverage Message Distance x Number of Nodes = 11)/2N 12
p= Number of Links : prob(s #p; and d #£p2) =(1-=1/N/%)yx (1 = 1/N/*)
(4) = ((NY2 —1)/NY2)2.

_ The average message distance in a network is the SUMMRe apove probabilities are used to determyjite, d) in the
tion of distances between all possible pairs of nodes divided Riﬂowing manner-:

the number of nodes in the network, where we allow a source
and a destination node to be the same. The average message
distance can be a better indicator of the communication effi- f(s, d) = Prob(s = p1 and d = p») x 1

ciency of the network than its diameter. Now, let us determine + prob(s # p1 and d = p2)

thg average d|_sFance of _QWA, L) RCC_-_FULL, Dy, under x (14 Dr_1) + prob(s = py and d # p)
uniform probability. That is, the probability of a source node —

communicating with any destination node is the same. This is x (L+ D_L—l) +prob(s # py and d # p)
the most general form of finding average distance. If we as- X (1+2Dp_1). (6)
sume that there is cality, or sphereof communication [9],

this will only favor the RCC-FULL since it is strongly con-Next, we derive the probabilities of occurrence of each of the
nected locally through the topology of its basic atoms. We levents needed to find the average distargg, as given by

s be the source nodé,the destination node, anféirob(event) Eq. (5) above:
the probability that an event occurs. Then, by examining the

topology of the RCC-FULL, we find:

N2 nodes
Dy = Prob(s and d are identical) x 0 r, 3 ces A
+ Prob(s and d are in the same row) x Dy_;
+ Prob(s and d are in different rows) :
x f(s, d). (5)
The value off(s, d) depends on the location efandd, .. N2 rows
as developed in the following. Letandd belong to distinct r

rows, r; andr; respectively, as illustrated in Fig. 2. Let

p1 (belonging tor,) and p» (belonging tor;) be the nodes .
connected by the transpose link connectingand ;. Then

we can have the following four cases:

5Some authors define the message traffic density by (Average Mess e Y
Distance) (Number of Nodes) (Number of Nodesl)/(Number of Links).
Our definition of message traffic density is given by Eq. (4) and is based onFIG. 2. Possible locations of source PE and a destination PE when they
the definition given by [5, 10, 15]. are in different rows.
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- Hypercube —o—
Level 0 RCCFULL -+---
Level 1 RCCFULL -3--
Level 2 RCC-FULL -
Level 3 RCC-FULL -2~

10
Log(Number of Nodes)

15 20 25

FIG. 3. Average distance of RCC-FULL and hypercube.

Prob(s and d are identical)
=1/NY2 x 1/NY2 = 1/N

Prob(s and d are in the same row but not identical)

=1/NY2x (1-1/NY?) = (NY2 _1)/N

Prob(s and d are in different rows)

=1x(1-1/NY?

— (Nl/z _ 1)/N1/2

Thus, having identified all the terms needed to derive the eV
erage distancel);, we substitute them into Eqg. (5) to get

Dp =1/Nx 04 (NY?2 - 1)/N
x Dp_1 4+ (NY2 - 1)/NY/?
x [I/N x 1+ (NY2 —1)/N

X (1+Dr_1)+ (NY2—1)/N x (14+Dr_y)

FINY? = /NP x (14 2D50)].

_ 3 1\
Dy = (2— INYE +N) DL—1+1_—N1/2~

The average distance of a hypercube of sizeDy, is given

(log (N)) .

by [5]
S

Dy =

1

N

= % log (V).
Figure 3 shows the average distance of {he,, L) RCC-

hypercube. The average distances of(tNg , 0) and(N 4, 1)
RCC-FULL are superior to those of the hypercube. The aver-
age distance of the hypercube is better than that of thg 2)
RCC-FULL only for small network sizes. Finally, the average
distance of the hypercube is better than that of (tha, 3)
RCC-FULL, especially for small network sizes. Thus, with
the RCC-FULL, we have flexibility in tuning the average dis-
tance performance of the system by choosing the appropriate
twork level, L. This flexibility is not present in the hyper-
cube network. Moreover, if we assume that the probability
of local message traffic is higher than that of global message
traffic [9], then the average diameter of the RCC-FULL would
tend to be more attractive than that of the hypercube since the
RCC-FULL is strongly connected locally, as basic atoms are
fully connected.

The next variable needed to evaluate the message traffic
density is the total number of links for each network. First, let
us determine the number of links for &4, L) RCC-FULL
of size N. When L = 0, RCC-FULL is a fully connected
network, and the number of links (N —1)/2. In general,
the number of links, NL(Ny4, L), of (N4, L) RCC-FULL
of size N is given by the total nhumber of links within all
rows, N'/2 x NL(N,, L — 1) plus the total number of level
L transposdinks. This leads to

NL(Na, L) = NY2 x NL(N4, L —1)

FULL for L =0, 1, 2, and 3 and compares it to that for the + INVE(NYZ 1. (9)
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This would give us Having calculated the average distance and the number of
links of the RCC-FULL and the hypercube, we can easily
compute and compare their message traffic densities. The

_ 3/2 1/2/a71/2
NL(Na, 1) = 172N N)+ 12NN 1) message traffic density of &4, L) RCC-FULL of sizeN

NL(Na, 2) = 1/2(N?* — N?/%) is given by
+1/2NY2(NY2 1) B
NL(N4,3) = 1/2(1\79/8—1—]\7 _ NT/s _ N3/4) C((2- 3/NVZ 4 1/N)Dr_1 + 1/]\71/2) < N
’ PRCC-FULL = T .
+1/2NYH(NY2 ). NYZx NLp_; +LN2(NV/Z 1)
(11)

Th ber of links in a h be of si2& N Lyypercubes _ o
e number of finks in a hypercube of siz& Hypereub The message density of a hypercube of sizés given by

is given by
flog(N)x N
. 3 B
NLHypercube = %N log N. (10) PHypercube = W =1. (12)
Figure 4 compares the total number of links for(@f, ) Figure 5 depicts the variation gf as a function of the net-

RCC-FULL, whereL = 0, 1, 2, and 3 to that for the work sizeN for both the RCC-FULL and the hypercube. The
hypercube as a function of the network sizes. Thgy, 0) traffic density of an N4, 0) and (N4, 1) RCC-FULL is bet-
and(N4, 1) RCC-FULLs have more links than the hypercubeer than that of the hypercube for all sizes®f The traffic
The (N4, 2) RCC-FULL has more links than the hypercubelensity of an(~N 4, 2) RCC-FULL is better than that of the
only for small network sizes. Finally, tHeV4, 3) RCC-FULL hypercube for large network sizes. Finally, the message traf-
uses fewer links than the hypercube. We have to note that efiendensity of the hypercube is better than that of the,, 3)
though the total number of links gives a rough measure of tRCC-FULL for all cases considered. Again, the RCC-FULL
hardware cost of a network, it is not a complete measutepology gives us more flexibility in choosing an appropriate
In Section 4 we will suggest that the hardware cost can beessage traffic density depending on the level of recurgion,
more accurately represented using packaging pin requiremedisreover, the message traffic density of the RCC-FULL de-

analysis. creases as the size of the network increases for all levels of
50 T T T T
A
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FIG. 4. Number of links of RCC-FULL and hypercube.
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FIG. 5. Traffic density of RCC-FULL and hypercube.

recursion,L. This property is desirable for constructing mas- Under the above conditions, the delay of the network is
sively parallel computers. given by

(&Y _
2.3.3. Queuing Time Delay =D (; (X) ) /F‘C(l - Dé),  (13)

The average distances of the RCC-FULL and the hypercubfia e
give us a measure of their performance under the assumption
that there is no message contention. In order to take message
contention into consideration, we use a simple model for M
gueuing analysis which has been adopted by many researchers  , _ Z A= M)
[5, 9, 10]. An RCC-FULL can be modeled as a communication e}

M =total number of directed links

network with theith channel represented as an M/M/1 system 6 = Utilization factor.

with Poisson arrivals at a rate and exponential service time M

of meanl/uc;. The variabley is the average service rate and C= Z ¢; = total capacity of the network.
¢; is the capacity of théth channel. The assumptions made i=1

in [5, 9, 10] are repeated here for clarity: ) S )

Thus, the above equation can be simplified, and the queuing
delay is given by
1. Each node is equally likely to send a message to every Su

other node in a fixed time period. T — . (14)
2. The routing is fixed. pC(1 — Dé¢)
3. The load is evenly distributed; i.e); is the same for

all 7. For an (N4, L) RCC-FULL, D = Dy and M =

4. The capacity of each link has been optimally assigne?VL(N4, L) are given by Eq. (7) and Eq. (9), respectively.
5. The cost per capacity per link is unity. Figure 6 illustrates the variation of the normalized queuing
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FIG. 6. Queuing delay of RCC-FULL and hypercube.

delay versuss for the RCC-FULL and the hypercube. Innodes can be thought of as a network contairdifig? rows of

this figure, a typical massively parallel network is assumeREs, each row being afiVa, L — 1) RCC-FULL, andN'/?

with size N = 64K processors. The queuing delay increasesws of PEs are fully interconnected together. Thus, in all the
exponentially with increasing utilization and saturates at rauting algorithms we describe below, the source node for the
particular load. As shown in the figure, tHé&va, 1) and message is PEji, and the destination node for the message is

the (N4, 2) RCC-FULLs saturate for higher values of netPEi,j, whereiy, j1, 2, j» are binary numbers of (1/R)g (V)

work utilization as compared to the hypercube. However, tiéts each, where; and:, indicate the row addresses apnd

(N4, 3) RCC-FULL saturates for lower values of networkand j» indicate the column addresses. Further, we assume
that each PE can simultaneously use all its links for sending

Thus, by analyzing the communication measures of tlad receiving messages. This is denoted in the literature as a
ALGORITHM 1. To send a message, from a source node

utilization than the hypercube.
RCC-FULL and the hypercube, we can conclude that RC@wultiaccepting PE.
a destination node, Algorithm 1 performs the following

FULL appears to be superior to the hypercube wiliex 2.

Moreover, with the RCC-FULL, we have flexibility in tuningt

the performance of the system by choosing the appropnasi:e
1. PE¢1j; sendsm to PE#;i».

network level, L.
2. PEt;¢; sendsm to PE¢x¢;.
2.4. Routing 3. PEisi; sendsm to PEisjs.
One of the desirable characteristics of a large network of Figure 7 illustrates this movement. For &¥4, 1) RCC-
processors is the ability of the processors to route messaféH L, steps 1 and 3 are routing within a fully interconnected
without total knowledge of all the details in the network [1network. Step 2 is one routing step along a transpose link for
In this section, we propose three routing algorithmell levels of the RCC-FULL. In general, for a4, L) RCC-

30].
for the RCC-FULL which can be easily implemented at eadAULL, steps 1 and 3 argV4, L—1) RCC-FULL routing. Via
processor, and which require only the source address and tthis recursion the routing algorithm is fully defined. This is
destination address to perform the local routing of messagssiilar to the MIAM routing in [13]. Algorithm 1 can have

a congestion problem when there is a high transfer of data

at any node in the network. AV, L) RCC-FULL with N
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§ Figure 8 illustrates this routing movement. For @¥y, 1)
RCC-FULL, steps 2 and 4 are routing within a fully connected
i - | i network. Steps 1 and 3 are one routing step each along a
transpose link for all levels of RCC-FULL. In general, for

an (N4, L) RCC-FULL, steps 2 and 4 are routing within an
(Na, L —1) RCC-FULL. This is similar to the SS routing in

[13].
D However, Algorithm 2 can have a congestion problem on its
own. Specifically, when there is a high transfer of messages
i) > | 22 between a column and a row, as all the messages have to
traverse the same transpose link resulting in a worst case

FIG. 7. Algorithm 1 routing strategy from source PE, to destination routing time ofO(Nllz)_
PE.D. Both Algorithm 1 and Algorithm 2 are examples of oblivi-
ous routing algorithms where the path followed by a message
egends on the source address and the destination address, not
between two rows where all the messages have to use T : )
. . ; 1/2 the message distribution or congestion. Leighton has shown
same transpose link. This results in &N '/*) worst case . .
hat for the 1-to-1 message routing problem posed in our anal-

routing time. Further, since we are using multiaccepting P %sis, the required number of routing stepsN'1/2 /2d for a

we would not have any congestion problem in the basic ato Stwork of sizeN and degreel [17]. For an(N., L) RCC-

since they are fully .connect'ed. Thug, .the only congesti%l_l_ this produces a lower bound o)f”z/Q(NA +L-1).
problem thgt occurs in Algorlthm 1 is in its second step, th%toth Algorithm 1 and Algorithm 2 have a worse case routing
is, while using the transpose links. time of O(N''/2). Thus, they fail to reach the optimal obliv-

ALGORITHM 2. The second routing algorithm has beejpus performance. Next we will demonstrate a significantly
identified to provide alternate paths to solve the congestiBfter routing performance with a combination of Algorithm 1
problem that could occur by using Algorithm 1. Algorithm Z'ind Algorithm 2 which may no longer be considered oblivious.

routes a messagses, from a source node to a destination node Both routing algonthms_, Algorithm 1 _and Algorithm 2’_
by performing the following steps: complement each other; i.e., each algorithm could solve its

congestion problem which results in the worst case routing

1. PEi#1j; sendsm to PEj;1;. time of O( N''/?) if it has the chance to use the other algorithm
2. PEji#; sendsm to PEj;is. for that specific situation. This leads us to propose a third
3. PEjii> sendsm to PE,j;. routing algorithm, Algorithm 3, which haé)(Nl/“) worse
4. PEzyj; sendsm to PEisjs. case routing time. It is a three-phase routing algorithm, where
S
Iy
i > | Jil2
D
inji > | i

FIG. 8. Algorithm 2 routing strategy from source P8, to destination PED.
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the first phase implements the routing using Algorithm 1, andLEMMA 2. GivenR(N, L) defined as the number of rout-
the third phase implements the routing using Algorithm 2ng steps taken by Algorith@hfor a level L RCC-FULL of size
An intermediate second phase is used to acknowledge recéiptthen R(N, L) < 3NY/4 4+ 146 x R(N'/2, L — 1) where
of a subset of all messages transmitted in the first phas&.V, 0) = 1.
Before any permutation is routed, each message being routeg
is duplicated. Then we use Algorithm 1 to route one set ?J‘n
thhaei/?teossagr?(?r.mA;tTgsscond step ?[f Algokr‘llthhm. 1lt;1N here \é.vel and destined to PEj, under any message distribution.
P . pose operation which IS the souré ing the first phase of Algorithm 3 the messagefollows

of the congestion problem, some PEs would have a numkgﬁé ath
of messages less than or equal X0/* to transpose, and P
others would have a number of messages greater AR
to transpose. We allow these PEs to transmit at mést* The symbol— denotes routing within afV4, L — 1) RCC-
messages, dropping all subsequent messages from the netwiekk.L, and the symbol=- denotes routing along a levdl
At the end of phase 1, some messages would have reacttedsposdink. The only congestion problem for the message
their destinations. Each PE receiving a message at the endn this routing phase occurs when PE, hasz messages
of phase 1, would acknowledge that to the source PE. The > 1) to transmit to PEi;:; along the single transpose
acknowledgment is needed to prevent the source PEs, whtige between them. This means that there arenessages,
messages have successfully reached their final destinatioeuding m, which originated in the same row;, and are
from sending the duplicates in the final phase of Algorithrdestined to the same rov. If = < N'/4, the = messages
3. Then, in the third phase, we use Algorithm 2 to route theould be routed along that singteansposeink and thus the
second set of messages, which have not been acknowledgeessagen originating at PEi; j; would reach its destination
Formally, Algorithm 3 is presented below. Given a messageF i»j» in at most2 x R(N'/2, L — 1) + N/* routing steps.
m, and source PE;j; and destination PE;j-, Algorithm 3 Further, the source PE;j;, would be acknowledged of its
performs the following steps: message delivery so that it will not be transmitted again in
Phase 3 of Algorithm 3. The acknowledgment process of
Phase 2 takes at mo8tx R(N'/? L — 1)+ N'/* routing
Phase 1. steps since the levd] transposdinks are used with the same
distribution as in Phase 1 but in the opposite direction. Thus,
the whole process of routing messagein this case takes at

ostd x R(N'/2 I — 1)+ 2 x N/ routing steps.

In the case where > N/ some messages including say
m have been dropped out of the network. Thus,:PE sends
m again to PE»i, using Phase 3 of Algorithm 3. In this case,
m follows the path

roof. We want to find out what is the worst case routing
e using Algorithm 3 to route a message stored in PE

1J1 — 11%2 = T2l — 199,

ALGORITHM 3.

1. PE¢1j; sendsm to PEz#is.

2. PEii» sendsm to PEy¢; if the number of received
messages is< N'/*; otherwise, it drops all subsequen
messages from the network.

3. PEisi; sendsm to PEi,js.

Phase 2.
4. All destination PEs acknowledge the reception of the
message to the source PEs.
Phase 3. The only possible congestion at levefor messagen is along
the secondransposdink. In this case, PE;i> hasy messages
to transmit to PE»j; along the singléransposdink between
them. This means that there aygemessages, including.,
which originated in the same colump, (but different rows),
and are destined to the same raw, Denote these messages
Each phase of Algorithm 3 is completely finished beforg,;, m,, ms, ... my. Each congested message;, must
progressing to the next phase. Note that #& of step 2 have had a congestion with—1 other messages during Phase
can receive ¥1/4 messages for transpose link transmission of Algorithm 3, wherez; > N4, Otherwise, they would
only at level; thus, recursive calls to Phase 1 of Algorithm $ave reached their destination using Phase 1, and would not
for lower levels are the same as recursive calls to Algorithm Be routed using Phase 3. Note each of the- 1 messages
The acknowledgments of Phase 2 imply the inverse use of levgls destined to the same rowsas andmy, ma, ms, . . ., my
L transpose links guaranteeing that at mst* messages are gre destined to the same row. Thus,
routed over any level transpose link when using Algorithm 1 y
for Phase 2, so we will use Algorithm 1 for Phase 2. Recursive Z L < N1/Z
calls in Phase 3 will use Algorithm 1. — b=
We will now argue that Algorithm 3 need( N '/*) routing
steps in the worse case. The following lemma establishes Siace each;; > N'/%, y < N'/* (e.g., in the worse case
key result. y = NY* _1). Therefore, our original message;, would

1Jj1 = Ji1i1 — Jiia = i2j1 — i2]2.

5. PEi;j; sendsm to PE j;¢;.
6. PEjii; sendsm to PE jyis.
7. PEjii; sendsm to PE 7.
8. PEisj; sendsm to PEisj,.



RCC-FULL: A NETWORK FOR PARALLEL COMPUTATIONS 149

have a maximum congestion of < N'/* in Phase 3 of columns of PEs and the rows are fully interconnected together.
Algorithm 3. Hence, we can route our original messagein The sorting algorithm is defined as follows: a collection\of
at most2 x R(N'/2, L — 1)+ N'/* + 1 routing steps. Hence, elements are distributed in the RCC-FULL, one element per
Algorithm 3 takes at most a total & x R(N'/?, L — 1)+ processor; then viewing the input as an/? x N/2 array,

3 x N'/* 1 1 routing steps. Q.E.D. the array is sorted into row-major order. The following sorting
The worse case routing time for Algorithm 1 on ar@lgorithm is based on the sorting algorithm given by Marberg
(NY2 [, — 1) RCC-FULL, W(Nl/ZJ L — 1), satisfies and Gafini [22], and works by alternately transforming the
12 14 14 rows and columns of the RCC-FULL a constant number of

W(NTZ L =1) < N/P42x W(NYE L —2), times. The details of the sorting algorithm on the RCC-FULL,

since at mostV'/4 messages could be routed along any lev8fnotedRCC-FULL SORTare given below:

L= 1 transposdink. Thus ALGORITHM RCC-FULL SORT.

W(NYZ L= 1) <NV L NS N0 1. Sort all the columns downward.
=O(N'Y). 2. Sort all the rows to the right.
3. Rotate each row, i x N'/*(mod N'/?) positions to

Since in Algorithm 3 we revert to Algorithm 1 for recur-
sive calls on levelL — 1 or lower, R(NY/? I — 1) =
W(NY2 I —1) and the main theorem follows.

the right.
4. Sort all the columns downward.
5. Rotate each row, i(mod N''/2) positions to the right.

THEOREM 3. Algorithm 3 requires at mosO(N /4) rout- 6. Sort all the columns downward.
ing steps on affN4, L) RCC-FULL. 7. Rotate each row;, i x N'/4(mod N'/?) positions to
the right.
3. EMULATION OF THE PRAM ON RCC-FULL 8. Sort all the columns downward.

. . . ) 9. Perform the following two steps three times:
Many parallel algorithms in the literature are designed to a. Sort all the even-numbered rows to the right and all
run on a PRAM. PRAMs are very convenient for expressingyq_numbered rows to the left.

parallel algorithms sincg one may concentrate on decomposing ,  gort all the columns downward.
th.e problem at hand into simultaneously gxegutable tasksqg  sort all the rows to the right.
without having to worry about the communication between
these tasks. Further, it is quite easy to design parallel
programming languages for such a model [11]. For this reasonA step-by-step application &CC-FULL SORTs shown in
the implementation of certain data movement operations tHeg- 9.
will enable realistic parallel architectures to emulate a PRAM Since rotation of elements within a row can be emulated by
has been considered by many researchers in order to t&REING along that row, all the steps BICC-FULL SORTcan
advantage of all the parallel algorithms that have been writtég implemented by using sorting in a row or column in an
for the PRAM and to enable them to write PRAM algorithm&CC-FULL. For a(Ny4, 1) RCC-FULL, each row is a fully
directly on their networks. These data movement operatiof@hnected network; thus sorting the rows ofé,, 1) RCC-
are random access read (RAR) and random access whitdLL takesO(log(NV)) time, since sortingV elements on a
(RAW), also known as concurrent read and concurrent writillly connected network of sizé/ takesO(log(V)) time [4,
respectively [25, 26, 29]. They are used to allow a givefl- Sorting on the columns of @V,, 1) RCC-FULL can be
parallel architecture to emulate the concurrent read and fPRIformed on the RCC-FULL rows after performing a network
concurrent write capabilities of a CRCW PRAM. These twH#ansposition, with one parallel exchange operation. One
data movement operations are imp'emented using We”_deﬂrfélﬁl tranSpOSition returns a” data to their desired destinations.
routines. We will analyze the time complexity of each ofience, sorting the columns of @y, 1) RCC-FULL takes
these routines on the RCC-FULL to find the time complexit{’(log(V)) time, and the whole sorting algorithm can be
of RAR and RAW operations when performed on the Rc@erformed on a(Ny4, 1) RCC-FULL in O(log(N)) time.
FULL. These routines are sorting, compression, rankingor an(Na, 2) RCC-FULL, each sorting step 61CC-FULL
distribution, and generalization [26, 29]. In asymptoti®©ORTwould be sorting on &V, 1) RCC-FULL, which each
analysis we assume that the RCC-FULL levil,is fixed and takesO(log(/V)) time as shown above. Consequently, sorting
the network sizeV grows large by increasing the atom size®n a(N4, 2) RCC-FULL takesO(log(1V)) time. In general,
Ny. for a(N4, L) RCC-FULL, the sorting timeST'(L), is given
b
3.1. Sorting on RCC-FULL g

Now we will identify the time complexity of sorting on
the RCC-FULL. Again, an RCC-FULL of sizé&v can be whereK; =15 andK, = 14, as found frofrRCC-FULL SORT
thought of as a network containing'/? rows of PEs andv'/?  Since ST(0) = K3 log (N) with K3 constant [4, 7], then by

ST(L) = K1 ST(L — 1) + K, (15)
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o ls Tuls 12 s o o Tt Tl s 20,91, ..., 2¥/2=1 Jocations apart. _ _
e 4. Exchange all the data in the PEs which are directly
4 (e 613]7;2 2 connected through a transpose link.
6 | 115 |13 8 | g [11 |12 8 |9 | 11|12
s 13 7] o 0 |15 |14 |13 013114 s When L = 0, it takeslog (N) steps to perform the above
algorithm on an RCC-FULL since all the PEs are directly
@ () © connected together [28]. For @4, 1) RCC-FULL steps 1
and 3 are algorithms of siz#/? in theascenctlass performed
O b 1ials O |23 o123 on a fully connected network of siZ%/2. In the general case,
6 [7]a]5 6 | 7] 4| 3 s 16| 7|4 to perform the above algorithm on (@4, L) RCC-FULL,
9 steps 1 and 3 would be the execution of an algorithm of size
8 |9 | 11|12 8 10 12 10 |11] 8] 9 it
2¥/2 in the ascendclass on g N4, L — 1) RCC-FULL. Thus
14 [15 | 10] 13 14 145 | 11|13 15| 12} 13| 14

if we denoteAS(L) to be the number of communication steps
@ © o taken on a(N4, L) RCC-FULL to execute an algorithm in
the ascendclass, we get

i il i I N AS(L) = 2A8(L — 1) +2, (17)
7 14|56 7 16|54 4 |5 |6 |7
| 1ls | o9 8 |9 |01l $ |9 10|10 where AS(0) = log (V). Solving this recursion we get
1511411312 2 14|15
13 14115] 13 12 | 13 1 AS(L) _ 2L(2 n log N) _ 9 (18)
(8 () (i)

Thus if L is held constant, the time complexity of an algorithm

FIG. 9. RCC-FULL SORT on at x 4 array. (a) Initial data configuration. in the ascendclass isO(log (N)) when implemented on an
(b) After step 1 of RCC-FULL SORT. (c) After step 2 of RCC-FULL SORT.RCC-FULL.
(d) After step 3 of RCC-FULL SORT. (e) After step 4 of RCC-FULL SORT. - Now, we present a brief introduction of the following sub-
(N After steps 5 and 6 of RCC-FULL SORT. (g) After steps 7 and 8 0I’;llgorithms which are used in the implementation of RAR and
RCC-FULL SORT. (h) After step 9 of RCC-FULL SORT. (i) After step 10

of RCC-FULL SORT. RAW:
solving the recursion we get 3.2.1. Ranking
L KL When some PEs are selected in a network, the rank of a PE
ST(L) = K{f K3 log N + ﬁ ko. (16) is equal to the number of selected PEs with a smaller index.

The number of communication steps needed by this algorithm
Thus if L is held constant, the time complexity RICC-FULL is equal to t_he num_ber_ of communication steps needed by an
SORTis O(log(N)) when implemented on the RCC-FULL. ascendalgorithm which is equal tbog () foran RCC-FULL.

The number of computation steps 4dog () on the RCC-
3.2. RAR and RAW Time Complexity FULL.

Here we develop the time complexity of compressio%
ranking, distribution, and generalization [26, 29] which when’
added to the time complexity ®8CC-FULL SORWwould give When the number of active PEs in a network ss a
us the time complexity of RAR and RAW on the RCC-FULL proper subset of all the PEs in the network applying the
The compression, ranking, distribution, and generalizatimompression algorithm on these active elements will move
routines are all instances of thescendclass of algorithms these active elements to the PEs indexed O, 1,.2,
[28]. An algorithm is said to be in thascendclass if it s — 1. The number of communication steps needed by this
performs a sequence of operations on pairs of data that atgorithm is exactly equal to the number of communication
successivelyp’, 2!, ..., 2¢~1 locations apart on a problem ofsteps needed by thescendalgorithm. It has no computation
size2* [28]. steps. Thus, when implemented on an RCC-FULL, it needs

An algorithm of sizeN = 2* which is in theascendclass log(N) communication steps.
can be performed on an RCC-FULL in the following manner:

1. Perform operations on pairs of data that are successivglyg'g' Distribution

2.2. Compression

20,21, ..., 2¥/2=1 |ocations apart. Assume that some PEs of a network each have a datum
2. Exchange all the data in the PEs which are directly, and a PE destinatioh,, such that ifi < j thenh; < h;.
connected through a transpose link. Executing the distribution algorithm on the network consists

3. Perform operations on pairs of data that are successivefyrouting, for each PEm, the datumd,, to the PEh,,.
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The distribution algorithm is the inverse of the compressiametworks with very small degrees such as the binary tree and
algorithm and requires the same number of communicatithe 2D mesh [8, 12, 17, 23]. As a result, the pin requirements

steps. of a highly connected parallel computer are a very important
o measure of its hardware cost. This has motivated the analysis
3.2.4. Generalization presented in this paper regarding the pin requirements of the

Given a set of PEsn of a network each has a datufij, RCC-FULL as compared to that of the hypercube.
and a PE destinatioh,, such that ifi < j thenh; < h;. The A package is the entity that houses the implementation of
generalization algorithm consists of routing multiple copies 6 COMPUter system. It comes with a variety of forms such as
the datumd,,, to the destinatiorh,,_1 + 1 throughh,,. The the integrated circuit chip, a prlnt(_ed circuit board thqt hoqse;
number of communication steps is equal to that needed by fR@NY of these chips, and a chassis that houses mulltiple circuit
ascendalgorithm which islog (V) steps for the RCC-FULL. boards. These packages have a hlergrchlcal relationship; the
The number of computation steps needed lisg (V). low-level packages are housed by a higher level package.. AII

Hence, compression, ranking, distribution, and gené@_\/els of packages, however, share a common characteristic.
alization can each be executed on the RCC-FULL iRach package contains PEs and communication links. Some of
O(log(N)) time. A RAR is performed by executing thethese communication links connect PEs within the packages,
sorting subalgorithm twice, the ranking subalgorithm onc@nd others connect PEs in different packages. The latter
the compression subalgorithm twice, the distributioROmmunication links constitute the pin requirements of the
subalgorithm once, and the generalization subalgorithm orRR@ckage. As argued before, in our analysis of the hardware
[26, 29]. Thus, to perform a RAR operation, an RCC-FULICOSt of th.e RCC-FULL and the hypercube, we will concentrate
requiresO(log (V)) time. A RAW operation is performed by ©" the pin requirements of the packages that are needed to
executing the sorting subalgorithm once, the ranki ild them. In other words, the VLSI area requirements of.
subalgorithm once, the compression subalgorithm once, 4R§ Packages are assumed to be less severe than their pin
the distribution subalgorithm once [26, 29]. Thus, to perforfduirements.
a RAW operation, an RCC-FULL require®(log(N)). ~ Let N be the number of network processors, ahl's
Hence, an RCC-FULL of sizeV can emulate a CRCw Pe the number of chips to which the network is partitioned.
PRAM of the same size with at mosklog (')) degradation The goal is to find t_h_e minimum number of pins per chip,
in time performance wherl. is held constant. This also/OC, over all partitions. Hence}/C'5 should be greater
means that(log (V)) is an upper bound on the time needethan or equal to '2 to gv0|d the tnwa} solution of having all
for the RCC-FULL to emulate arbitrary interconnectiorPf0C€SSOrs contained in the same chip, and therefd)C
networks of the same size. Thus, in some sense thd- Forahypercube network, we assume that it is partitioned

RCC-FULL can be considered to be a universal network [1dlt0 smaller dimensional hypercubes witif PC' processors
each, that isM PC = N/MCB. Each processor will then be

connected t@(log (N ) —log (N/MCB)) = O(log (MCB))
4. HARDWARE COST processors in different chips. Thus, the total number of pins
per chip is: MIOC = O(N/MCB(log(MCB))). This
In this section we investigate the amount of hardware needesult has been discovered by several researchers [8, 23].
by the RCC-FULL under certain packaging constraints for

different network sizes. Then we compare this hardwareTHEORENI 4. For a hypercube network with’ processors

. . . artitioned overM C'B chips, the pin requirement per chip,
complexity to that for the binary hypercube in order t(%/ o -~
assess the potential of the RCC-FULL as a practical paral eIIOC' 's given by [0C" = O(N/M CB(log (MCB))).

machine. Many parallel machines have been constructed usinghe same analysis carried on the chip package level can
hypercube interconnections and are commercially availalide carried on the next higher level, the printed circuit board
[31]. One useful measure of hardware cost is the area requitedel package. In this case, we partition the hypercube
when the entire parallel computer is laid out on a singiato smaller dimensional hypercubes of sizéP B proces-
sheet of silicon. This measure has been well-studied, asmis each, and we It/ BC' denote the number of partitions
the very-large-scale integration (VLSI) area requirements (#.g., boards). Then, each board will ha&' M BC pro-
many interconnection networks are also known. Howevearessors. Each processor will be connectedtlog (V) —
actual parallel machines, especially for large network sizdsg (N/M BC))) = O(log (M BC')) processors in different
are typically laid out on a number of separate chips, eachlwards. Thus, the total number of I/O ports per board is
which has a limited number of pins through which connection IOB = O(N/M BC(log (M BC))). However, we have
can be made to other chips. In most cases the number of pgimsote that the number of processors per boafd B, is di-
available per chip is a more serious limitation than the amourtctly dependent on the number of processors per dligC'.

of area available per chip. This is particularly true for networkdence, if for a specific network, the number of processors per
that have a relatively large number of links per processor suchip is small because of the pin limitations, then that will di-
as the hypercube and the RCC-FULL unlike systolic arrays wmctly affect the number of processors per board. Therefore,
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that would increase the number of boards needed to build tl
network, which in turn would increase its hardware cost. Ful
ther, since a board will contain a hypercube of smaller di ... A A D S
mension where the processors would be connected to ott 4 VA i
processors in other boards, the pin limitations at the boa
level packaging would be even more severe than that at tl VA < -
chip level packaging. Thus, if the partitioning of two giyen ™y m—y ——n—
networks,N; and N,, at the chip level and the circuit board
level is made under the same assumptions (e.g., smaller
mensional hypercube), then &, has more pin requirements
at the chip level thanv,, N; will definitely have more pin
requirements at the board level thai. Consequently, just
analyzing the pin requirements of two networks at the chi ///
level would give us a clear indication of their hardware cost
For this reason, we will compare the pin requirements of th
hypercube and the RCC-FULL at the chip level only.

Now, let us determine the pin requirements of an RCC-  FIG. 10. Partitioning of an RCC-FULL wherd/CB = N''/2,
FULL of size N under the chip level packaging. We carry our
analysis under the following two situations:

In this case onlyransposdinks would be needed to connect

Case 1. When the number of RCC-FULL partitionsProcessors in different chips. Thus, the total number of
(chips), MCB, is less than or equal t&v'/2. In this pins needed would be exactly equivalent to partitioning a
case, we assume that the partitioning is being performély connected networkf’C'N, of size N'/2 since we have
horizontally as shown in Fig. 10. That is, each chip willV'/?copies of( N4, L—1) RCC-FULLs. The number of links
contain an integral number ofN4, L — 1) RCC-FULLs. ineach processor ofak!/2 FC'N is NY/2—_1. Again, we let
This partition scheme would minimize the number of pins pe¥/ C'B denote the total number of chips. Each processor will
chip, MIOC. Otherwise, M IOC would include additional be connected tO(N/2—1—(NY2/MCB-1)) = O(N/?—
links through the partitioning of N4, L — 1) RCC-FULLs. Nl/Z/MCB) processors on different chips. Thus, the pin
Similar assumptions have been made for the same analysisegfuirement per chip i8/710C = O(NY/?/MCB(N'/? —
several interconnection networks [8, 12, 17, 23]. NY2/MCB))= O(N/MCB— N/MCB?).

Hypercube —
RCC-FULL ----

Number of pins per chip

1500 -
1000
500 V ’ =
0
~~~~~~~~~~~~~~~~~~~~ 6
| 5
log(Number of Chips)

log(Number of Processors)

12 4

FIG. 11. Pin requirements at the chip level for an RCC-FULL and a hypercube in Case 1.
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THEOREM 5. For an (Na, L) RCC-FULL network with
N processors partitioned ove¥/C'B chips, the pin require-
ment per chip M IOC, is given byM IOC = O(N/MCB —
N/MC B2), whereM C B is less than or equal tav'/2.

Thus, whenM C'B is less than or equal t&7'/2, the pin 7 VA
requirement of the RCC-FULL is asymptotically less than tha """ Syt mmm——_— e g .
of the hypercube for the same network sizes. Moreover, tt
pin requirement of the RCC-FULL, in this case, is independer g :
of the level of recursion/; they are all equal. Figure 11 ///.. ..... //.'. ....... //
compares the pin requirements at the chip lewél;OC', of :

a hypercube network and an RCC-FULL as a function of th
number of processorsy, and the number of chipg/C' B. As
depicted in the figure, the chip pin requirement of a hypercuk
is higher than that of an RCC-FULL. Thus, the hardware cos g .
of a hypercube would be higher than that of an RCC-FULL s SRR (- P s —————
of the same size. Moreover, since the number of pins per ch //

cannot be arbitrarily high (e.g., 1000), many of the hypercub :
chip requirements are technologically infeasible (e.g., wien
is high andM C' B is low).

FIG. 12. Partitioning of an RCC-FULL wherd/CB = I x N'/2.

Case 2. We assume that the number of partitions (chips)
of an RCC-FULL isMCB = I x N'/? wherel is an MCB, = N'/2. Therefore, the pins that correspond to
integer greater or equal to 2. That is, edéf, L — 1) RCC- transposdinks, M IOCr, isO(N'/2—1) for each(N4, L—1)
FULL is partitioned over exactly chips. An example of this RCC-FULL (e.g., each processor except one has a single
partitioning is illustrated in Fig. 12. transposelink). Moreover, the total number of pins that
Thus in this case the number of pins per chips/OC, correspond taransposelinks is independent of the level of
would correspond ttransposdinks andto internal links of an  recursion,/,, of an RCC-FULL.
(N4, L —1) RCC-FULL. The number of pins that correspond For the number of pins that correspondrternal links, we
to transposelinks areO(N/MCB; — N/MCB}), where have two cases:

Hypercube ——
Level 1 RCC-FULL -----
Level L RCC-FULL -----

Number of pins per chip

400
350 | A
300
250
200
150
100
50

0

log(Number of Processors)

FIG. 13. Pin requirements at the chip level for an RCC-FULL and a hypercube in Case 2.
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A. WhenL = 1, meaning that the rows of an RCC-FULL
are a fully connected network, then the number of pins per
chip that correspond tmternal links is O(N/I — N/I?).

B. WhenZ > 1, then the number of pins per chip tha
correspond to internal links i9(N/2/1 — N*/2/1?). In this
case, sincd is less than or equal t/2, it would correspond
to Case 1 above of the RCC-FULL. This leads to the following
theorem. 1.

THEOREM 6. For an (N4, L) RCC-FULL network with
N processors partitioned ovel/ C'B chips, andMC'B =
I x N2, the pin requirement per chip/ IOC, is given by 3.
MIOC = O(N/I — N/I? + N'/2/T — 1) whenL = 1, is
given by MIOC = O(NY?/1 — NY2/1> + N'/2/T —1) a4
whenZ > 1. The first2 terms correspond to pins due to in-
ternal links, and the lasp terms correspond to pins due to
transpose links. >

Thus, when the number of chips used in the partitioning
of the network is greater thaiv!/2, the pin requirement at 6
the chip level for a(N4, 1) RCC-FULL is asymptotically
equivalent to that of a hypercube of the same size. On th
other hand, when the level of recursion of the RCC-FULL,
is greater than 1, the pin requirement at the chip level of the
RCC-FULL is asymptotically less than those of a hypercube,
of the same size. Figure 13 compares the pin requirements at
the chip level, M /OC', of a hypercube network and an RCC-
FULL as a function of the number of processoi§, and the 10.
number of chips.

11.

5. CONCLUSION 12.
We have presented a new interconnection network, RCC-
FULL, for the construction of large scale parallel supercoml-3'
puting systems. Its systematic construction and some of its key
communication properties have been shown and compared {3-
vorably to those of the hypercube. Further, the RCC-FULL
has more flexibility in choosing the desired performance level
through its level of recursiory,, unlike the hypercube. Three 15.
efficient routing algorithms have been derived for the RCC-
FULL which need only local information to route messages
between any two nodes in the network. A sorting algorithm it
shown for RCC-FULL which ha®)(log (V')) complexity and
the RCC-FULL has been shown to emulate deterministically;
the CRCW PRAM model with onlyD(log (IV)) degradation
in time performance. The hardware cost of the RCC-FULL ass.
a function of its pin limitations has been estimated and com-
pared to that of the hypercube and most instances of RCC-
FULL have substantially lower cost. RCC-FULL appears td°:
offer particularly good potential as an interconnection network
for systems which emulate the PRAM models and which can”
be considered asniversalnetworks for their ability to emu-
late any other interconnection network of the same size with
small degradation in time performance.
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