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Abstract
Transfer learning addresses the problem of how to uti-
lize plenty of labeled data in a source domain to solve
related but different problems in a target domain, even
when the training and testing problems have different
distributions or features. In this paper, we consider
transfer learning via dimensionality reduction. To solve
this problem, we learn a low-dimensional latent feature
space where the distributions between the source do-
main data and the target domain data are the same or
close to each other. Onto this latent feature space, we
project the data in related domains where we can ap-
ply standard learning algorithms to train classification
or regression models. Thus, the latent feature space
can be treated as a bridge of transferring knowledge
from the source domain to the target domain. The main
contribution of our work is that we propose a new di-
mensionality reduction method to find a latent space,
which minimizes the distance between distributions of
the data in different domains in a latent space. The ef-
fectiveness of our approach to transfer learning is veri-
fied by experiments in two real world applications: in-
door WiFi localization and binary text classification.

Introduction
Transfer learning aims to solve the problem when the train-
ing data from a source domain and the test data from a tar-
get domain follow different distributions or are represented
in different feature spaces (Caruana 1997). There are two
main approaches to transfer learning in the past. The first
approach can be referred to as instance-based approach (Dai
et al. 2007; Huang et al. 2007; Sugiyama et al. 2008),
where different weights are learned to rank training ex-
amples in a source domain for better learning in a target
domain. Another approach can be referred to as feature-
based approach (Ando and Zhang 2005; Argyriou, Evge-
niou, and Pontil 2007; Blitzer, McDonald, and Pereira 2006;
Raina et al. 2007), which tries to learn a common feature
structure from different domains that can bridge the two do-
mains for knowledge transfer. Several techniques have been
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developed for transfer learning, including multi-task learn-
ing (Ando and Zhang 2005; Argyriou, Evgeniou, and Pon-
til 2007), multi-domain learning (Blitzer, McDonald, and
Pereira 2006) and self-taught learning (Raina et al. 2007).
However, few previous feature-based methods have consid-
ered how to exploit a latent space as a bridge to facilitate
knowledge transfer. As a result many of them may only have
limited ability to transferring knowledge. In this paper, we
focus on transfer learning in a latent feature space, so that
even when the target domain have no labeled data, we can
still learn a high performance classifier by making use of the
training data from a source domain.

Our approach is intuitively appealing: if we can find a
latent space where the marginal distributions of the data be-
tween different domains are close to each other, then this
space can act as a bridge to propagate a classification model.
More specifically, if two domains are related to each other,
then there may exist several common latent variables that
dominate the observed data. Some of them may cause the
distributions of the observations to be different, while oth-
ers may not. We can uncover these latent factors that do not
cause change across domains, on which the source and target
data distributions are found to be close to each other. Then,
this is the lower-dimensional space we are looking for.

We illustrate our idea using a learning-based indoor local-
ization problem as an example, where a client moving in a
WiFi environment wishes to use the received signal strength
(RSS) values to locate itself. In an indoor building, RSS
values are affected by many hidden factors, such as tem-
perature, human movement, building structure, properties of
access points (APs), etc. Among these hidden factors, the
temperature and the human movement may vary in time, re-
sulting in changes in RSS values. However, the building
structure and properties of APs are relatively stable. Thus,
if we use the latter two factors to represent the RSS data,
the distributions of the data collected in different time pe-
riods may be close to each other. Thus, this is the latent
space where we can ensure a transferring of a learned lo-
calization model from one time period to another, or from
one spatial area to another. Another example is learn to do
text classification across domains. If two text-classification
domains have different distributions, but are related to each
other (e.g., news articles and blogs), there may be some la-



tent topics shared by these domains. Some of them may be
relatively stable while others may not. If we use the stable
latent topics to represent documents, the distance between
the distributions of documents in related domains may be
small. Then, in the latent space spanned by latent topics, we
can transfer the text-classification knowledge.

In this paper, we propose a new dimensionality reduc-
tion algorithm designed to ensure effective transfer learning.
This algorithm is driven by the objective to minimize the
distance between distributions of the data in different do-
mains in a low-dimensional latent space. In other words, we
try to discover a latent space described by a feature trans-
formation function F such that the marginal distributions
of F (Xsrc) and F (Xtar) are close to each other, where
F (Xsrc) and F (Xtar) are new representations of patterns
Xsrc and Xtar in the latent space. If the conditional proba-
bilities P (Ysrc|F (Xsrc)) and P (Ytar|F (Xtar)) are similar,
we can learn a model f with F (Xsrc) and Ysrc and apply f
to predict labels of F (Xtar) directly.

In summary, our main contribution is a novel dimension-
ality reduction-based algorithm that aims to minimize the
distance between distributions of different data sets in a la-
tent space to enable effective transfer learning. We apply
our new approach to two real world applications in a transfer
learning setting to demonstrate its outstanding performance.

Related Works and Preliminaries

Transfer Learning
Feature-based methods have been widely used in many areas
related to transfer learning. In multi-task learning, domain-
specific information in related tasks is used to jointly train
multiple classifiers in a way that they can benefit each other.
A shared representation is exploited while the extra tasks
can be used as an inductive bias during learning (Ando
and Zhang 2005; Argyriou, Evgeniou, and Pontil 2007).
In multi-domain learning, (Blitzer, McDonald, and Pereira
2006) described a heuristic method to construct new repre-
sentations of the data for domain adaptation. In self-taught
learning, (Raina et al. 2007) first learned high-level set of
bases from a lot of unlabeled data for which may have dif-
ferent labels from the labeled data, and then projected the
labeled data to these bases to get new representations for
further classification problems.

The instance-based approach to transfer learning is an an-
other way for solving the transfer learning problems (Dai et
al. 2007; Huang et al. 2007; Sugiyama et al. 2008). Many
instance-based methods make a common assumption that
although the marginal probabilities P (Xsrc) and P (Xtar)
are different, the conditional probabilities P (Ysrc|Xsrc) and
P (Ytar|Xtar) are the same, where Xsrc and Xtar are pat-
terns in a source domain and in a target domain, respectively.
Here Ysrc and Ytar are the corresponding labels. In reality,
however, this assumption may not hold. For example, in an
indoor WiFi localization problem, we try to determine lo-
cations of a mobile device given its received signal strength
(RSS) values sent from multiple transmitters or access points

(APs). Some previous works have discovered that the distri-
bution of RSS values P (x), where x represents RSS values,
may be non-Gaussian and can vary greatly due to dynamic
environmental factors (Pan et al. 2007). Furthermore, the
probability of locations given RSS values P (y|x) estimated
from one time period is not reliable for location estimation
in another time period, where y represents a location label.
In this paper, we relax this assumption and only assume that
there exists a latent space F where P (Ysrc|F (Xsrc)) and
P (Ytar|F (Xtar)) are similar.

Dimensionality Reduction

Dimensionality reduction has been studied widely in ma-
chine learning community. (van der Maaten, Postma, and
van den Herik 2007) gives a recent survey on various di-
mensionality reduction methods. Traditional dimensionality
reduction methods try to project the original data to a low-
dimensional latent space while preserving some properties
of the original data. Since they cannot guarantee that the dis-
tributions between different domain data are similar in the
reduced latent space, they cannot directly be used to solve
transfer learning problems. Thus we need to develop a new
dimensionality reduction algorithm for transfer learning.

A more recent dimensionality reduction technique is max-
imum variance unfolding (MVU) (Weinberger, Sha, and
Saul 2004), which is motivated by designing kernels for ker-
nel principal component analysis (KPCA) from the data it-
self. MVU extracts a low-dimensional representation of the
data by maximizing the variance of the embedding while
preserving the local distances between neighboring obser-
vations. MVU can be formulated in a semidefinite program-
ming (SDP) (Lanckriet et al. 2004) optimization problem
and solved by many optimization solvers. After estimating
the kernel matrix K, MVU applies PCA to K to choose a
few eigenvectors as bases and projects the original data onto
these bases to get low-dimensional representations.

Maximum Mean Discrepancy

There are many criteria to estimate the distance between dif-
ferent distributions. A well-known example is Kullback-
Leibler (K-L) divergence. Many criteria are parametric
because they need an intermediate density estimate. To
solve our problem, we wish to find a nonparametric esti-
mate criterion of distance between distributions of data sets.
Maximum Mean Discrepancy (MMD) is a relevant crite-
rion for comparing distributions based on reproducing Ker-
nel Hilbert Space (RKHS) (Borgwardt et al. 2006). Let
X = {x1, ..., xn1} and Y = {y1, ..., yn2} be random vari-
able sets with distributions P andQ. The empirical estimate
of distance between P andQ defined by MMD is as follows

Dist(X,Y) = sup
‖f‖H≤1

( 1
n1

n1∑
i=1

f(xi)− 1
n2

n2∑
i=1

f(yi))

(1)
where H is a universal RKHS (Steinwart 2001).
Dist(X, Y ) is non-negative, which vanishes if and only if
P = Q, when n1, n2 → ∞. By the fact that in a RKHS,



function evaluation can be written as f(x) = 〈φ(x), f〉,
where φ(x) : X → H, the empirical estimate of MMD can
be rewritten as follows:

Dist(X,Y) = ‖ 1
n1

n1∑
i=1

φ(xi)− 1
n2

n2∑
i=1

φ(yi)‖H (2)

In summary, based on the MMD theory (Borgwardt et al.
2006), the distance between distributions of two samples is
equivalent to the distance between the means of the two sam-
ples mapped into a RKHS.

Dimensionality Reduction for Transfer
Learning

Problem Statement and Overall Approach
In a transfer learning setting, some labeled data Dsrc are
available in a source domain, while only unlabeled dataDtar

are available in the target domain. We denote the source do-
main data as Dsrc = {(xsrc1 , ysrc1), . . . , (xsrcn1

, ysrcn1
)},

where xsrci
∈ Rm is the input and ysrci

the correspond-
ing label. Similarly, we denote the target domain data as
Dtar = {xtar1 , . . . , xtarn2

}, where, for simplicity, the in-
put xtari

is also assumed to be in Rm. Let P(Xsrc) and
Q(Xtar) (or P and Q in short) be the marginal distribu-
tions of Xsrc and Xtar, respectively. In general, they can
be different. Our task is then to predict the labels ytari

’s
corresponding to the inputs xtari

’s in the target domain.

The proposed transfer learning approach is based on di-
mensionality reduction, and consists of two steps. First,
we propose a new dimensionality reduction method (which
will be called Maximum Mean Discrepancy Embedding
(MMDE) in the sequel) to learn a low-dimensional latent
space F common to both domains. Let the projection map
be ψ. We try to ensure that the distributions of the projected
data, ψ(Xsrc) and ψ(Xtar), are close to each other. In the
second step, we apply a traditional machine learning algo-
rithm to train a model from ψ(xsrci) in the latent space
to ysrci . The trained model can then be used for predict-
ing the label of xtari in the target domain. In the sequel,
we denote ψ(Xsrc) and ψ(Xtar) by X ′

src = {x′srci
} and

X ′
tar = {x′tari

}, respectively.

Step1: Maximum Mean Discrepancy Embedding

In this section, we address the problem of learning a com-
mon low-dimensional latent space F such that the distribu-
tions of the source and target data (X ′

src and X ′
tar) can be

close to each other. On using (2), this is equivalent to mini-
mizing

dist(X ′
src, X

′
tar) =

∥∥∥∥∥
1
n1

n1∑

i=1

φ(x′srci
)− 1

n2

n2∑

i=1

φ(x′tari
)

∥∥∥∥∥
H

,

for some φ ∈ H. Thus,
dist(X ′

src, X
′
tar)

= dist(ψ(Xsrc), ψ(Xtar))

=

∥∥∥∥∥
1
n1

n1∑

i=1

φ ◦ ψ(xsrci
)− 1

n2

n2∑

i=1

φ ◦ ψ(xtari
)

∥∥∥∥∥
H

.(3)

Given that φ ∈ H, it is easy to show the following:

Lemma 1 Let φ be the feature map of an universal kernel.
Then φ ◦ψ is also the feature map of an universal kernel for
any arbitrary map ψ.

Therefore, our goal becomes finding the feature map φ ◦ ψ
of some universal kernel such that (3) is minimized. Denote
the corresponding universal kernel by k. Equation (3) can
be written in terms of the kernel matrices defined by k, as:

dist(X ′
src, X

′
tar) = trace(KL), (4)

where K =
[

Ksrc,src Ksrc,tar

KT
tar,src Ktar,tar

]
∈ R(n1+n2)×(n1+n2)

is a composite kernel matrix with Ksrc and Ktar being the
kernel matrices defined by k on the data in the source and
target domains, respectively, and L = [Lij ] º 0 with

Lij =





1

n2
1

xi, xj ∈ Xsrc,
1

n2
2

xi, xj ∈ Xtar,

− 1

n1n2
otherwise.

In the transductive setting, we can learn this kernel ma-
trix K instead of learning the universal kernel k. However,
we need to ensure that the learned kernel matrix does corre-
spond to an universal kernel. To do this, we first recall the
following property of universal kernels (Song 2007):

Theorem 1 A kernel is universal if for arbitrary sets of dis-
tinct points it induces strictly positive definite kernel matri-
ces.

While universal kernels induce strictly positive definite ker-
nel matrices, the following proposition shows that certain
strictly positive definite kernel matrices can also induce uni-
versal kernels.

Proposition 1 If a kernel matrix K can be written as

K = K̃ + εI, (5)

where ε > 0, K̃ º 0 and I is the identity matrix, then the
kernel function corresponding to K is universal.

Hence, as long as the learned kernel matrix is of the form
in (5), we can be assured that the corresponding kernel is
universal.

Besides minimizing the trace of KL in (4), we also have
the following constraints / objectives which are motivated
from MVU:

1. The distance is preserved, i.e., Kii + Kjj − 2Kij = d2
ij

for all i, j such that (i, j) ∈ N 1;

2. The embedded data are centered;

3. The trace of K is maximized.
1For all i, j, if xi and xj are k-nearest neighbors, we denote this

by using (i, j) ∈ N .



Thus, the embedding problem can be formulated as the fol-
lowing optimization problem:

min
K= eK+εI

trace(KL)− λtrace(K) (6)

s.t. Kii + Kjj − 2Kij = d2
ij , ∀(i, j) ∈ N ,

K1 = 0, K̃ º 0,

where ε > 0 and 1 and 0 are the vectors of ones and ze-
ros, respectively. ε is a small positive constant. The relative
weightings of the two terms in the objective is controlled by
the parameter λ ≥ 0 2. This coefficient can be determined
empirically.

We can further rewrite the above optimization problem as
a semidefinite program (SDP):

min
eKº0

trace(K̃L)− λtrace(K̃) (7)

s.t. K̃ii + K̃jj − 2K̃ij + 2ε = d2
ij , ∀(i, j) ∈ N ,

K̃1 = −ε1.

This can be solved by standard SDP solvers. After obtain-
ing K̃, we can then apply PCA and select the leading eigen-
vectors to construct low-dimensional representations, X ′

src
and X ′

tar. In the sequel, we will call this approach Max-
imum Mean Discrepancy Embedding (MMDE). Note that,
the optimization problem (7) is similar to a new supervised
dimensionality reduction method, colored MVU (Song et al.
2008). However, there are two major differences between
MMDE and colored MVU. First, the L matrix in colored
MVU is a kernel matrix that encodes label information of
the data, while the L in MMDE can be treated as a kernel
matrix that encode distribution information of different data
sets. Second, besides minimize the trace of KL, MMDE
also aims to unfold the high dimensional data by maximize
the trace of K.

Step2: Training Models in the Latent Space
Using supervised or semi-supervised learning, we can train
a model f for the mapping between the estimated X ′

src and
the class labels Ysrc. This can then be used to obtain the pre-
dicted label f(x′tari

) of xtari
. Although we do not learn a

function to explicitly project the original data Xtar to X ′
tar,

we can still use the method of harmonic functions (Zhu,
Ghahramani, and Lafferty 2003) to estimate the labels of
new data in the target domain. The complete algorithm is
shown in Algorithm 1.

Experiments

In this section, firstly, we use a synthetic data set to show
explicitly why our method for transfer learning works. After
that, we use two real world data sets to verify our method in
a classification task and a regression task, respectively. In all
experiments, to avoid over-fitting, we randomly select 60%
examples from Dsrc as the training data and randomly select

2In particular, λ contains a normalization term of trace(K) and
a tradeoff coefficient.

60% examples from Dtar as the test data, repeat this 5 times.
The results published in all experiments are average results
of these five individual results.

Algorithm 1 Transfer Learning via Maximum Mean Dis-
crepancy Embedding
Input: A labeled source domain data set Dsrc =
{(xsrci , ysrci)}, a unlabeled target domain data set
Dtar = {xtari} and a positive λ.

Output: Labels Ytar of the unlabeled data Xtar in the tar-
get domain.

1: Solve the SDP problem in (7) to obtain a kernel matrix
K.

2: Apply PCA to the learned K to get new representations
{x′srci

} and {x′tari
} of the original data {xsrci

} and
{xtari

}, respectively.
3: Learn a classifier or regressor f : x′srci

→ ysrci

4: Use the learned classifier or regressor to predict the la-
bels of Dtar, as: ytari

= f(x′tari
).

5: When new data Dnew
tar arrive in the target domain, use

harmonic functions with {xtari
, f(x′tari

)} to predict
their labels.

Synthetic Data Set

For the synthetic data, we generated two data sets: one rep-
resents the source domain (stars) and the other represents
the target domain (circles), with different Gaussian distri-
butions in a two-dimensional space (see Figure 1(a)). In
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(b) 1D projection by MVU.
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(c) 1D projection by MMDE.

Figure 1: An Example of 2D Synthetic Data

Figures 1(b) and 1(c), the original 2D data are projected to a
1D latent space by applying MVU and MMDE, respectively.
Gaussian distribution functions are used to fit the two data
sets in the 1D latent space. We can see that, in the 1D latent
space learned by MVU, which is a special case of KPCA,



the distributions of the two data sets are still very different.
However, in the latent space learned by MMDE, the distri-
butions of the two data sets are close to each other. That is
why MMDE can help transfer learning more effectively.

Experimental Results on the WiFi Data Set
Our experimental data are collected in a WiFi area. To col-
lect the WiFi experiment data, we carried an IBM c© T60
laptop and walked in the floor of an office building, whose
size is about 72 × 37.5 m2. The laptop is equipped with an
Intel c© Pro/3945ABG internal wireless card and installed a
software to record WiFi signal strength every 0.5 seconds.
For obtaining the ground truth, we separated the environ-
ment into 135 small grids, each of which is about 1.5 × 1.5
m2. We stopped at each grid for one or two seconds to col-
lect the WiFi data. 500 examples were collected in the mid-
night on one day as a source domain data set Dsrc and 500
examples were collected in the afternoon two days later as a
target domain data set Dtar.

In a complex indoor environment, the distribution of WiFi
signal strength at a certain location can change a lot due
to dynamic environmental factors. Thus transfer learning
becomes a necessary step to address indoor WiFi localiza-
tion problems. To show that our proposed dimensionality
reduction method for transfer learning works well for solv-
ing the WiFi localization problems, we compare the per-
formance of various regressors trained in different feature
space. Regression models used in our experiments are Regu-
larized Least Square Regressor (RLSR), Support Vector Re-
gressor (SVR) and Laplacian Regularized Least Square Re-
gressor (LapRLSR) (Belkin, Niyogi, and Sindhwani 2006),
respectively. Our goal is to verify that traditional regres-
sion models with help of MMDE can be applied to solve
transfer learning problems. Thus, we use the default param-
eters of these regression models and do not change them in
all experiments. Figure 2 shows the culmulative probabil-
ities of these three regressors that are trained in the latent
space learned by MMDE and in the original feature space,
where culmulative probability means the estimation accu-
racy at different acceptable error distances. From this fig-
ure, we can see that regression models trained in the latent
space, which are denoted by MMDE+RLSR, MMDE+SVR
and MMDE+LapRLSR, get much higher performance than
the ones trained in the original feature space.
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Figure 2: Comparison of Accuracy (The number of dimen-
sions of the latent space is set to 10)

In Figure 3, we compare the performance of regression

models trained in different latent space with different num-
bers of dimensions. From this figure, we can see that regres-
sion models built in the latent space either by MVU or by
MMDE can improve the performance. However, the regres-
sion models based on MMDE achieve much higher perfor-
mance. This is because that MMDE not only removes the
noise from the original data but also reduces the distance of
distributions between different data sets.

Experimental Results on Text Data Sets
In text classification experiments, we used preprocessed data
sets of Reuters-21578, which is in a transfer learning set-
ting, to evaluate our proposed method. The basic idea is to
utilize the hierarchy of the data sets. The binary classifica-
tion task is defined as classifying top categories. Each top
category is split into two disjoint parts with different sub-
categories, one for training and the other for test. In this
case, distributions between the training and test data may
be very different. Therefore, we have three data sets orgs
vs people, orgs vs places and people vs places in trans-
fer learning setting 3. In this experiment, we use Support
Vector Machines (SVMs) and Transductive Support Vector
Machines (TSVMs) with linear kernel to verify the transfer-
ability of the MMDE algorithm. In Table 1, we can see that
SVMs and TSVMs trained in the latent space that is learned
by MMDE get much higher accuracy than those trained in
the original space. From the table, we can find that the per-
formance of traditional classifiers trained in the latent space
learned by MMDE can be used in a transfer learning set-
ting. In summary, MMDE based dimensionality reduction
method can support various regression models and classifi-
cation models for transfer learning.

Conclusion and Future Work
In this paper, we have developed a novel transfer learning
technique for learning in a latent space. We proposed a novel
MMDE algorithm for transfer learning across two domains.
Our experiments on two different applications demonstrated
that our proposed solution can effectively improve the per-
formance of many traditional machine learning algorithms
for transfer learning. In the future, we plan to extend MMDE
to nonnegative feature extraction, such that it can help trans-
fer learning with other traditional classifiers, such as the
Naive Bayes Classifier. Furthermore, we wish to find an effi-
cient method to extend MMDE to handle large-scale transfer
learning problems.
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