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Abstract

In this paper, we study cost-sensitive semi-supervised
learning where many of the training examples are un-
labeled and different misclassification errors are associ-
ated with unequal costs. This scenario occurs in many
real-world applications. For example, in some disease
diagnosis, the cost of erroneously diagnosing a patient
as healthy is much higher than that of diagnosing a
healthy person as a patient. Also, the acquisition of la-
beled data requires medical diagnosis which is expen-
sive, while the collection of unlabeled data such as ba-
sic health information is much cheaper. We propose the
CS4VM (Cost-Sensitive Semi-Supervised Support Vec-
tor Machine) to address this problem. We show that the
CS4VM, when given the label means of the unlabeled
data, closely approximates the supervised cost-sensitive
SVM that has access to the ground-truth labels of all the
unlabeled data. This observation leads to an efficient al-
gorithm which first estimates the label means and then
trains the CS4VM with the plug-in label means by an
efficient SVM solver. Experiments on a broad range of
data sets show that the proposed method is capable of
reducing the total cost and is computationally efficient.

Introduction

In many real-world applications, different misclassifications
are often associated with unequal costs. For example, in
medical diagnosis, the cost of erroneously diagnosing a pa-
tient as healthy may be much higher than that of diagnosing
a healthy person as a patient. Another example is fraud de-
tection where the cost of missing a fraud is much larger than
a false alarm. On the other hand, obtaining labeled data is
usually expensive while gathering unlabeled data is much
cheaper. For example, in medical diagnosis the cost of med-
ical tests and analysis is much higher than the collection of
basic health information, while in fraud detection the label-
ing of a fraud is often costly since domain experts are re-
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quired. Consequently, many of the training examples may
remain unlabeled.

Cost-sensitive learning (Domingos 1999; Fan et al. 1999;
Elkan 2001; Ting 2002; Zadrozny, Langford, and Abe 2003;
Zhou and Liu 2006b; 2006a; Masnadi-Shirazi and Vascon-
celos 2007; Lozano and Abe 2008) aims to make the op-
timal decision minimizing the total cost. Semi-supervised
learning aims to improve the generalization performance
by appropriately exploiting the unlabeled data. Over the
past decade, these two learning paradigms have attracted
growing attention and many techniques have been devel-
oped (Chapelle, Schölkopf, and Zien 2006; Zhu 2007;
Zhou and Li 2010). However, existing cost-sensitive learn-
ing methods mainly focus on the supervised learning setting,
while semi-supervised learning methods are usually cost-
insensitive.

To deal with scenarios where unequal misclassification
cost occur while the exploitation of unlabeled data is neces-
sary, we study in this paper cost-sensitive semi-supervised
learning. We propose the CS4VM (Cost-Sensitive Semi-
Supervised Support Vector Machine) to address such prob-
lem. We show that the CS4VM, when given the label means
of the unlabeled data, is closely related to the supervised
cost-sensitive SVM that has ground-truth labels for all the
unlabeled data. Based on this observation, we propose an
efficient algorithm that first estimates the label means of the
unlabeled examples, and then use these plug-in estimates to
solve the CS4VM with an efficient SMO algorithm. Exper-
imental results on a broad range of data sets validate our
proposal.

The rest of this paper is organized as follows. We start by
a brief introduction of some related work. Then we propose
C4SVM and report on our experiments, which is followed
by the conclusion.

Related Work

Learning process may encounter many types of costs, such
as the testing cost, teacher cost, intervention cost, etc. (Tur-
ney 2000), among which the most important type is the mis-
classification cost. There are two kinds of misclassification
cost. The first one is class-dependent cost, where the costs
of classifying any examples in class A to class B are the
same. The second one is example-dependent cost, where the
costs of classifying different examples in class A to class
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B are different. Generally the costs of different kinds of
misclassifications are given by the user, and in practice it is
much easier for the user to give class-dependent cost than
example-dependent cost. So, the former occurs more often
in real applications and has attracted more attention.

In this paper, we will focus on class-dependent cost. Ex-
isting methods for handling class-dependent costs mainly
fall into two categories. The first one is geared towards par-
ticular classifiers, like decision trees (Ting 2002), neural net-
works (Kukar and Kononenko 1998), AdaBoost (Fan et al.
1999), etc. The second one is a general approach, which
rescales (Elkan 2001; Zhou and Liu 2006a) the classes such
that the influences of different classes are proportional to
their costs. It can be realized in different ways, such as in-
stance weighting (Ting 2002; Zhou and Liu 2006b), sam-
pling (Elkan 2001; Zhou and Liu 2006b), threshold mov-
ing (Domingos 1999; Zhou and Liu 2006b), etc. Cost-
sensitive support vector machines have also been studied
(Morik, Brockhausen, and Joachims 1999; Brefeld, Geibel,
and Wysotzki 2003; Lee, Lin, and Wahba 2004).

Many semi-supervised learning methods have been pro-
posed (Chapelle, Schölkopf, and Zien 2006; Zhu 2007;
Zhou and Li 2010). A particularly interesting method is the
S3VM (Semi-Supervised Support Vector Machine) (Bennett
and Demiriz 1999; Joachims 1999). It is built on the clus-
ter assumption and regularizes the decision boundary by ex-
ploiting the unlabeled data. Specifically, it favors decision
boundaries that go cross the low-density regions (Chapelle
and Zien 2005). The effect of its objective has been well
studied in (Chapelle, Sindhwani, and Keerthi 2008). Due to
the high complexity in solving the S3VM, many efforts have
been devoted to speeding up the optimization. Examples in-
clude local search (Joachims 1999), concave convex proce-
dure (Collobert et al. 2006) and many other optimization
techniques (Chapelle, Sindhwani, and Keerthi 2008). Re-
cently, (Li, Kwok, and Zhou 2009) revisits the formulation
of S3VM and shows that when given the class (label) means
of the unlabeled data, the S3VM is closely related to a super-
vised SVM that is provided with the unknown ground-truth
labels of all the unlabeled training data. This indicates that
the label means of the unlabeled data, which is a simpler
statistic than the set of labels of all the unlabeled patterns,
can be very useful in semi-supervised learning.

The use of unlabeled data in cost-sensitive learning has
been considered in a few studies (Greiner, Grove, and Roth
2002; Margineantu 2005; Liu, Jun, and Ghosh 2009; Qin
et al. 2008), most of which try to involve human feedback
on informative unlabeled instances and then refine the cost-
sensitive model using the queried labels. In this paper, we
focus on using SVM to address unequal costs and utilize
unlabeled data simultaneously, by extending the approach
of (Li, Kwok, and Zhou 2009) to the cost-sensitive setting.

CS4VM

In this section, we first present the formulation of CS4VM
and show the usefulness of the label means in this context.
Then, an efficient learning algorithm will be introduced.

Formulation

In cost-sensitive semi-supervised learning, we are given a
set of labeled data {(x1, y1), · · · , (xl, yl)} and a set of un-
labeled data {xl+1, · · · ,xl+u}, where y ∈ {±1}, l and u
are the numbers of labeled and unlabeled instances, respec-
tively. Let Il = {1, · · · , l} and Iu = {l + 1, · · · , l + u}
be the sets of indices for the labeled and unlabeled data, re-
spectively. Moreover, suppose the cost of misclassifying a
positive (or negative) instance is c(+1) (or c(−1)).

We first consider the simpler supervised learning setting.
Suppose that for each unlabeled pattern xi (i ∈ Iu), we are
given the corresponding label ŷi. Then we can derive the
supervised cost-sensitive SVM (CS-SVM) (Morik, Brock-
hausen, and Joachims 1999) which finds a decision function
f(x) by minimizing the following functional:

min
f

1

2
‖f‖2

H + C1

∑

i∈Il

ℓ(yi, f(xi)) + C2

∑

i∈Iu

ℓ(ŷi, f(xi)) ,

(1)
where H is the reproducing kernel Hilbert space (RKHS)
induced by a kernel k and ℓ(y, f(x)) = c(y)max{0, 1 −
yf(x)} is the weighted hinge loss, C1 and C2 are regulariza-
tion parameters trading off the complexity and empirical er-
rors on the labeled and unlabeled data. The relation between
Eq. 1 and the Bayes rule has been discussed in (Brefeld,
Geibel, and Wysotzki 2003).

In semi-supervised setting, the labels ŷ = [ŷi; i ∈ Iu] of
the unlabeled data are unknown, and so need to be optimized
as well. This leads to the CS4VM:

min
ŷ∈B

min
f

1

2
‖f‖2

H+C1

∑

i∈Il

ℓ(yi, f(xi))+C2

∑

i∈Iu

ℓ(ŷi, f(xi)),

(2)
where B = {ŷ|ŷi ∈ {±1}, ŷ′1 = r}, 1 is the all-one vec-
tor, and ŷ′1 = r (with the user-defined parameter r) is the
balance constraint which avoids the trivial solution that as-
signs all the unlabeled instances to the same class. Note that
the label ŷi should be as same as the sign 1 of the prediction
f(xi), i.e., ŷi = sgn(f(xi)). Substituting this into Eq. 2, we
obtain the following optimization problem which no longer
involves the additional variable ŷ:

min
f

1

2
‖f‖2

H + C1

∑

i∈Il

ℓ(yi, f(xi)) + C2

∑

i∈Iu

ℓ(ŷi, f(xi))

s.t.
∑

i∈Iu

sgn(f(xi)) = r, ŷi = sgn(f(xi)), ∀i ∈ Iu (3)

Figure 1 shows the loss function used for the unlabeled
data. When c(1) = c(−1), it becomes the standard symmet-
ric hinge loss and CS4VM degenerates to TSVM (Joachims
1999). When c(1) 6= c(−1), however, the loss is no longer
continuous and many optimization techniques (Chapelle and
Zien 2005) could not be applied.

Label Means for CS4VM

Note that Eq. 3 involves the estimation of labels of all the un-
labeled instances, which will be computationally inefficient

1Here, we assume that sgn(0) = 1.
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Figure 1: Loss function for the unlabeled data.

when the number of unlabeled instances is large. Motivated
by the observation in (Li, Kwok, and Zhou 2009) that the
label means offer a simpler statistic than the set of labels
on the unlabeled data, we will extend this observation to the
CS4VM. Moreover, we will see that the label means natu-
rally decouple the cost and prediction, and the estimation is
also efficient.

Introducing additional variables p+ = [p+
ℓ+1, . . . , p

+
ℓ+u]′

and p− = [p−ℓ+1, . . . , p
−
ℓ+u]′, we can rewrite the CS4VM as

the following:

min
f,p+,p−

1

2
‖f‖2

H + C1

∑

i∈Il

ℓ(yi, f(xi)) + C2

∑

i∈Iu

(p+
i

+p−i − c(sgn(f(xi)))(sgn(f(xi)f(xi) − 1)))

s.t. c(+1)f(xi) − c(+1) ≤ p+
i , (4)

−c(−1)f(xi) − c(−1) ≤ p−i ,

p+
i , p−i ≥ 0, ∀i ∈ Iu;

∑

i∈Iu

sgn(f(xi)) = r .

Proposition 1. Eq. 4 is equivalent to the CS4VM.

Proof. When 0 ≤ f(xi) ≤ 1, both p±i are zero and the loss
of xi is −c(+1)(f(xi) − 1), which is equal to c(+1)(1 −
f(xi)) in Eq. 3. When f(xi) ≥ 1, p−i = 0 and p+

i =
c(+1)(f(xi)− 1), and thus the overall loss is zero, which is
equal to CS4VM. A similar proof holds for f(xi) < 0.

Let f(x) = w′φ(x)+b, where φ(·) is the feature mapping
induced by the kernel k. As in (Li, Kwok, and Zhou 2009),
by using the balance constraint, the number of positive (resp.
negative) instances in the unlabeled data can be obtained as
u+ = r+u

2 (resp. u− = u−r
2 ). Suppose that the ground-truth

label of the unlabeled instance xi is y∗
i . The label means

of the unlabeled data are then m+ = 1
u+

∑

y∗
i
=1 φ(xi) and

m− = 1
u−

∑

y∗
i
=−1 φ(xi), respectively. Let n1 = c(1)u++

c(−1)u− and n2 = c(1)u+ − c(−1)u−. We have
∑

i∈Iu

c(sgn(f(xi)))(sgn(f(xi)f(xi) − 1)) + n1 (5)

= c(1)
∑

f(xi)≥0,i∈Iu

f(xi) + c(−1)
∑

f(xi)<0,i∈Iu

−f(xi)

= w′
(

u+c(+1)m̂+ − u−c(−1)m̂−

)

+ n2b,

where m̂+ = 1
u+

∑

i∈Iu,f(xi)≥0 φ(xi) (resp. m̂− =
1

u−

∑

i∈Iu,f(xi)<0 φ(xi)) is an estimate of m+ (resp. m−).

Eq.5 implies the objective in Eq.4 is only related to label
means. If we substitute the true label means m± into Eq. 4,
we have

min
w,b,p±

1

2
‖w‖2 + C1

∑

i∈Il

ℓ(yi,w
′xi + b) + C2(1

′p+ + 1′p−)

−C2

(

w′
(

u+c(+1)m+ − u−c(−1)m−

)

− n1 + n2b
)

s.t. constraints in Eq. 4. (6)

Eq. 6 is the CS4VM with known label means of the unla-
beled data. The relation between Eq. 6 and the supervised
CS-SVM is stated by the following theorem.

Theorem 1. Suppose that f∗ is the optimal solution of Eq. 6.
When all the unlabeled data do not suffer from large loss,
i.e., y∗

i f∗(xi) ≥ −1, ∀i ∈ Iu, Eq. 6 is equivalent to the

CS-SVM. Otherwise, let ℓ̂(xi) be the loss for the unlabeled

instance xi in Eq. 6. Then, ℓ̂(xi) ≤
c(1)+c(−1)

c(y∗
i
) ℓ(y∗

i , f(xi)).

It is notable that Theorem 1 reduces to the results in (Li,
Kwok, and Zhou 2009) when c(1) = c(−1). The proof is
similar to (Li, Kwok, and Zhou 2009), and so will be omit-
ted here. Figure 2 compares the loss in Eq.6 and the cost-
sensitive hinge loss in CS-SVM on positive and negative ex-
amples.

Figure 2: Loss in Eq. 6 and the cost-sensitive hinge loss in
CS-SVM. Here c(1) = 2 and c(−1) = 1.

Learning Algorithm

Analysis in the above section suggests that the label means
are useful for cost-sensitive semi-supervised support vector
machines. This motivates us to first estimate the label means
and then solve Eq. 6 with the estimated label means.

Estimating Label Means To estimate the label means, we
employ the large margin principle (Li, Kwok, and Zhou
2009) consistent with the CS4VM, i.e., maximizing the
margin between the means, which is also interpretable by
Hilbert space embedding of distributions (Gretton et al.
2006). Mathematically,

min
d∈∆

minw,b,ρ

1

2
‖w‖2 + C1

∑

i∈Il

ℓ(yi,w
′xi + b) − C2ρ

s.t. w′

(

∑

i∈Iu
diφ(xi)

u+

)

+ b ≥ c(+1)ρ, (7)

w′

(

∑

i∈Iu
(1 − di)φ(xi)

u−

)

+ b ≤ −c(−1)ρ , (8)

where d = [di; i ∈ Iu] and ∆ = {d|di ∈ {0, 1},d′1 =
u+}. Note from Eqs. 7 and 8 that the class with the larger
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Table 1: Comparison of total costs ((mean ± std.) ×103) in the first series of experiments (c(1) is randomly sampled from an
interval). The best performance (paired t-tests at 95% significance level) and its comparable results are bolded. The last line
shows the win/tie/loss counts of CS4VM versus other methods.

Data set Supervised CS-SVM Laplacian SVM TSVM CS4VM GT CS-SVM

Heart-Statlog 9.745 ± 6.906 1.640 ± 2.708 10.28 ± 6.985 6.261 ± 4.920 1.894 ± 1.836

Ionosphere 17.02 ± 12.84 27.19 ± 17.03 11.98 ± 7.749 7.811 ± 5.130 5.036 ± 3.604

Live Disorder 0.178 ± 0.388 11.37 ± 17.29 12.01 ± 7.844 0.507 ± 1.018 0.100 ± 0.005

Echocardiogram 3.955 ± 2.609 1.314 ± 2.305 4.129 ± 2.610 3.576 ± 2.391 0.982 ± 1.301

Spectf 6.022 ± 6.451 2.974 ± 5.514 12.52 ± 8.384 2.873 ± 2.533 0.940 ± 1.056

Australian 23.63 ± 19.06 25.01 ± 27.15 24.80 ± 19.00 15.98 ± 11.86 3.263 ± 3.191

Clean1 17.96 ± 13.44 20.63 ± 14.88 21.97 ± 14.26 13.47 ± 9.942 3.618 ± 2.631

Diabetes 5.772 ± 10.84 6.162 ± 14.11 32.08 ± 19.30 10.01 ± 8.946 0.249 ± 0.007

German Credit 30.17 ± 22.28 30.54 ± 26.16 26.48 ± 18.83 18.63 ± 13.30 6.686 ± 5.029

House Votes 8.594 ± 7.187 9.693 ± 8.515 12.50 ± 8.551 6.206 ± 4.644 1.804 ± 1.694

Krvskp 144.9 ± 87.03 131.5 ± 81.30 158.0 ± 90.43 92.42 ± 52.09 1.865 ± 1.789

Ethn 9.919 ± 16.25 119.3 ± 85.15 74.90 ± 64.07 16.14 ± 11.84 1.131 ± 0.973

Heart 0.615 ± 1.188 1.962 ± 6.346 6.908 ± 4.770 0.127 ± 0.205 0.472 ± 0.852

Texture 4.094 ± 6.755 5.748 ± 6.489 2.512 ± 4.668 0.045 ± 0.205 0.000 ± 0.000

House 1.760 ± 1.505 1.325 ± 1.415 1.458 ± 1.479 0.935 ± 1.061 0.465 ± 0.618

Isolet 4.976 ± 4.218 7.207 ± 6.382 0.943 ± 1.394 0.420 ± 0.670 0.198 ± 0.368

Optdigits 6.642 ± 6.881 4.025 ± 4.177 1.097 ± 1.951 0.773 ± 1.197 0.222 ± 0.538

Vehicle 1.978 ± 3.812 18.70 ± 26.50 7.191 ± 7.800 1.002 ± 1.667 0.378 ± 0.432

Wdbc 0.127 ± 0.125 32.92 ± 38.52 11.33 ± 8.367 0.264 ± 0.415 0.251 ± 0.479

Sat 3.404 ± 7.363 6.968 ± 10.01 2.122 ± 9.839 2.521 ± 9.407 0.646 ± 0.729

CS4VM: W/T/L 14/2/4 16/1/3 17/3/0 -

misclassification cost is given a larger weight in margin
computation. Moreover, unlike the formulation of Eq. 3,
the optimization problem is now much easier since there are
only two constraints corresponding to the unlabeled data,
and the misclassification costs do not couple with the signs
of the predictions. Indeed, as in (Li, Kwok, and Zhou 2009),
it can be solved by an iterative procedure that alternates be-
tween two steps. We first fix d and solve for {w, b, ρ} via
standard SVM training, and then fix {w, b, ρ} and solve for
d via a linear program.

Solving Eq. 6 with Estimated Label Means After ob-
taining d, the label means can be estimated as m+ =
1

u+

∑

i∈Iu
diφ(xi) and m− = 1

u−

∑

i∈Iu
(1 − di)φ(xi).

Note that in Eq. 6, the constraints are linear and the objec-
tive is convex, and thus it is a convex optimization problem.
By introducing Lagrange multipliers α = [αi; i ∈ Il] and

β± = [β±
i ; i ∈ Iu] for the constraints in Eq. 6, its dual can

be written as

max
α,β±

∑

i∈Il

αi −
∑

i∈Iu

(c(1)β+
i + c(−1)β−

i ) −
1

2
‖w‖2

s.t.
∑

i∈Il

αiyi −
∑

i∈Iu

(c(1)β+
i − c(−1)β−

i ) = 0, (9)

0 ≤ αi ≤ c(yi)C1, ∀i ∈ Il; 0 ≤ β±
i ≤ C2, ∀i ∈ Iu ,

where w = u+c(1)m+ − u−c(−1)m− +
∑

i∈Il
αiyixi +

∑

i∈Iu
(−c(1)β+

i +c(−1)β−
i )xi. Eq. 9 is a convex quadratic

program (QP) with one linear equality constraint. This is
similar to the dual of standard SVM and can be efficiently
handled by state-of-the-art SVM solvers, like LIBSVM us-
ing the SMO algorithm.

Experiments
In this section, we empirically evaluate the performance of
the proposed CS4VM. A collection of twenty UCI data sets

are used in the experiments. Each data set is split into two
equal halves, one for training and the other for testing. Each
training set contains ten labeled examples. The linear kernel
is always used. Moreover, since there are too few labeled
examples for reliable model selection, all the experiments
are performed with fixed parameters: C1 and C2 are fixed
at 1 and 0.1, respectively, while u+ and u− are obtained as
the ratios of positive and negative examples in the labeled
training data.

Two different cost setups are considered:

1. c(−1) is fixed at 1 while c(1) is chosen randomly from
a uniform distribution on the interval [0, 1000]. Each ex-
periment is repeated for 100 times and then the average
results are reported. From this series of experiments we
can see how an approach is robust to different costs.

2. c(−1) is fixed at 1 while c(1) is set to 2, 5 and 10, re-
spectively. For each value of c(1), the experiment is re-
peated for 30 times and then the average results are re-
ported. From this series of experiments we can see how
the performance of an approach changes as the cost varies.

We compare CS4VM with the following approaches: 1)
A supervised CS-SVM using only the labeled training ex-
amples; 2) A supervised CS-SVM (denoted by GT CS-
SVM) using the labeled training examples and all the un-
labeled data with ground-truth labels; 3) Two state-of-the-
art semi-supervised learning methods, that is, the Laplacian
SVM (Belkin, Niyogi, and Sindhwani 2006) and TSVM
(Joachims 1999). These two methods are cost-blind, and in
the experiments we extend them for cost-sensitive learning
by incorporating the misclassification cost for each labeled
training example as in the CS-SVM, while the costs of the
unlabeled data are difficult to incorporate. All the compared
approaches are implemented in MATLAB 7.6, and experi-
ments are run on a 2GHz Xeon c©2 Duo PC with 4GB mem-
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Table 2: Comparison of total costs (mean ± std.) in the second series of experiments (c(1) is set to different fixed values).
The best performance (paired t-tests at 95% significance level) and its comparable results are bolded. The last line shows the
win/tie/loss counts of CS4VM versus other methods.

Cost ratio Data set Supervised CS-SVM Laplacian SVM TSVM CS4VM GT CS-SVM

2 House votes 39.76 ± 10.90 47.47 ± 20.77 58.04 ± 15.41 37.96 ± 11.63 21.80 ± 4.160

Clean1 131.6 ± 21.08 141.2 ± 20.70 144.7 ± 23.35 132.1 ± 21.43 57.56 ± 7.620

Australian 136.0 ± 44.93 170.4 ± 63.79 132.3 ± 53.56 120.8 ± 40.37 82.63 ± 9.752

German Credit 276.7 ± 27.39 286.4 ± 31.74 268.2 ± 45.57 275.0 ± 28.82 196.6 ± 8.840

Krvskp 848.4 ± 172.6 856.3 ± 141.2 936.3 ± 188.7 794.7 ± 143.8 59.10 ± 8.601

Heart-statlog 54.23 ± 12.36 59.33 ± 11.71 54.96 ± 14.57 54.43 ± 13.21 33.86 ± 5.912

Diabetes 236.3 ± 30.57 241.9 ± 17.60 220.4 ± 45.40 196.4 ± 43.38 136.3 ± 8.844

Ionosphere 79.96 ± 23.11 112.5 ± 14.76 71.40 ± 23.47 68.40 ± 23.79 39.36 ± 6.262

Liver Disorders 99.83 ± 4.653 114.0 ± 21.31 114.9 ± 14.81 105.2 ± 11.56 96.86 ± 5.811

Echocardiogram 23.76 ± 4.513 44.76 ± 11.69 20.90 ± 4.932 23.86 ± 4.383 21.66 ± 5.282

Spectf 88.90 ± 14.82 104.0 ± 11.97 82.10 ± 16.56 86.03 ± 16.12 50.06 ± 6.103

Heart 67.46 ± 12.58 69.10 ± 12.27 48.69 ± 14.30 49.83 ± 12.08 34.60 ± 4.432

House 14.06 ± 4.945 12.98 ± 6.523 12.78 ± 5.772 12.06 ± 5.782 5.102 ± 1.931

Wdbc 102.6 ± 8.082 139.6 ± 101.5 57.65 ± 14.37 52.13 ± 10.24 20.13 ± 4.522

Isolet 34.10 ± 17.07 37.64 ± 18.77 4.322 ± 4.373 5.000 ± 4.202 1.864 ± 1.473

Optdigits 44.30 ± 22.93 29.64 ± 16.52 6.592 ± 7.123 14.96 ± 15.13 1.900 ± 1.903

Texture 15.76 ± 17.61 23.81 ± 18.96 9.582 ± 13.15 0.262 ± 0.980 0.000 ± 0.000

Vehicle 78.00 ± 17.85 96.45 ± 51.04 47.43 ± 26.61 53.00 ± 18.07 12.86 ± 3.414

Ethn 654.9 ± 44.58 612.3 ± 129.5 525.1 ± 299.4 499.3 ± 105.0 64.23 ± 8.137

Sat 44.23 ± 75.91 30.99 ± 33.22 12.85 ± 36.43 32.83 ± 76.55 4.363 ± 2.203

CS4VM: W/T/L 8/11/1 15/5/0 6/14/0 -

5 House-votes 85.00 ± 28.66 90.46 ± 49.69 127.2 ± 34.13 72.03 ± 25.43 34.60 ± 9.742

Clean1 231.4 ± 56.70 257.8 ± 46.66 269.5 ± 53.75 209.6 ± 41.24 83.13 ± 12.39

Australian 282.3 ± 106.6 292.4 ± 133.4 251.8 ± 86.41 231.0 ± 76.42 117.9 ± 15.86

German Credit 464.4 ± 76.69 488.4 ± 120.6 462.9 ± 85.49 406.4 ± 63.33 294.4 ± 21.13

Krvskp 1717. ± 481.4 1714. ± 423.4 1757. ± 345.2 1364. ± 282.2 73.23 ± 15.83

Heart-statlog 112.0 ± 31.17 67.33 ± 17.26 115.3 ± 32.11 96.26 ± 28.45 59.50 ± 11.25

Diabetes 264.0 ± 49.27 313.9 ± 119.2 431.0 ± 115.4 338.9 ± 108.9 178.0 ± 10.94

Ionosphere 176.7 ± 62.76 277.3 ± 35.80 151.0 ± 50.13 128.3 ± 32.24 82.72 ± 12.64

Liver Disorders 100.3 ± 5.472 184.0 ± 116.6 220.0 ± 28.21 105.6 ± 16.21 99.60 ± 4.432

Echocardiogram 51.26 ± 13.85 50.76 ± 8.492 45.26 ± 11.18 49.90 ± 13.58 31.90 ± 6.213

Spectf 112.7 ± 40.97 122.9 ± 27.43 152.5 ± 37.51 104.4 ± 32.86 62.10 ± 11.18

Heart 73.00 ± 10.77 80.77 ± 32.86 92.24 ± 33.03 68.60 ± 7.612 54.43 ± 9.004

House 24.66 ± 11.89 20.92 ± 13.31 20.77 ± 11.98 19.26 ± 10.81 8.463 ± 4.025

Wdbc 103.1 ± 8.332 323.0 ± 273.2 123.5 ± 38.57 70.96 ± 12.59 27.93 ± 5.154

Isolet 73.00 ± 45.70 83.81 ± 47.96 9.612 ± 10.06 16.23 ± 15.03 3.462 ± 3.334

Optdigits 81.52 ± 39.44 51.66 ± 27.75 13.22 ± 15.80 28.90 ± 25.11 3.264 ± 4.362

Texture 34.96 ± 44.35 59.42 ± 47.51 23.37 ± 33.06 1.000 ± 3.472 0.000 ± 0.000

Vehicle 89.33 ± 21.33 194.2 ± 151.8 92.49 ± 65.53 74.56 ± 23.29 19.36 ± 3.743

Ethn 716.4 ± 116.8 1331. ± 394.2 964.4 ± 615.7 717.7 ± 142.2 82.33 ± 12.52

Sat 61.83 ± 95.10 72.00 ± 84.99 22.97 ± 72.02 59.36 ± 131.9 9.736 ± 5.952

CS4VM: W/T/L 10/9/1 14/5/1 13/5/2 -

10 House-votes 159.0 ± 58.43 175.5 ± 98.15 248.6 ± 67.70 127.7 ± 45.23 49.50 ± 13.52

Clean1 397.8 ± 120.5 454.3 ± 97.13 479.2 ± 101.1 340.3 ± 76.87 116.2 ± 26.84

Australian 526.2 ± 213.0 519.6 ± 278.7 478.4 ± 159.7 395.3 ± 128.7 158.0 ± 34.83

German Credit 777.2 ± 174.6 818.4 ± 314.5 767.6 ± 157.4 600.7 ± 119.3 389.3 ± 56.62

Krvskp 3167. ± 1006. 3096. ± 899.9 3193. ± 628.5 2264. ± 524.2 88.66 ± 23.40

Heart-statlog 207.9 ± 63.73 80.66 ± 33.70 214.3 ± 63.80 160.5 ± 55.56 76.20 ± 22.79

Diabetes 314.8 ± 120.5 433.9 ± 319.3 776.2 ± 210.0 489.4 ± 181.0 247.2 ± 12.74

Ionosphere 340.9 ± 130.5 552.0 ± 72.84 284.0 ± 93.76 219.2 ± 57.97 130.7 ± 30.01

Liver Disorders 101.2 ± 7.602 300.7 ± 276.4 363.6 ± 60.11 109.5 ± 23.97 99.60 ± 4.432

Echocardiogram 87.30 ± 28.80 60.76 ± 21.91 84.36 ± 25.79 83.96 ± 27.76 48.70 ± 12.06

Spectf 181.2 ± 92.48 154.4 ± 75.98 280.4 ± 72.72 130.0 ± 40.54 67.50 ± 13.84

Heart 79.00 ± 19.27 91.66 ± 46.03 147.6 ± 52.63 75.53 ± 6.982 71.53 ± 8.523

House 42.33 ± 24.38 32.46 ± 30.19 35.26 ± 17.56 29.20 ± 15.87 13.13 ± 8.062

Wdbc 103.1 ± 8.332 627.2 ± 530.2 208.0 ± 75.69 80.23 ± 12.58 34.93 ± 9.226

Isolet 137.8 ± 94.81 176.1 ± 96.36 20.83 ± 24.49 32.56 ± 21.77 6.302 ± 6.693

Optdigits 143.5 ± 77.71 88.03 ± 48.97 28.62 ± 40.95 44.73 ± 30.55 5.464 ± 8.763

Texture 66.96 ± 90.05 109.7 ± 99.07 28.53 ± 37.92 2.402 ± 6.093 0.000 ± 0.000

Vehicle 108.0 ± 39.93 347.0 ± 345.6 178.7 ± 122.1 88.10 ± 33.03 26.83 ± 5.722

Ethn 829.1 ± 327.2 2580. ± 828.5 1841. ± 1125. 925.0 ± 183.7 102.8 ± 16.59

Sat 91.16 ± 136.9 140.8 ± 173.7 20.06 ± 11.55 97.40 ± 205.2 17.86 ± 11.71

CS4VM: W/T/L 14/5/1 13/5/2 15/4/1 -

ory and Vista system.

Table 1 summarizes results of the first series of exper-
iments. It can be seen that CS4VM usually outperforms
the cost-sensitive extensions of Laplacian SVM and TSVM.
Specifically, Paired t-tests at 95% significance level show

that CS4VM achieves 16 wins, 1 tie and 3 losses when com-
pared to Laplacian SVM; and 17 wins, 3 ties and 0 loss when
compared to TSVM. Wilcoxon sign tests at 95% signifi-
cance level show that CS4VM is always significantly better
than all the other three approaches, while Laplacian SVM
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Table 3: Running time in seconds (n is the size of data).

(Data, n) Laplacian SVM TSVM CS4VM

(Heart,270) 0.13 ± 0.23 1.44 ± 0.04 0.09 ± 0.04

(Wdbc,569) 0.32 ± 0.34 4.69 ± 0.07 0.20 ± 0.03

(Australian,690) 0.26 ± 0.31 4.27 ± 0.09 0.12 ± 0.04

(Optdigits,1143) 0.49 ± 0.37 28.39 ± 0.08 0.18 ± 0.05

(Ethn,2630) 3.16 ± 0.76 46.42 ± 0.44 0.66 ± 0.04

(Sat,3041) 4.50 ± 1.05 63.73 ± 0.34 1.01 ± 0.06

(Krvskp,3196) 5.92 ± 1.11 11.76 ± 0.11 1.01 ± 0.05

and TSVM are not significantly better than the supervised
CS-SVM. Moreover, CS4VM often benefits from the use of
unlabeled data (on 14 out of the 20 data sets), while Lapla-
cian SVM yields performance improvements on only five
data sets and TSVM improves on only three data sets. Even
for the few data sets (such as Wdbc) on which the unlabeled
data do not help (possibly because the cluster assumption
and manifold assumption do not hold), CS4VM does not in-
crease the cost relative to the supervised CS-SVM by three
times, while the cost-sensitive versions of Laplacian SVM
and TSVM may increase the cost by more than 10 times.

Table 2 summarizes results of the second series of exper-
iments. Similar to results in the first series of experiments,
CS4VM usually outperforms the other approaches, and the
cost-sensitive extensions of Laplacian SVM and TSVM are
not effective in cost reduction. As the cost ratio increases,
the advantage of CS4VM becomes more prominent.

Table 3 compares the running time costs of CS4VM and
the cost-sensitive extensions of Laplacian SVM and TSVM.
Results are averaged over all the settings reported in Tables 1
and 2. Due to the page limit, only results on seven represen-
tative data sets are shown. As can be seen, CS4VM is more
efficient than the compared approaches.

Conclusion

In this paper, we propose CS4VM (Cost-Sensitive Semi-
Supervised Support Vector Machine) which considers un-
equal misclassification costs and the utilization of unlabeled
data simultaneously. This is a cost-sensitive extension of
the approach in (Li, Kwok, and Zhou 2009) where an effi-
cient algorithm for exploiting unlabeled data in support vec-
tor machine is developed based on the estimation of label
means of unlabeled data. Experiments on a broad range of
data sets show that CS4VM has encouraging performance,
in terms of both the cost reduction and computational effi-
ciency. The current work focuses on two-class problems.
Extending CS4VM to multi-class scenario and other types
of costs are interesting future issues.
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