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Abstract

Sparse modeling has been highly successful in many real-
world applications. While a lot of interests have been on con-
vex regularization, recent studies show that nonconvex regu-
larizers can outperform their convex counterparts in many sit-
uations. However, the resulting nonconvex optimization prob-
lems are often challenging, especially for composite regu-
larizers such as the nonconvex overlapping group lasso. In
this paper, by using a recent mathematical tool known as the
proximal average, we propose a novel proximal gradient de-
scent method for optimization with a wide class of noncon-
vex and composite regularizers. Instead of directly solving
the proximal step associated with a composite regularizer,
we average the solutions from the proximal problems of the
constituent regularizers. This simple strategy has guaranteed
convergence and low per-iteration complexity. Experimen-
tal results on a number of synthetic and real-world data sets
demonstrate the effectiveness and efficiency of the proposed
optimization algorithm, and also the improved classification
performance resulting from the nonconvex regularizers.

Introduction
Risk minimization is a fundamental tool in machine learn-
ing. It admits a tradeoff between the empirical loss and reg-
ularization as:

min
x∈Rd

f(x) ≡ `(x) + r(x), (1)

where ` is the loss, and r is a regularizer on parameter x. In
particular, sparse modeling, which uses a sparsity-inducing
regularizer for feature selection, has achieved great success
in many real-world applications. A well-known sparsity-
inducing regularizer is the `1-regularizer. As a surrogate of
the `0-norm, it induces a sparse solution simultaneously with
learning (Tibshirani 1996). When the features have some
intrinsic structures, more sophisticated structured-sparsity-
inducing regularizers (such as the group lasso regularizer
(Yuan and Lin 2006)) can be used. More examples can be
found in (Bach et al. 2011; Combettes and Pesquet 2011)
and reference therein. Existing sparsity-inducing regulariz-
ers are often convex. Together with a convex loss, this leads
to a convex optimization problem with globally optimal so-
lution.
Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Despite such extensive popularity, convexity does not
necessarily imply good prediction performance or feature
selection. Indeed, it has been shown that lasso may lead to
over-penalization and suboptimal feature selection (Zhang
2010b; Candes, Wakin, and Boyd 2008). To overcome this
problem, several nonconvex variants have been recently
proposed, such as the capped-`1 (Zhang 2010b), log-sum
penalty (LSP) (Candes, Wakin, and Boyd 2008), smoothly
clipped absolute deviation (SCAD) (Fan and Li 2001) and
minmax concave penalty (MCP) (Zhang 2010a). For more
sophisticated scenarios, recent research efforts demonstrate
that nonconvex regularizers, such as the nonconvex group
lasso (Xiang, Shen, and Ye 2013; Chartrand and Wohlberg
2013), matrix MCP norm (Wang, Liu, and Zhang 2013), and
grouping pursuit (Shen and Huang 2010), can outperform
their convex counterparts.

However, these nonconvex models often yield challeng-
ing optimization problems. As most of them can be rewrit-
ten as f1 − f2, a difference of two convex functions f1 and
f2 (Gong et al. 2013), a popular optimization solver is the
multi-stage convex programming, which recursively approx-
imates f2 while leaving f1 intact (Zhang 2010b; Zhang et
al. 2013; Xiang, Shen, and Ye 2013). However, it involves
nonlinear optimization in each iteration and thus expensive
in general. The sequential convex program (SCP) (Lu 2012)
further approximates the smooth part of f1 so that the up-
date can be more efficient for simple regularizers like the
capped-`1. However, it is often trapped in poor local opti-
mum (Gong et al. 2013). Recently, a general iterative shrink-
age and thresholding (GIST) framework is proposed (Gong
et al. 2013), which shows promising performance in a class
of nonconvex penalties. However, for composite regulariz-
ers such as the nonconvex variants of overlapping group
lasso (Zhao, Rocha, and Yu 2009), generalized lasso (Tib-
shirani, Hoefling, and Tibshirani 2011) and a combination
of `1- and trace norms (Richard, Savalle, and Vayatis 2012),
both SCP and GIST are inefficient as the underlying proxi-
mal steps for these composite regularizers are very difficult.

In this paper, we propose a simple algorithm called Gra-
dient Descent with Proximal Average of Nonconvex func-
tions (GD-PAN) and its line-search-based variant GD-PAN-
LS, which are suitable for a wide class of nonconvex and
composite regularization problems. We first extend a re-
cent optimization tool called “proximal average” (Yu 2013;
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Bauschke et al. 2008) to nonconvex functions. Instead of di-
rectly solving the proximal step associated with a noncon-
vex composite regularizer, we average the solutions from the
proximal problems of individual regularizers. This simple
strategy has convergence guarantee as existing approaches
like multi-stage convex programming and SCP, but its per-
iteration complexity is much lower.

Problem Formulation
In this paper, we consider the optimization problem in (1).
Moreover, the following assumptions are made on ` and r.

(A1) ` is differentiable but possibly nonconvex with
L`-Lipschitz continuous gradient, i.e., ‖∇`(x1) −
∇`(x2)‖ ≤ L`‖x1 − x2‖,∀x1,x2.

(A2) r is nonconvex, nonsmooth, and can be written as a
convex combination ofK functions {r1, r2, . . . , rK}:

r(x) =
K∑
k=1

wkrk(x), (2)

where {wk ≥ 0} are coefficients satisfying∑K
k=1 wk = 1, and

rk(x) = Ω1(ωk(x))− Ω2(ωk(x)) (3)

for some convex functions ωk,Ω1 and Ω2. Moreover,
each rk (for k = 1, . . . ,K) is assumed to be Lk-
Lipschitz continuous and “simple”, i.e., the associated
proximal step

min
x

1

2η
‖x− u‖2 + rk(x), (4)

where u is a constant vector in Rd and η > 0, can be
solved efficiently and exactly.

(A3) `(x) > −∞, rk(x) ≥ −∞,∀x, and f(x) = ∞ iff
‖x‖ =∞.

Assumption A1 has been popularly used in the litera-
ture (Nesterov 2007; Beck and Teboulle 2009), and is satis-
fied by many loss functions. Examples include (i) the square
loss `(x) = 1

2‖y − Sx‖2, where S = [s1, . . . , sn]T is
the data matrix and y = [y1, . . . , yn] is the correspond-
ing label vector; (ii) logistic loss `(x) =

∑n
i=1 log(1 +

exp(−yisTi x)); and (iii) smooth zero-one loss `(x) =∑n
i=1

1
1+exp(cyisTi x)

, where c > 0 is a constant (Shalev-
Shwartz, Shamir, and Sridharan 2010).

For assumption A2, equation (3) is a core technique in
the concave-convex procedure (Yuille and Rangarajan 2003)
that decomposes a nonconvex function (in this case, rk(x))
as a difference of convex functions (i.e., Ω1(ωk(x)) and
Ω2(ωk(x))). Some concrete examples will be shown in the
next section.

Assumption A3 naturally holds for regularized risk min-
imization problems as both the parameter x and samples are
often bounded.

Example Regularizers
The following introduces some examples of r in (2), which
are nonconvex extensions of popular (convex) structured-
sparsity-inducing regularizers. We will also show that the
proximal step in (4) can be efficiently computed.
• Capped overlapping group-lasso regularizer: This is

a hybrid of the (nonconvex) capped-`1 regularizer∑d
i=1 min{|xi|, θ} (where θ > 0 is a constant) (Zhang

2010b; Gong, Ye, and Zhang 2012) and the (convex) over-
lapping group-lasso regularizer

∑K
k=1 wk‖xgk‖ (where

K is the number of feature groups, wk is the weight on
group k, and xgk is the subvector in x for the subset of
indices gk ⊆ {1, . . . , d}) (Zhao, Rocha, and Yu 2009).
Define
ωk(x) = ‖xgk‖,Ω1(·) = | · |,Ω2(·) = (| · | − θ)+ , (5)

where (·)+ = max{·, 0}. Plugging into (2) and (3), it can
be shown that

rk(x) = min{‖xgk‖, θ}.
To solve the proximal step (4), we first assume that ‖xgk‖
is known. From (5), rk(x) is then also fixed, and the opti-
mal solution x∗ of (4) can be obtained as1

x∗j =

{
uj j /∈ gk
uj‖x∗

gk
‖

‖ugk
‖ j ∈ gk.

. (6)

In other words, x∗gk and ugk are in the same direction.
From (6), we have ‖x∗ − u‖2 = (‖x∗gk‖ − ‖ugk‖)

2. Let
y ≡ ‖x∗gk‖, (4) leads to the following univariate problem

min
y

1

2η
(y − ‖ugk‖)2 + min{|y|, θ}. (7)

Depending on the relative magnitudes of |y| and θ, this
can be split into two subproblems:

z1 = arg min
z:z≥θ

h1(z) ≡ 1

2η
(z − ‖ugk‖)2 + θ

= max{θ, ‖ugk‖},
and

z2 = arg min
z:0≤z≤θ

h2(z) ≡ 1

2η
(z − ‖ugk‖)2 + z

= min{θ,max{0, ‖ugk‖ − η}}.
From these, we obtain

‖x∗gk‖ =

{
z1 h1(z1) ≤ h2(z2)
z2 otherwise ,

and subsequently x∗ from (6). Moreover, it is easy to
check that rk is 1-Lipschitz continuous.
With different combinations of Ω1 and Ω2, one can ob-
tain other nonconvex regularizers such as the LSP, SCAD
and MCP (Gong et al. 2013). For example, for the log-
sum penalty (LSP)

∑d
i=1 log

(
1 + |xi|

θ

)
that will be used

in the experiments, Ω1(·) = | · | and Ω2(·) = | · | −
log
(

1 + |·|
θ

)
. The corresponding proximal problem can

also be similarly solved as for the capped-`1 regularizer.
1Clearly, when ‖ugk‖ = 0, we have x∗ = u.
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• Capped graph-guided fused lasso: This is a hybrid of
the (non-convex) capped-`1 regularizer and the (convex)
graph-guided fused lasso

∑K
k=1 wk|xk1 − xk2 | (where

K is the number of edges in a graph of features, and
k = {k1, k2} is a pair of vertices connected by an edge
with weight wk) (Tibshirani and Taylor 2011; Ouyang et
al. 2013). Define

ωk(x) = |xk1−xk2 |,Ω1(·) = | · |,Ω2(·) = (| · |−θ)+, (8)

for some θ > 0. It can be shown that

rk(x) = min{|xk1 − xk2 |, θ},
and is 1-Lipschitz continuous. This regularizer thus en-
courages coefficients of highly related features (which are
connected by a graph edge) to stay close. Using a com-
plete feature graph, Shen and Huang (2010) demonstrated
that this regularizer outperforms its convex counterpart.
In general, a sparse graph is preferred and can be induced
by sparse inverse covariance matrix (Banerjee, El Ghaoui,
and d’Aspremont 2008).
To solve the proximal step, we first assume that |xk1−xk2 |
is known and equals y. From (3) and (8), rk(x) is then
also fixed. Without loss of generality, assume that uk1 ≥
uk2 . The optimal solution x∗ of (4) can be obtained as

x∗j =


uj j /∈ {k1, k2}
uk1 − 1

2 (|uk1 − uk2 | − y) j = k1
uk2 + 1

2 (|uk1 − uk2 | − y) j = k2

. (9)

Problem (4) then leads to the problem

min
y

1

4η
(|uk1 − uk2 | − y)2 + min{|y|, θ},

which can be solved in a similar manner as (7). Finally,
one can recover x from (9).

Proposed Algorithm
Given a stepsize η > 0 and a function h, let Mη

h (u) ≡
minx

1
2η‖x− u‖2 + h(x) be the associated proximal prob-

lem at u, and P ηh (u) ≡ argMη
h (u) the corresponding so-

lution. The proximal gradient descent algorithm (Beck and
Teboulle 2009; Gong et al. 2013) solves problem (1) by iter-
atively updating the parameter estimate as:

u(t) ← x(t) − η∇`(x(t)),

x(t+1) ← P ηr (u(t)), (10)

where the superscript (t) denotes the iterate at iteration
t, and ∇`(x(t)) is the gradient of ` at x(t). The proximal
step (10) has been extensively studied for simple (convex
and nonconvex) regularizers (Combettes and Pesquet 2011;
Gong et al. 2013). However, when r is a combination of reg-
ularizers as in (2), efficient solutions are often not available.
Very recently, for convex rk’s (i.e., Ω2 = 0 in (3)), Yu (2013)
utilized the proximal average (Bauschke et al. 2008), and re-
placed (10) with

x(t+1) ←
K∑
k=1

wkP
η
rk

(u(t)). (11)

Obviously, this can be much easier than (10) when all rk’s
are simple. Interestingly, it is shown that this trick implicitly
uses another convex function to approximate r.

In this section, we propose a novel procedure called Gra-
dient Descent with Proximal Average of Non-convex func-
tions (GD-PAN) for the general case where rk’s are noncon-
vex. Inspired by (Yu 2013; Gong et al. 2013), it adopts the
same update rule (11), and the (constant) stepsize in (11) is
chosen as η = 1

L`+L for some L > 0. Our analysis is related
to that in (Yu 2013), though his proof relies heavily on tools
in convex analysis (in particular, the Moreau envelope) and
cannot be applied to our nonconvex setting.

Similar to the handling of convex rk’s in (Yu 2013), the
following Proposition shows that GD-PAN also implicitly
optimizes a surrogate of problem (1).

Proposition 1 There exists a function r̂ such that

Mη
r̂ (u) =

K∑
k=1

wkM
η
rk

(u), and P ηr̂ (u) =
K∑
k=1

wkP
η
rk

(u).

Specifically, for a given x, r̂(x) is the optimal value of the
following problem

min{xk}Kk=1

K∑
k=1

wk

[
1

2η
‖xk‖2 + rk(xk)

]
− ‖x‖

2

2η

s.t.
K∑
k=1

wkxk = x. (12)

Using this Proposition, (11) becomes: x(t+1) ← P ηr̂ (u(t)),
and the surrogate of problem (1) is

min
x

f̂(x) ≡ `(x) + r̂(x). (13)

The equality constraint (12) can be dropped by replacing xK
with x̃K ≡ 1

wK
(x−

∑K−1
k=1 wkxk). We can then rewrite (13)

as

min
x,{xk}K−1

k=1

`(x)+r̂1
(
x, {xk}K−1k=1

)︸ ︷︷ ︸
≡f1(x,{xk}K−1

k=1 )

− r̂2
(
x, {xk}K−1k=1

)︸ ︷︷ ︸
≡f2(x,{xk}K−1

k=1 )

, (14)

where

r̂1
(
x, {xk}K−1

k=1

)
=

K−1∑
k=1

wk

[
1

2η
‖xk‖2 + Ω1(ωk(xk))

]
+wK

[
1

2η
‖x̃K‖2 + Ω1 (ωK (x̃K))

]
,

and

r̂2
(
x, {xk}K−1k=1

)
=

K−1∑
k=1

wkΩ2(ωk(xk))

+wKΩ2(ωK (x̃K)) +
‖x‖2

2η
.

Next, we bound the difference between r and r̂. It shows
that r̂ can be made arbitrarily close to r with a suitable η.
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Proposition 2 0 ≤ r(x) − r̂(x) ≤ ηL2

2 , where L2 =∑K
k=1 wkL

2
rk

.

The following Proposition assures the monotone property of
GD-PAN when η < 1

L`
.

Proposition 3 With η < 1
L`

,

f̂(x(t+1)) ≤ f̂(x(t))− L
2
‖x(t+1) − x(t)‖2, (15)

where L = 1
η − L` > 0.

Finally, we show that GD-PAN, with a proper η, con-
verges to a critical point of f̂ .

Definition 1 (Critical point (Toland 1979)) Consider the
problem min g1(x) − g2(x), where g1, g2 are convex. x∗
is a critical point if 0 ∈ ∂g1(x∗) − ∂g2(x∗), where
∂g1(x∗), ∂g2(x∗) are the subdifferentials of g1 and g2 at
x∗, respectively.

Theorem 1 With η < 1
L`

, the sequence {x(t)} generated by
GD-PAN converges, i.e., limt→∞ ‖x(t+1) − x(t)‖ = 0. Let
x∗ = limt→∞ x(t). Then,

0 ∈ ∂xf1
(
x∗, {x∗k}K−1k=1

)
− ∂xf2

(
x∗, {x∗k}K−1k=1

)
,

where f1, f2 are as defined in (14), and {x∗k}
K−1
k=1 are the

corresponding solutions at x∗.

Together with Proposition 2, GD-PAN converges to a criti-
cal point of the surrogate problem (13), whose objective is
arbitrarily close to the original objective in (1) with a small
enough η.

Instead of using a constant stepsize, one can update x(t+1)

with line search. For given stepsizes ηmax > ηmin satisfying

L < 1

ηmin
− L`, (16)

define r̂ηmin(x) as for r̂(x) in Proposition 1 but with η =
ηmin. Instead of (13), consider the surrogate problem

min
x

f̂ηmin
(x) ≡ `(x) + r̂ηmin

(x), (17)

and the update step is changed accordingly from (11) to

x(t+1) ←
K∑
k=1

wkP
ηt
rk

(u(t)), (18)

with ηt = ηmax. We then check if (15) holds for f̂ηmin
. If it

does not, set ηt ← ηt/2, repeat the update and check again.
From (16) and Proposition 3, we see that ηt = ηmin satis-
fies (15) and thus {ηt} is bounded. Moreover, the following
convergence property can be guaranteed.

Theorem 2 The sequence {x(t)} generated by (18) con-
verges. Moreover, let x∗ = limt→∞ x(t). Then, 0 ∈
∂xf1

(
x∗, {x∗k}

K−1
k=1

)
− ∂xf2

(
x∗, {x∗k}

K−1
k=1

)
, where f1, f2

are as defined in (14) with η = ηmin, and {x∗k}
K−1
k=1 are the

corresponding solutions at x∗.

In other words, x∗ is a critical point of problem (17).
There are two potential advantages of using (18) over

(11): First, it may employ a more aggressive stepsize and
thus converges in fewer iterations. Second, an aggressive
stepsize may help to jump out of a poor local optimum, as is
observed in the experiments.

In general, f is easier to compute than f̂ηmin , and the dif-
ference between them is small (from Proposition 2 and the
fact that ηmin is very small). Thus, in the implementation,
we will use f instead of f̂ηmin

to check condition (15).

Discussion
The concave-convex procedure (CCCP) (Yuille and Ran-
garajan 2003) is a popular optimization tool for problems
whose objective can be expressed as a difference of convex
functions. For (1), CCCP first rewrites it as: minx g1(x) −
g2(x), where

g1(x) = `(x) +
K∑
k=1

wkΩ1(ωk(x)),

g2(x) =
K∑
k=1

wkΩ2(ωk(x)), (19)

and then iteratively updates the x solution as

x(t+1) ← arg min
x
g1(x)−∇g2(x(t))T (x− x(t)). (20)

However, though (20) is convex, it can still be challeng-
ing due to the loss function and/or the composite regular-
izer. Typically, this requires solvers such as the linearized
ADMM (Ouyang et al. 2013; Suzuki 2013), accelerated gra-
dient descent with proximal average (Yu 2013), or Nes-
terov’s smoothing technique (Nesterov 2005). All these con-
verge at the rate of O

(
1
t

)
, and empirically can take dozens

or even hundreds of iterations. Moreover, the per-iteration
complexity is also high. On the other hand, the most ex-
pensive step of GD-PAN is on computing P ηrk(u(t)) in (4),
which is often efficient as rk’s are simple.

Another related algorithm based on sequential convex
programming (SCP) is proposed by Lu (2012). It approxi-
mates `(x) by an upper bound, and employs the update rule:

x(t+1) ← arg min
x
∇`(x(t))T (x− x(t)) +

‖x− x(t)‖2

2ηt

+

K∑
k=1

wkΩ1(ωk(x))−∇g2(x(t))T (x− x(t)), (21)

where ηt is a constant, and g2 is as defined in (19). Though
(21) can be easily solved when K = 1 and Ω1(ωk(x)) is
simple, it is difficult for K > 1 in general. Existing works
(Barbero and Sra 2011; Mairal et al. 2010; Liu, Yuan, and
Ye 2010) often convert this proximal step to its dual form,
which is then solved with nonlinear optimization (such as
the network flow algorithm, (accelerated) gradient descent
or Newton’s method). However, this approach is difficult to
generalize as the dual is highly problem-dependent and also
requires many iterations.
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Recently, Gong et al. (2013) proposed the GIST algo-
rithm, which updates x as:

x(t+1)←arg min
x
∇`(x(t))T (x− x(t))+

‖x− x(t)‖2

2ηt
+r(x).

This is appropriate for regularizers whose proximal step is
simple, such as the capped-`1, LSP, SCAD and MCP, but not
for our composite regularizer (2) here.

Experiments
In this section, we demonstrate the efficiency of the
proposed algorithms on a number of structured-sparsity-
inducing models with nonconvex, composite regularizers.
The superiority of nonconvex regularizers over their convex
counterparts is also empirically shown on some real-world
data sets.

Nonconvex Overlapping Group Lasso
In this section, we apply the capped-`1 penalty (Zhang
2010b) and log-sum penalty (LSP) (Candes, Wakin, and
Boyd 2008) as regularizers to the overlapping group lasso
(Zhao, Rocha, and Yu 2009). This leads to the nonconvex
optimization problems:

min
x∈Rd

1

2n
‖y − Sx‖2 + λ

K∑
k=1

min{‖xgk‖, θ}, (22)

and

min
x∈Rd

1

2n
‖y − Sx‖2 + λ

K∑
k=1

log

(
1 +
‖xgk‖
θ

)
, (23)

where S ∈ Rn×d is the input sample matrix, and y ∈ Rn
is the output vector. Similar to (Yu 2013), the ground truth
parameter x∗ is constructed as x∗j = (−1)j exp(− j−1100 ), and
the overlapping groups are defined as

{1, . . . , 100}, {91, . . . , 190}, . . . , {d− 99, . . . , d}︸ ︷︷ ︸
K groups

,

where d = 90K + 10. Each element of the input sample
si ∈ Rd is generated i.i.d. from the normal distribution
N (0, 1), and yi = x∗T si + ϑi, where ϑi ∼ 10 × N (0, 1)
is the random noise. Moreover, for (22), we vary (K,n) in
{(5, 500), (10, 1000), (20, 2000), (30, 3000)}, and set λ =
K/10, θ = 0.1. For (23), we set K = 10, n = 1000, and
vary (λ, θ) in {(0.1, 0.1), (1, 10), (10, 10), (100, 100)}.

The following algorithms will be compared in the experi-
ments:

1. GD-PAN: The proposed method with update rule (11).
The individual P ηrk(u(t))’s can be computed efficiently
as discussed in the “Problem Formulation” section. The
stepsize η is set to 1

2L`
, where L` is the largest eigenvalue

of 1
nS

TS.
2. GD-PAN-LS: The proposed method using line search,

with update rule (18). We set ηmax = 100
L`

and ηmin =
0.01
L`

. As discussed before, we check condition (15) with f

(rather than f̂ ) and L = 10−5. While this deviates slightly
from the theoretical analysis, it works well in practice.

3. CCCP: Multi-stage convex programming (Zhang 2010b)
which is based on CCCP. From update rule (20), the resul-
tant problem is a standard overlapping group lasso, which
is solved by accelerated gradient descent with proximal
average (Yu 2013). We use 50 iterations and warm start.

4. SCP: Sequential convex programming (Lu 2012). It can
be shown that (21) is the proximal step of overlapping
group lasso, which does not admit a closed-form solution.
Consequently, we solve its dual by accelerated gradient
descent as in (Yuan, Liu, and Ye 2011). Moreover, we use
line search as in (Gong et al. 2013).

We do not compare with GIST, as it needs to solve a prox-
imal step associated with a composite, nonconvex regular-
izer. Again, to the best of our knowledge, this does not have
an efficient solver.

All the algorithms are implemented in MATLAB, except
for the proximal step in SCP which is based on the C++ code
in the SLEP package (Liu, Ji, and Ye 2009). Experiments
are performed on a PC with Intel i7-2600K CPU and 32GB
memory. To reduce statistical variability, all initializations
start from zero, and results are averaged over 10 repetitions.

Results are shown in Figures 1 and 2. Overall, CCCP is
the slowest as it has to solve a standard overlapping group
lasso problem in each iteration. SCP is sometimes as fast as
GD-PAN(-LS). However, it is often trapped in poor local op-
timum (Figures 1(c), 1(d), 2(c) and 2(d)), as has also been
observed in (Gong et al. 2013). As the core of SCP is imple-
mented in C++ while the other methods are in pure MAT-
LAB, SCP is likely to be slower than GD-PAN(-LS) if both
are implemented in the same language. Overall, GD-PAN-
LS is the best and converges well in all the experiments.
This is then followed by GD-PAN, which may sometimes
be trapped in poor local optimum (Figure 1(d)).

Nonconvex Graph-Guided Logistic Regression
In this section, we apply the capped-`1 penalty to graph-
guided logistic regression (Ouyang et al. 2013). The opti-
mization problem becomes

min
x∈Rd

`(x) +
λ1
2
‖x‖2 + λ2

∑
{k1,k2}∈E

min{|xk1 − xk2 |, θ},

where `(x) =
∑n
i=1 log(1 + exp(−yixT si)), and E con-

tains edges for the graph defined on the d variates of x.
Following (Ouyang et al. 2013), we construct this graph
by sparse inverse covariance selection on the training data
(Banerjee, El Ghaoui, and d’Aspremont 2008). A simi-
lar setting is considered in (Tibshirani and Taylor 2011;
Ouyang et al. 2013), though with a different loss.

Experiments are performed on the 20newsgroup data set2,
which contains 16,242 samples with 100 binary features
(words). There are 4 classes (computer, recreation, science,
and talks), and we cast this as 4 one-vs-rest binary classifi-
cation problems. We use 1% of the data for training, 80% for
testing, and the rest for validation. Note that our main pur-
pose here is to demonstrate the advantage of the nonconvex

2http://www.cs.nyu.edu/∼roweis/data.html
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(a) K = 5, n = 500. (b) K = 10, n = 1000. (c) K = 20, n = 2000. (d) K = 30, n = 3000.

Figure 1: Objective value versus time for the overlapping group lasso model with capped-`1 penalty.

(a) λ = 0.1, θ = 0.1. (b) λ = 1, θ = 10. (c) λ = 10, θ = 10. (d) λ = 100, θ = 100.

Figure 2: Objective value versus time for the overlapping group lasso model with log-sum penalty.

composite regularizer, rather than obtaining the best classi-
fication performance on this data set. Hence, we use logistic
regression and the (convex) graph-guided logistic regression
as baselines.

Results are shown in Table 1. As can be seen, the graph-
guided logistic regression model with nonconvex regular-
izer is always the best, which is then followed by its convex
counterpart, and finally regression.

Table 1: Classification accuracies (%) with graph-guided
logistic regression on the 20newsgroup subset. “gg-ncvx”
denotes the proposed graph-guided logistic regression with
nonconvex capped-`1 regularizer; “gg-cvx” is its convex
counterpart; and “lr” is logistic regression.

data set lr gg-cvx gg-ncvx
com. vs rest 81.1±1.26 83.2±2.00 85.01±1.74
rec. vs rest 87.22±1.88 87.50±1.33 88.59±0.89
sci. vs rest 71.45±5.05 79.91±2.49 84.06±1.08

talks vs rest 82.80±2.39 82.37±3.27 84.49±1.78

Table 2: Classification accuracies (%) with fused lasso on
the 20newsgroup subset. “fl-ncvx” denotes the proposed
fused lasso with nonconvex capped-`1 regularizer; “fl-cvx”
is its convex counterpart, and “lasso” is the standard lasso.

data set lasso fl-cvx fl-ncvx
com. vs rest 76.90±1.96 81.91±2.00 83.63±1.71
rec. vs rest 81.22±1.75 85.79±2.05 88.05±1.14
sci. vs rest 75.13±2.05 82.11±2.15 84.66±0.66

talks vs rest 78.25±1.58 82.69±1.27 84.08±1.10

Nonconvex Fused Lasso
Here, we apply the capped-`1 penalty to the fused lasso (Tib-
shirani et al. 2005). The optimization problem becomes

min
x∈Rd

1

2n
‖y − Sx‖2 +

λ1

2
‖x‖1+λ2

d−1∑
i=1

min{|xi − xi+1|, θ}.

As suggested in (Tibshirani et al. 2005), the features are
ordered via hierarchical clustering. We use the same data set
and setup as in the previous section. Results are shown in
Table 2. As can be seen, the nonconvex regularizer again
outperforms the rest.

Finally, we perform experiment on a breast cancer data
set. As in (Jacob, Obozinski, and Vert 2009), we only use
the 300 genes that are most correlated to the output, and the
positive samples are reproduced twice to reduce class im-
balance. 40% of the data are randomly chosen for training,
another 20% for validation, and the rest for testing. Again,
nonconvex fused lasso achieves the best classification accu-
racy of 75.69±3.96%. This is followed by the convex fused
lasso (70.99±5.0%) and finally lasso (64.06±4.86%). The
improvements are statistically significant according the pair-
wise t-test with p-value less than 0.05.

Conclusion
In this paper, we propose an efficient and simple algorithm
for the optimization with a wide class of nonconvex and
composite regularizers. Experimental results on a number of
nonconvex sparsity-inducing models demonstrate improved
accuracies. We hope this algorithm can serve as a useful tool
to further popularize the use of nonconvex regularization in
challenging machine learning problems.
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