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Abstract—Many defect prediction techniques have been pro-
posed. While they often take the author of the code into con-
sideration, none of these techniques build a separate prediction
model for each developer. Different developers have different
coding styles, commit frequencies, and experience levels, causing
different defect patterns. When the defects of different developers
are combined, such differences are obscured, hurting prediction
performance.

This paper proposes personalized defect prediction—building a
separate prediction model for each developer to predict software
defects. As a proof of concept, we apply our personalized
defect prediction to classify defects at the file change level.
We evaluate our personalized change classification technique on
six large software projects written in C and Java—the Linux
kernel, PostgreSQL, Xorg, Eclipse, Lucene and Jackrabbit. OQur
personalized approach can discover up to 155 more bugs than
the traditional change classification (210 versus 55) if developers
inspect the top 20% lines of code that are predicted buggy.
In addition, our approach improves the Fl-score by 0.01-0.06
compared to the traditional change classification.

Index Terms—Change classification; machine learning; person-
alized defect prediction; software reliability

I. INTRODUCTION

Academia and industry expend much effort to predict
software defects [1], [2], [3], [4], [5], [6], [7], [8], [9],
[10]. These prior studies have made significant advances in
defect prediction using features such as code complexity, code
locations, the amount of in-house testing, historical data, and
socio-technical networks.

While many existing defect prediction techniques take the
author of the code into consideration, none of these techniques
build separate prediction models for individual developers.
They combine all developers’ changes to build a single pre-
diction model.

Different developers have different coding styles, commit
frequencies, and experience levels, all of which cause different
defect patterns [11]. For example, based on our inspection of
the Linux kernel’s mainline repository from 2005 to 2010,
48.0% of one developer’s changes related to for loops
are buggy while the percentage is only 13.3% for another
developer. When the defects of different developers are com-
bined, such differences are obscured, hurting the prediction
performance. Therefore, it is desirable to build personalized
defect prediction models. Analogously, search engines such as
Google use personalized search to capture the different search
patterns to provide improved search experience [12].
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In this paper, we propose personalized defect prediction—
building separate prediction models for individual developers
to predict software defects. As a proof of concept, we ap-
ply our personalized defect prediction idea to change clas-
sification [1], which we call personalized change classifi-
cation (PCC). Change classification predicts defects at the
change level. A change is the lines modified in one file
of a software version control system commit. In the rest
of this paper, we refer to the approach that builds a single
change classification model for all developers as the tradi-
tional change classification (CC) approach. In addition, we
propose PCC+ to combine PCC and CC to further improve
change classification. Many classifiers, such as ADTree [13],
provide a confidence measure for each prediction decision.
PCC+ picks the prediction from the model with the highest
confidence for each change.

Similar to PCC, a recent study by Bettenburg et al. [7]
breaks data into clusters and builds separate prediction models
for different clusters. That work applies Multivariate Adaptive
Regression Splines (MARS) [14] to defect prediction, which
is a global model approach that takes local considerations
into account. In contrast to our approach that groups data
by developers, MARS groups data to minimize the fitting
error. Bettenburg et al. [7] shows that MARS outperforms
the traditional global model approach of building a single
classification model from the entire data set. We compare our
personalized classification models against MARS models in
addition to comparing our personalized classification models
against the traditional global models.

To evaluate the proposed approaches, we use two widely
used metrics: Cost Effectiveness [15], [16], [17] and FI-
score [1], [15]. Rahman et al. [15] have pointed out that
cost effectiveness is a suitable measure for evaluating the
performance of defect prediction in cost sensitive scenarios.
The cost effectiveness evaluates prediction performance given
the same cost, which is typically measured by the lines
of code (LOC) to inspect. For example, when a team can
afford to inspect only 20% lines of code before a deadline,
it is crucial to inspect the 20% that can help the developers
discover the most number of bugs. In this paper, we use the
same cost effectiveness measure from Rahman et al. [15]
with a small variation: the number of bugs instead of the
area under the curve. Our cost effectiveness measure is the
number of bugs that can be discovered by inspecting 20%
LOC (NofB20). Both Rahman’s and our measures use the
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same cost effectiveness graph. Rahman’s measure considers
the area under the curve for the percentage of LOC from 0
to 20%. While Rahman’s measure can ensure a high average
between 0 and 20%, our measure is much easier to interpret.
For example, if PCC improves NofB20 by 100 compared
to CC, it means that PCC can help the developers identify
100 more bugs by inspecting the top 20% LOC identified
by PCC instead of the top 20% LOC identified by CC. We
also present cost effectiveness graphs so that developers can
view the number of bugs that can be discovered by inspecting
percentages of LOC other than 20%. In addition, we evaluate
the approaches on the standard F1-score, which is also widely
used in defect prediction [1], [15]. Fl-score is an appropriate
performance measure when there are enough resources to
inspect all predicted buggy changes, e.g., code inspection. If a
change is predicted buggy, the developers can put more testing
and verification effort into this change. A higher Fl-score
can help capture more bugs and reducing the time wasted on
inspecting clean changes.

We evaluate the proposed techniques on six large projects
written in C and Java: the Linux kernel, PostgreSQL, Xorg,
Eclipse, Lucene and Jackrabbit. Our personalized approach,
PCC, improves NofB20 by up to 155 and 187 where the tra-
ditional change classification and MARS can discover 55 and
20, respectively. PCC also improves Fl-score by 0.01-0.06
and 0.01-0.13 compared to the traditional change classification
and MARS, respectively. Statistical tests show that the above
improvements are all statistically significant. In addition, we
show that the improvements are not bounded to a specific
experimental setup, i.e., the classification algorithm and the
number of changes in the training set.

II. CHANGE CLASSIFICATION (CC)

This section gives a brief overview of the traditional change
classification (CC) and our adaptation. The traditional change
classification has the following steps [1]:

1) Label each change clean or buggy by mining the
project’s revision history [18], [19] (Section II-A). Clean
means the code is correct, while buggy means the code
contains bugs.

2) Extract features, such as bag-of-words, from the changes
(Section II-B). To improve classification performance,
we add a new type of features—characteristic vectors
to the traditional change classification for the first time.
Characteristic vectors can capture some more infor-
mation about the syntactic structures of the change
compared to bag-of-words.

3) Use a classification algorithm to build a model from
the labelled changes based on the extracted features
(Section II-C). Since MARS [14] has been shown as a
superior classification algorithm [7], we use it as another
baseline.

4) Predict new changes as buggy or clean using the model.

A. Buggy Change Labelling

We adopt the same definition of change as prior work [1].
Compared to defect prediction at the other levels, e.g., the file
level, defect prediction at the change level is more precise. For
a predicted buggy change, the developer needs to examine only
one change instead of the entire file to address the defect.

To label each change as buggy or clean, we follow the
method used by previous works [18], [19]. We first identify
bug-fixing changes—changes that fix bugs—by searching the
commit logs for the word “fix”. The lines that the bug-fixing
changes modified are assumed to be the location of a bug. This
approach has a precision of 75-88% in identifying bug-fixing
commits in our data set (Section VIII).

Modern source code management systems provide an anno-
tate functionality such as git blame, which annotates each
line with the most recent change that modified that line. The
changes that introduced those buggy lines are bug-introducing
changes (also referred to as buggy changes).

In addition to the method described above, we pick two
projects from the work of Herzig et al. [20], who manually
verified the bug reports to distinguish real bugs from feature
enhancements. If a bug report fixes a real bug, its associated
changes are bug-fixing changes. These two projects have high
quality commit messages that contain bug report IDs. Instead
of searching for the word “fix”, we search for the bug IDs
of the real bugs in the commit messages while labeling bug-
fixing changes [19]. This approach has a precision of 91-95%
in identifying bug-fixing commits in these two projects (Sec-
tion VIII). We then use the annotate functionality to label bug-
introducing changes.

B. Feature Extraction

Features are attributes extracted from a commit which
describe the characteristics of the source code, such as LOC.
We use three categories of features: 1) characteristic vectors,
2) bag-of-words, and 3) metadata.

1) Characteristic Vector: Inspired by the Deckard tool [21],
we use characteristic vectors as features. Characteristic vectors
represent the syntactic structure by counting the numbers of
each node type in the Abstract Syntax Tree (AST). Bag-of-
words (see Section II-B2) and characteristic vectors have dif-
ferent abstraction levels. Although bag-of-words can capture
keywords, such as if and while, it cannot capture abstract
syntactic structures, such as the number of statements.

Suppose we are using if, for, and while node types for
characteristic vectors. The characteristic vector of the code
shown in Figure 1 is (1, 2, 0). After getting the characteristic
vectors for the file before the change and the file after the
change, we subtract the two characteristic vectors to obtain
the difference. For example, for a change that removes one
for loop, the difference is (0, -1, 0).

For each change, we apply Deckard [21] to automatically
generate two characteristic vectors: one for the source code file
before the change and one for the source code file after the
change. We use the difference between the two characteristic
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// Sum up positive entries
for (inmt i = 0; i < array.length; ++i) {
for (int j = 0; j < array[i].length; ++j) {
if (array[i][j] > 0) sum 4= array[i][]];
}

}

Fig. 1. The characteristic vector for the above code segment contains one
if statement, two for loops and zero while loops.

vectors and the characteristic vector of the file after the change
as two sets of features.

2) Bag-of-Words: Defects that are caused by calling a
wrong function, such as malloc instead of calloc, cannot
be represented by characteristic vectors, because characteristic
vectors ignore identifier names. To address this issue, we add
the bag-of-words (BOW) [22] vectors as features. It converts a
string to a word vector of individual words, where each entry
in the vector is the corresponding occurrence of each word.

We use a Weka [23] filter with the Snowball [24] stemmer
to convert text strings to word vectors. We process both the
commit message and the source code to obtain the word vector
for each change.

3) Metadata: In addition to characteristic vectors and bag-
of-words features, we use metadata features. We collect de-
veloper, commit hour (0, 1, 2, ..., 23), commit day (Sunday,
Monday, ..., Saturday), cumulative change count, cumulative
buggy change count, source code file/path names, and file age
in days in a way similar to Kim et al. [1]. Since the developer
is a feature in CC, PCC does not take advantage of the extra
knowledge of the developer information.

The scope of this paper is not to find the best feature com-
bination; instead it compares personalized prediction models
against traditional prediction models, using the same features
for both models.

C. Classification and MARS

Given the labels (buggy or clean) and the features extracted
from the source code files, machine learning algorithms can
learn models and predict new buggy changes. We use off-the-
shelf machine learning algorithms from Weka [23].

Since PCC and CC are two different approaches to organize
data sets for defect prediction, and neither is tied to any
specific classification algorithm, we compare PCC and CC
using three widely used [6], [16], [25], [26], [27] classification
algorithms: Alternating Decision Tree (ADTree) [13], Naive
Bayes [28] and Logistic Regression [29]. This paper does
not intend to find the best-fitting classifiers or models, but
to compare the PCC models against the CC models using the
same classification algorithms.

In addition to CC, we use Multivariate Adaptive Regression
Splines (MARS) as another baseline for the following reasons.
First, similar to our personalized defect prediction approach,
MARS builds separate models for different groups of data
to improve the classification performance. Second, MARS
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Fig. 2. Buggy rates (percentages of buggy changes) of different syntactic
structures of four Linux kernel developers. The syntactic structures are
modulo operators (%), for loops, bit-wise or operators (| ), and cont inue
statements. Developers have different buggy change patterns, which cannot
be observed if we combine different developers’ changes (“total”).

performs better than both global models and local models for
defect prediction [7].

We use the MARS implementation in the off-the-shelf
machine learning framework Orange [30]. The underlying
MARS implementation is the same as used by Bettenburg et
al. [7].

III. PERSONALIZED CHANGE CLASSIFICATION (PCC)

Different developers have different experience levels, dif-
ferent coding styles, and different commit patterns, resulting
in different buggy change patterns [11]. Figure 2 shows
differences in buggy change patterns of four prolific Linux
kernel developers in the mainline repository from 2005 to
2010. Specifically, it shows the buggy rates (percentage of
buggy changes) of four syntactic structures for each developer.
The syntactic structures are modulo operators (%), for loops,
bit-wise or operators (|), and continue statements. The
x-axis presents different developers and the y-axis indicates
the buggy rate for each syntactic structure. The last group
“total” shows the sum of all four developers’ changes. Each
bar shows the ratio of a developer’s buggy changes regarding
one syntactic structure to the developer’s changes regarding the
same syntactic structure. For example, 48% of developer c’s
320 changes adding or removing for loops are buggy.

We observe that these developers have different buggy
change patterns: (1) while developer b’s modulo operators (%)
are much buggier than developer c’s, developer b’s other
syntactic structures are cleaner than developer c’s; (2) de-
veloper a’s buggy rate is consistently lower than that of the
other developers; and (3) the buggy rates of the same syntactic
structure for different developers are different. These different
patterns cannot be observed if we sum the four developers’
changes as shown by “total”.

Given such differences in developers’ buggy changes, a
prediction model built from a developer’s changes alone can
be more suitable for predicting the changes from the same
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developer. Therefore, we build a separate prediction model
for each developer. PCC follows exactly the same steps as CC
except that PCC groups changes by developers and builds a
separate model for each developer. Given a new unlabelled
change, the final model first checks the author of the change,
and then uses this developer’s model to predict this change.

Note that the idea behind PCC is not adding the
feature—developer—as an advantage over CC, but instead
building separate models for different developers. In fact,
the developer is a metadata feature used in our implementation
of CC. PCC’s main advantage over CC is that each developer’s
model can be better tailored for this developer to capture the
developer’s unique buggy change patterns.

Compared to MARS, our personalized change prediction ap-
proach is different in two aspects: (1) while MARS partitions
data to minimize fitting errors, our PCC approach chooses to
partition data by developers, based on our observation that
different developers have different development behaviors and
patterns; and (2) while a MARS model is a global model that
takes local considerations into account, our PCC model is a
local model, because the individual model for each developer
is learned from a subset of the data. In summary, our PCC
approach is a specialized local model approach that utilizes
domain specific knowledge.

IV. PCC+: COMBINING CC AND PCC

To further improve classification performance, we take ad-
vantage of both PCC and CC. We propose two enhancements
which combine PCC and CC: weighted PCC and PCC+.

Firstly, a PCC model for a single developer may overlook
common bug patterns across developers, which can be learned
from the other developers within the project. We enhance the
PCC models by adding the changes from the other developers
to a developer’s model. We call this approach weighted PCC.
We use the same process as PCC except that we use different
training sets. Recall that in PCC, all changes in one developer’s
training set are collected from this developer’s changes. In
weighted PCC, we collect half of the changes from one
developer, and the other half from all other developers. Note
that this is different from CC because the weight (i.e., number
of changes) of one developer’s changes in the training set is
higher in the weighted PCC approach.

Secondly, we automatically pick the prediction with the
highest confidence among CC, PCC, and weighted PCC.
We refer to this approach as PCC+. Many classification
algorithms, such as ADTree [13], can provide a confidence
measure for each prediction. For a prediction, the higher
its confidence measure is, the more confident the model is
about the prediction. Figure 3 shows the flow diagram of
PCC+. For PCC+, we predict each change using these models
(CC, PCC and weighted PCC) independently, and pick the
prediction with the highest confidence for each change as the
final prediction. If two different predictions tie, we favor the
predictions in this order: PCC, weighted PCC and CC. An
alternative approach to PCC+ is majority voting. We choose
the confidence-based approach because majority voting is

PCC+
Converter |—7/ Predictions

y4

Changes

Classifier

Highest

Confidences
Confidence

Weighted
PCC

Fig. 3. The flow diagram of PCC+. First, CC, PCC and weighted PCC
predict the changes and pass the confidences to the meta classifier. Then, the
meta-classifier picks the highest confidence. Last, the converter converts the
highest confidence to a prediction (buggy or clean).

likely to yield an incorrect prediction when the majority is
not confident.

V. EXPERIMENTAL SETUP

We design our experiments to investigate the following two
research questions (RQs):

RQ1. How much do PCC and PCC+ improve the classification
performance over CC and MARS?

First, we compare PCC with the previous approaches,
namely CC and MARS. We find that PCC outperforms both
CC and MARS in terms of both NofB20 and F1 (Sec-
tion VI-A). Second, we investigate whether PCC+ can further
improve classification performance. We find that it is feasible
to combine prediction models based on the confidence
measure to further improve classification performance
(Section VI-B).

RQ2. Does PCC improves CC on other experimental setups?

First, we investigate if the performance improvement of
PCC over CC is generalizable to other classification algo-
rithms. We evaluate PCC and CC on three classification
algorithms. We find that PCC significantly outperforms CC
with all evaluated classification algorithms (Section VI-C).

Second, we investigate the effect of the number of training
instances. Since each PCC model learns from a training
set that is smaller than that of CC, PCC may not yield a
good performance with few changes per developer in smaller
projects while CC may still perform well. We investigate how
many training instances are enough for PCC to yield a better
performance than CC. In general, PCC models learned from
80 training instances or more per developer can yield a
better performance than CC (Section VI-C).

A. Test Subjects

We choose six open-source projects: the Linux kernel,
PostgreSQL, Xorg, Eclipse, Lucene and Jackrabbit. These
projects have enough change history to build and evaluate
PCC, and they are commonly used in the literature [1], [6],
[18], [20], [31]. For Lucene and Jackrabbit, we use manually
verified bug reports from Herzig et al. [20] for labeling bug-
fixing changes, and the keyword searching approach [19] for
the others.

Table I shows detailed project information. The lines of code
(LOC) and the number of changes in Table I include only
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TABLE I
EVALUATED PROJECTS. THE NUMBERS IN THIS TABLE INCLUDE ONLY C/JAVA CODE. ®XSERVER SUBREPOSITORY. ’ECLIPSE JDT CORE

SUBREPOSITORY.
Project Language LOC | First Commit Date | Last Commit Date | # of Changes | % of Buggy Changes
Linux C | 7.3M 2005-04-16 2010-11-21 429K 14.0%
PostgreSQL C | 289K 1996-07-09 2011-01-25 89K 23.6%
Xorg® C | I.LIM 1999-11-19 2012-06-28 46K 12.9%
Eclipse? Java | 1.5M 2001-06-05 2012-07-24 73K 16.9%
Lucene Java | 828K 2010-03-17 2013-01-16 76K 9.4%
Jackrabbit Java | 589K 2004-09-13 2013-01-14 61K 23.6%
TABLE 11 are two special cases with different start gaps. Since Lucene

THE SETUP OF THE DATA SET, SHOWING START GAPS, START DATES, END
DATES AND THE BUGGY RATE IN THE DATA SETS. THE BUGGY RATE IS
THE OVERALL BUGGY RATE FOR BOTH PCC AND CC SINCE THEY USE

EXACTLY THE SAME DATA SETS.

% of

Project Start Gap Start Date End Date Buggy
Changes

Linux Three Years | 2008-01-23 | 2008-07-15 21.0%
PostgreSQL | Two Years 1998-07-08 | 2010-02-14 40.9%
Xorg Three Years | 2003-07-02 | 2009-07-24 23.1%
Eclipse Three Years | 2004-06-07 | 2006-01-24 23.0%
Lucene Six Months | 2010-09-17 | 2011-06-30 31.0%
Jackrabbit Three Years | 2007-09-13 | 2009-09-15 46.4%

source code (C and Java) files! and their changes because we
want to focus on classifying source code file changes. They
are large and typical open source projects covering operating
system, database management system and core applications.

Although these projects are written in C and Java, PCC
is not limited to any particular programming language. With
appropriate feature extraction, PCC could classify changes in
any language [1].

B. Data Set

We use the entire revision histories to label buggy changes
as described in Section II-A. After labeling buggy changes, we
choose changes from a certain period for the following rea-
sons. First, there are too many changes, and often classification
algorithms such as MARS do not scale to a large number of
instances. In addition, as shown in previous work [18], [32],
[33], the average bug life time varies from one year to three
years depending on the project. Therefore, the latest changes
are often labelled clean even if they are actually buggy simply
because the bugs in these changes have not been discovered
and fixed. To ensure that we have all necessary fixes to label
the buggy changes, we exclude the changes in the last three
years. Third, there is also a concern that the change patterns
may not be stable at the beginning of the histories [1], [34].
For this reason, we exclude the changes at the beginning of
the histories.

Table II shows start gaps, start dates and the average buggy
rates of the data sets. The start and end dates are the dates of
the first and last commits in the data sets. The start gaps are
three years for most of the projects. Lucene and PostgreSQL

'We include files with these extensions: .java, .c, .cpp, .cc, .Cp, .CXX, .C++,
.h, .hpp, .hh, .hp, .hxx and .h++.

has a relatively short history (three years), the start gap is
six months, and we do not remove any history at the end.
PostgreSQL has fewer than five core developers. The required
time span to collect enough changes for a non-core developer
is long. To collect enough changes, we choose a two-year start
gap for PostgreSQL, and we remove the last year of history.

We organize our data sets to perform a fair comparison
between PCC and the baselines, i.e., CC and MARS. There are
a few key requirements for the experimental setup: 1) we use
a mixed data set for the baselines, but developer-specific data
sets for PCC; 2) we combine the training sets of PCC to use as
the training sets of CC; and 3) we keep the test data the same
between PCC and the baselines. With these goals in mind,
we select the ten developers from each project who have the
most commits. They are the most prolific developers and can
represent the majority of each project. We then pick the same
number of changes from each of the developers to prevent
any developer’s performance from dominating. Furthermore,
we use 10-fold cross-validation [35] to reduce the bias on the
training set selection. This technique is widely used in the
literature [1], [7], [16], [36]. PCC is personalized, so we run
cross validation on the changes of one developer at a time. For
the baselines, we run cross validation on all changes together.

In summary, we first list the developers in each project
ordered by their total number of commits in descending order.
From the list, we select the top ten developers. For each
developer, we collect 100 consecutive changes starting after
the start gaps, totaling 1,000 changes per project. Each 100
changes are used for PCC for each developer. The 1,000
changes together are used for CC and MARS.

C. Classification and Tuning

We design our tuning strategy carefully to simulate real
world scenarios. The key problem is that the golden labels
of the test set are unknown in practice. We cannot use
the golden labels to tune parameters. Therefore, we need
to tune the parameters on labeled data before performing
defect prediction in practice. The goal becomes finding one
set of parameters that is appropriate for these experiments
in general. Specifically, we tune on some randomly picked
changes from a randomly chosen project, and then use the
same tuned parameter for all models and all projects. We tune
the parameters to maximize F1.
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In our experiments, we use four classification algorithms,
including MARS. We tune each classification algorithm sep-
arately. The implementations of our Logistic Regression and
Naive Bayes have no tunable parameters [23], so they are not
tuned. ADTree has one parameter, the number of boosting
iterations [23], so we use a linear search. First, we divide the
linear search space into n equally-sized divisions. Then, we
evaluate the parameter at the midpoint of each division and
pick the parameter value that produces the best result. At last,
we recursively repeat the search in the division of the best
parameter value. We stop the recursion when the F1 increment
between each iteration is less than 0.01. MARS has several
parameters that take arbitrary values, e.g., maximum degree,
fast k, and penalty for hinges in the GCV computation [30].
Since each run of MARS can take hours, it is infeasible to
explore the search space exhaustively. Instead, we tune one
parameter first using the above linear search, fix its value,
tune the next parameter, and so on.

D. Measures

We use two performance measures for our evaluation:
cost effectiveness and F1. These two measures are useful in
different scenarios. Cost effectiveness is useful when there
are only resources to inspect a limited amount of code, e.g.,
before a deadline. F1 is useful when there is enough resource
to inspect all predicted buggy changes, e.g., code review.
Cost Effectiveness: Cost effectiveness is a widely used metric
for defect prediction [15], [16], [17]. As the name suggests,
cost effectiveness aims at maximizing benefits by spending the
same amount of cost. In our context, the cost is the amount
of code to inspect, and the benefit is the number of bugs that
can be discovered. If we inspect all predicted buggy changes,
the percentage of bugs that we catch is the recall. In some
situation, e.g., under deadline pressure, we cannot inspect all
predicted buggy changes. Instead, we can inspect perhaps only
20% of committed LOC. It is desirable to catch as many bugs
as possible while minimizing LOC to inspect. In this situation,
the cost effectiveness metric is a more appropriate measure.

Although our prediction is binary (i.e., a change is either
buggy or clean), there can be multiple bugs in a change. It
is more appropriate to consider that we can capture multiple
bugs after we inspect a change. We borrow the idea from the
previous work [15], [37], but adopt it to the change level.
Recall the technique that we use to label buggy changes:
we use git blame on the bug-fixing changes. One bug-
introducing change can be git blamed by multiple bug-
fixing changes, indicating that one change can contain multiple
bugs. Therefore, we use the number of bug-fixing changes that
git blames a bug-introducing change as the number of bugs
in this bug-introducing change.

To evaluate the cost effectiveness, we rank the changes by
the probability of being buggy, similar to previous work [15],
[16]. We simulate the inspection process by looking at the
changes sorted by their rankings. As we inspect the changes,
we accumulate the inspected LOC and the discovered bugs.
We plot the cost effectiveness graph with the accumulated

inspected LOC on the x-axis and the accumulated discovered
bugs on the y-axis. Although not restricted to any percentage,
we use the number of bugs captured by inspecting 20%
of committed LOC, i.e., NofB20, as a quantitative measure
similar to previous work [15]. Since different projects have
different numbers of bugs, we also normalize NofB20 as a
percentage of the total number of bugs, i.e., PofB20. We
use NofB20 and PofB20 as the quantitative metrics of cost
effectiveness and use the cost effectiveness graph to show the
general trend across different percentages of LOC.

An increase in cost effectiveness can help developers find

more bugs in cost sensitive scenarios. For example, PCC
improves NofB20 by up to 155 compared to CC. It means
that developers can discover up to 155 more bugs using the
rankings provided by PCC.
F1: F1 is a standard and widely used measure [1], [5], [6]
for classification algorithms, which is the harmonic mean of
precision and recall. An increase in F1 suggests an increase
in precision and recall. Precision represents among all the
predicted buggy changes, how many are truly buggy. An
increase in precision can reduce the time that developers spend
on inspecting true clean changes. Recall represents among all
the actual buggy changes, how many the classifier identifies.
An increase in recall can help developers capture more bugs.
Precision and recall are calculated from numbers of true
positives, false positives, false negatives and true negatives.
There is a trade-off between precision and recall. Usually, we
can sacrifice one to improve the other, which makes it difficult
to compare different prediction models using the precision
alone or the recall alone.

E. Statistical Tests

Statistical tests can help us understand whether there is
a statistically significant difference between two results that
we want to comparez. For example, in RQ1, we want to
compare the performance of PCC and CC. We first repeat each
experiment several times to obtain several samples for each test
subject. We then apply the Wilcoxon signed-rank test on the
samples in each test subject and across subjects. The Wilcoxon
signed-rank test does not require the underlying data to follow
any distribution, can be applied on pairs of data, and is able to
compare the difference against zero. At the 95% confidence
level, p-values that are smaller than 0.05 indicates that the
differences between PCC and CC are statistically significant.
p-values that are 0.05 or larger indicates that we find no
evidence that the differences are statistically significant.

VI. EXPERIMENTAL RESULTS
A. PCC Versus CC and MARS

In this section, we compare PCC against CC and MARS. We
evaluate the three approaches using the setups introduced in
Section V, and measure cost effectiveness, precision, recall,
F1, NofB20 and PofB20 as described in Section V-D. In

2We consult frequently with the statistical consulting service provided by
the University of Waterloo, who monitors the experiments and ensures that
we utilize the proper statistical tests correctly.
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TABLE III
RESULTS OF EVALUATED PROJECTS. THE VALUES IN PARENTHESES SHOW
THE F1, NOFB20 AND POFB20 DIFFERENCES AGAINST CC. THE
“AVERAGE” ROW CONTAINS THE AVERAGE IMPROVEMENT OF PCC OVER
CC ACROSS ALL PROJECTS. STATISTICALLY SIGNIFICANT IMPROVEMENTS

ARE BOLDED.
[ Project [Method [P R [FI [NofB20  [PofB20 |

CC 0.5910.49 | 0.54 160 0.51

Linux MARS [0.46[0.39 |0.42 121 0.39
PCC 0.610.50 [ 0.55(4-0.01) [ 179(4-19) | 0.57(+0.06)
PCC+ [0.620.49|0.55(+0.01) | 172(412) |0.55(4-0.04)

CC 0.65]0.58 | 0.61 55 0.08

PostgreSQL MARS [0.60[0.55[0.57 76 0.11
& PCC 0.63[0.58 [ 0.60(—0.01) | 210(4-155) | 0.29(+0.21)
PCC+ [0.660.59 |0.63(+0.02) | 175(4-120) | 0.24(4-0.16)

CC 0.6910.62 | 0.65 96 0.23

Xor MARS [0.65]0.520.57 152 0.37
g PCC 0.69 | 0.66 | 0.67(4-0.02) | 159(4-63) | 0.39(+0.16)
PCC+ [0.73]0.66 | 0.69(+0.04) | 161(4-65) |0.39(4-0.16)

CC 0.59]0.48 | 0.53 116 0.20

Eclinse MARS [0.55[0.430.48 20 0.03
p PCC 0.63 | 0.55 [ 0.59(4-0.06) | 207(4-91) | 0.36(+0.16)
PCC+ [0.680.56 | 0.61(+0.08) | 200(4-84) | 0.35(4-0.15)

CC 0.5810.46 | 0.51 176 0.28

Lucene MARS [0.51]0.41]0.45 131 0.21
v PCC 0.60 [ 0.5310.56(40.05) [ 254(+78) [ 0.40(+0.12)
PCC+ [0.640.540.59(+0.08) | 258(+-82) |0.41(4-0.13)

CC 0.7210.72 1 0.72 411 0.37

Jackrabbit MARS |0.72]0.70 | 0.71 411 0.37
PCC 0.720.72 1 0.72(4-0.00) | 449(4-38) | 0.40(+0.03)
PCC+ [0.740.74 | 0.74(+0.02) | 459(4-48) |0.41(4-0.04)
[ Average [ (+0.03) | H79H]  (+0.12)]

addition, we use statistical tests to check if result differences
are statistically significant as described in Section V-E.

Table III presents the overall classification performance of
CC, MARS and PCC. The values in parentheses show the
improvements of F1, NofB20 and PofB20 against CC. The
“Average” row contains the arithmetic means of the improve-
ments between PCC and CC across all projects. The statisti-
cally significant improvements are bolded. We use ADTree in
RQI since decision tree is widely used [16], [26].

Cost Effectiveness: Table III shows that PCC improves CC
by 19-155 in terms of NofB20 and by 0.03-0.21 in terms of
PofB20. All improvements are statistically significant.

NofB20 represents the number of bugs that can be discov-
ered by examining the top 20% LOC. For example, the ranking
of CC can help the developers identify 55 bugs for PostgreSQL
by inspecting 20% LOC. On the other hand, the ranking of
PCC can help identify 210 bugs by inspecting 20% LOC,
which is 155 more bugs than those of CC. PofB20 represents
the same information but normalized to the number of bugs in
the data set of a project. For example, PofB20 improvement
on PostgreSQL is 0.21 means that the 155 bugs are 21% of
all the bugs in PostgreSQL’s data set.

The cost effectiveness graph for Lucene is shown in Fig-
ure 4. The other projects have similar trends and are not shown
due to space constraints. As shown in the figure, PCC and
CC diverge when the percentage of LOC is at about 5% and

80
|

60
|

Percentage of Bugs

20
|

0 20 40 60 80 100

Percentage of LOC

Fig. 4. Cost effectiveness graph for Lucene. It shows the percentage of bugs
that can be discovered by inspecting different percentages of LOC. PCC is
better than CC for a wide range of LOC choices.

converge around 60%. It means that PCC is better than CC
for a wide range of LOC choices other than 20%.

F1: As shown in Table III, PCC improves CC by up to 0.06 on
F1. For example, CC’s F1 on Eclipse is 0.53, and PCC’s F1 on
Eclipse is 0.59, which indicates that PCC improves the F1 by
0.06. The statistically significant deltas are bolded. Although
the delta on PostgreSQL is negative, the associated p-values
indicates that the difference is not statistically significant. It
means that we find no evidence that PCC and CC perform
differently predicting PostgreSQL in terms of F1. Unlike the
other subjects, the PostgreSQL community requires the author
field to reflect committers rather than actual authors. Since
we do not have the information of actual authors, PCC’s
advantage may not show, which could affect the performance
of PostgreSQL (Section VIII). As shown in the “Average” row,
PCC outperforms CC on average across all test subjects.

Overall, these promising results indicate that PCC can
capture developers’ different defect patterns by building per-
sonalized prediction models. The difference in defect patterns
can be blurred when the changes from different developers are
mixed together, which is a limitation of CC.

We have shown that PCC’s Fl1 is higher than CC’s. In

addition, PCC has comparable or higher precision than CC
for all projects. Some developers may prefer precision while
others prefer recall. To address this issue, we can trade recall
for precision and vice versa by simply tuning the classification
algorithm parameters. Kim et al. [1] showed the trade-off
between precision and recall.
MARS: In addition, we evaluate MARS on the same data
sets for comparison. As shown in Table III, PCC clearly
outperforms MARS for all subjects in terms of both NofB20
and F1. For example, the F1 of Eclipse changes predicted by
PCC is 0.59, while the F1 is only 0.48 when predicted by
MARS on the same data set.

MARS'’s local consideration does not explicitly distinguish
developers. Our result shows that PCC, a local model which
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TABLE IV
F1 AND NOFB20 FOR DIFFERENT CLASSIFIERS. THE DELTA BETWEEN CC AND PCC ARE SHOWN IN PARENTHESES. THE “AVERAGE” ROW CONTAINS
THE AVERAGE IMPROVEMENT OF PCC OVER CC ACROSS ALL PROJECTS FOR EACH CLASSIFICATION ALGORITHM. DUE TO LIMITED SPACE, THE
P-VALUES ARE NOT SHOWN. INSTEAD, STATISTICALLY SIGNIFICANT DELTAS ARE BOLDED.

Project Approach Fl NofB20
) pp ADTree [ Naive Bayes | Log. Reg. ADTree [ Naive Bayes | Log. Reg.
Linux CC 0.54 0.39 0.39 160 138 102
PCC 0.55(+0.01) | 0.40(40.01) | 0.49(+0.10) 179(+19) 147(+9) 137(435)
PostareSQL CC 0.61 0.51 0.56 55 89 46
& pPCC 0.60(—0.01) | 0.52(4-0.01) | 0.56(40.00) 210(4155) | 113(+424) 56(+10)
Xor CC 0.65 0.55 0.63 96 84 52
& PCC 0.67(+0.02) | 0.60(40.05) | 0.65(4+0.02) 159(+63) 101(+17) 29(—23)
Eclipse CC 0.53 0.43 0.53 116 65 54
P PCC 0.59(+0.06) | 0.47(40.04) | 0.51(—0.02) 207(491) 108(+43) 55(+1)
Lucene CC 0.51 0.42 0.44 176 152 30
PCC 0.56(+0.05) | 0.45(+0.03) | 0.50(40.06) 254(+78) 139(—13) 200(+170)
Jackrabbit CC 0.72 0.56 0.72 411 420 261
PCC 0.72(+0.00) | 0.66(40.10) | 0.68(—0.04) 449(+38) 414(—6) 370(+109)
[ Average i (+0.03) ] (+0.04) | (+0.02) ] +74) ] (+12) | (+50) ]

utilizes domain specific knowledge, outperforms a global
model with local consideration.

[ PCC outperforms both CC and MARS. ]

B. PCC+

In this section, we compare PCC+ to CC and PCC. We use
the same setup and subjects as Section VI-A.

PCC+ is a meta-classifier that picks the most confident
result among CC, PCC and weighted PCC as described in
Section IV. Recall that we use ADTree in RQI. According
to Freund et al. [13], an ADTree-based classifier can provide
a confidence measure. For each change, we predict using the
three models, i.e., CC, PCC and weighted PCC. PCC+ picks
the result that has the highest confidence. In the case of a tie,
we favor the prediction in this order: PCC, weighted PCC and
CC.

As shown in Table III, PCC+ can further improve on PCC
in many cases. For example, CC’s F1 on Eclipse is 0.53.
PCC improves CC by 0.06. PCC+ has a bigger improvement,
0.08. Interestingly, PCC+’s improvement on Jackrabbit’s F1 is
statistically significant, while PCC’s is not. Compared to PCC,
we observe that PCC+ is more likely to yield a statistically
significant improvement and the improvement is often bigger.

Combining models based on the confidence measure
can provide further improvements.

C. PCC’s Improvement on Other Settings

In this section, we study the effect of different classification
algorithms and different sizes of training sets.
Different Classification Algorithms: We deploy three classi-
fication algorithms to check if PCC outperforms CC with other
classification algorithms. We conduct this experiment using the
same data sets in Section VI-A.

Table IV shows the results of PCC and CC using various
classifiers. The columns show the project name, the approach,
the CC and PCC results with ADTree classifiers taken from
Table III, and the results with other classifiers—Naive Bayes
and Logistic Regression. The results demonstrate that PCC
outperforms CC for all classifiers. As shown in the “Average”
row, the improvement of PCC is statistically significant for
every classification algorithm. In other words, the benefit of
grouping changes by developer (PCC) is not limited to a
specific classification algorithm.

PCC outperforms CC, and this advantage is not
limited to one specific classification algorithm.

Number of Training Instances: Both CC and PCC learn from
training instances. Unfortunately, it is sometimes challenging
to collect enough training instances. Since PCC learns from
developer specific changes, it may be more challenging to
collect enough training instances for each developer. There-
fore, it is important to understand the relationship between
the number of instances in a training set and the classification
performance.

For this experiment, we use the same data sets and the same
parameters described in Section VI-A. For each iteration in
10-fold cross validation, we keep the same test set, but we
select different numbers of instances from the training set.
For example, we take one fold as a test set. Then, instead of
taking the other nine folds as the training set, we gradually
reduce the size of the training set. Using the reduced training
sets, we build CC and PCC classifiers. For each project, we
use an increment of 100 from 100 to 900 training instances.
Then we test CC and PCC on the same test set.

Figure 5 shows the relationship between the number of
training instances versus F1 and PofB20 for Lucene. For
example, the points corresponding to 300 on the x-axis shows
the F1 or PofB20 of using 300 training instances (30 per
developer). The results show that there is an overall trend of
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Fig. 5. F1 and PofB20 versus number of training changes for Lucene. X-axis
is the number of training changes for CC, and 1/10 of it is the number of
training changes per developer for PCC.

F1 and PofB20 increasing with the number of the training
instances. Having the same trend, the other projects are not
shown due to space constraints.

We can compare PCC and CC results by comparing the
corresponding lines in Figure 5. Although PCC outperforms
CC in general, the results that show PCC and CC are very close
to each other at the beginning, and then diverge. Although not
shown due to space constraints, different projects generally
diverge at different points before 80 training instances per de-
veloper. When there are fewer training instances, the advantage
of PCC does not show, because there are not enough training
instances to build a classification model, while CC has enough
instances since CC has 10 times more training instances than
each PCC model. Overall, our data show that it is generally
worthwhile to use PCC for better performance when there are
80 or more training instances per developer in the project.

In general, PCC outperforms CC when there are 80
or more training instances per developer.

VII. DISCUSSION

Interpretation of Results: Although being useful in the
build process, developers often ignore predictions that are not
explained [38]. The good news is, defect prediction techniques
can be improved to provide explanations, e.g., which features
lead to a buggy prediction. For example, an ADTree model
is a tree that shows step by step how it makes predictions
based on the features [13]. Figure 6 shows three ADTree
nodes from three developers’ trees. This figure shows how
the bit-wise and operator can affect the decision process
in three developers’ models. For each change, we find how
many bit-wise and operators the change adds or removes.
For example, “—1” represents removing one bit-wise and
operator. We compare the modifications against a threshold.
“<—0.5” means to check if the change removes more than
0.5 bit-wise and operators. In summary, if developer dev2
removes more than 2.5 bit-wise and operators in a change,
the weight of this change being buggy increases by 0.815.
We traverse the tree by visiting the node at each level that
matches the change. The change is predicted buggy if the sum
of the weights along the path is positive. Developers devl

(devl) ‘&> < —0.5: 0.815
(dev2) ‘&’ < —=2.5: 0.480
(dev3) ‘&’ < —0.5: —-0.315

Fig. 6. These three ADTree nodes are from three developers’ trees. The first
node means that the weight of a change being buggy increases by 0.815 if
developer devl removes any bit-wise and operator in this change. A change
is predicted buggy if the weight is positive.

and dev2 are more likely to produce buggy changes if they
remove bit-wise and operators. In contrast, developer dev3
is more likely to produce clean changes if she removes bit-
wise and operators. These examples confirm that there are
subtle differences between developers and the classification
algorithms can catch such differences.

Cost Effectiveness Versus F1: As shown in our experiments,
the Linux kernel and PostgreSQL have statistically significant
cost effectiveness improvements while their F1 improvements
are not statistically significant. We want to understand why
these two metrics can yield different results. Since PCC builds
one model for each developer separately, it is easier for bug
patterns to stand out in PCC than in CC. Therefore, PCC
should yield predictions with higher confidence on average.
This is confirmed by the confidence values in our experiments.
The top ranked changes in PCC have higher confidence values
than those of CC. Since the prediction given by the model
with a higher confidence is more likely to be correct, the top
ranked changes in PCC are more accurate than those of CC.
In other words, PCC can have a higher cost effectiveness than
CC while the difference in F1 is small.

VIII. THREATS TO VALIDITY

Subjects are all open source projects: We collect experimen-
tal data sets (Table II) from six open source projects to evaluate
PCC. Therefore, these projects might not be representative
of closed source projects. We do not intend to draw general
conclusions about all software projects. While we believe
that our personalization approach is widely applicable, its
performance may vary in closed source projects and other
projects that are not evaluated by this study.

Bug data contain noise: Since we follow the traditional
change classification techniques [1] to identify bug-fixing
changes, our data inevitably include noise as Bird et al. pointed
out [39]. For this reason, we carefully select our subjects
to have high quality commit logs. In addition, we use two
projects that have manually verified bug reports, Lucene and
Jackrabbit [20]. For all subjects, we manually check the noise
level. We randomly sample 200 bug-fixing commits from each
project and manually verify whether they are indeed bug
fixes. We find that the precision and recall are reasonable: the
precision and recall are 0.87 and 0.73 for the Linux kernel, and
0.86 and 0.71 for PostgreSQL [18]; the precision and recall
are 0.75 and 0.64 for Xorg, 0.78 and 0.93 for Eclipse, 0.91
and 0.93 for Lucene, and 0.95 and 0.87 for Jackrabbit. These
noise levels should be acceptable [36]. However, this noise
may affect our results even though we use the same data sets
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for PCC, CC, and MARS. In the future, we can reduce the
noise levels through advanced techniques [40], [41].

In addition, the developer information may be inaccurate for
PostgreSQL. The PostgreSQL community currently requires
that both the author field and the committer fields to reflect
the committer [42], so we do not have the actual author infor-
mation for many commits, which may hurt our results. In the
future, we may analyze PostgreSQL’s commit messages and
mailing lists to extract the author information to potentially
improve PCC’s performance on PostgreSQL. In addition, it
may be interesting to compare author-specific change classifi-
cation with committer-specific change classification.
Developer and change selection might affect our results:
For PCC, we select the ten developers per project with the
most commits, and use 100 changes per developer as our
data sets (Table II). Note that we used the same data sets
for PCC, CC and MARS. We select these top developers
because there are too many inactive developers in open source
projects who committed only a few changes. Removing these
inactive developers from experiments is a common practice
in the literature [43], [44], [45], [46]. We select the same
number of changes per developer since some developers have
too many changes. For example, one developer in PostgreSQL
committed about 41% of all changes in the project history. We
do not want a large number of changes from a few developers
to dominate the classification results. These selections might
affect our experimental results; alternative ways of selecting
developers and changes remain as our future work.

IX. RELATED WORK

To the best of our knowledge, we are the first to build a
separate model for each developer for defect prediction. In
this section, we focus on discussing other differences and
connections between this paper and related work.

Many studies [1], [2], [3], [4], [5], [8], [9], [10], [16],
[47] analyze the effects of factors such as code complexity,
process metrics, code locations, the amount of in-house test-
ing, historical data, and socio-technical networks on building
prediction models and predicting software defects. Kim et
al. [1] use support vector machines (SVM) as the classifier
with bag of words, complexity metrics and metadata as the
features to predict defects. Recently, Shivaji et al. [48] improve
the work above by applying feature selection algorithms.
Ostrand et al. [11] use negative binomial regression as the
classifier, and various metadata and developer-specific metrics
as features to predict defects. Rahman et al. [16] compare
the effect of code metrics and process metrics. Lumpe et
al. [47] investigate the importance of activity-centric static
code metrics. These studies advanced the state of the art of
defect prediction. However, none of them builds personalized
models although some of them consider the developers as an
important feature. We notice the importance of the difference
between the developers, and improve the change classification
performance by building personalized models.

The personalization idea has great success in other fields.
For example, Google’s personalized search can enhance search

results by leveraging the users’ search history [12]. Facebook’s
and MySpace’s personalized advertisement deployment can
predict user’s interest by analyzing the user’s profile [49]. We
introduce the personalized idea to the change classification
field. Our results show that the personalized approach can
improve change classification performance.

Bettenburg et al. [7] find that MARS, a global model that
has local considerations, is better than both global models and
local models. Although MARS groups data intro clusters, it
does not group data by developer. A detailed comparison has
been presented in Section III.

Matsumoto et al. [S0] find that developer-related metrics are
good distinguishing factors for defect prediction. Specifically,
the modules that are touched by more developers contain
more bugs. Rahman and Devanbu [51] find that a developer’s
experience on one file is more important than the developer’s
general experience on the project. Posnett et al. [52] introduce
focus metrics and find that more focused developers introduce
fewer bugs. In the future, we may add these developer related
features to improve our defect prediction.

Rahman et al. [15] argue that defect prediction should also
consider the cost effectiveness metrics, and show that using
F1-score and cost effectiveness can yield different results.

Herzig et al. [20] show that misclassified bug reports have
a great impact on defect prediction, and provide manually
classified bug reports. Our study follows the lessons learned
by reporting cost effectiveness metrics and using the manually
classified bug reports in our evaluation.

X. CONCLUSIONS

We propose personalized defect prediction and apply it to
change classification as a proof of concept. In addition, we
propose PCC+ to further improve performance by combining
models based on confidence measures. Our empirical eval-
uation of PCC on six open source projects shows that our
personalized change classification outperforms the traditional
change classification [1] and MARS [7]. We also find that
the advantage of PCC is not bounded to any classification
algorithm. In general, PCC outperforms CC when there are
more than 80 training instances per developer.

Our personalized idea could be applied to recommendation
systems [53], [54], [55] and other types of predictions, such
as top crashes [56], quality attributes [57], bug-fixing com-
mits [58], vulnerabilities [59], bug location and number of
bugs [37]. Since each developer may have different software
development behaviors, personalized systems can effectively
learn from a developer and provide useful information for the
developer.
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