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Abstract

In regularized risk minimization, the associated optimization
problem becomes particularly difficult when both the loss
and regularizer are nonsmooth. Existing approaches either
have slow or unclear convergence properties, are restricted
to limited problem subclasses, or require careful setting of
a smoothing parameter. In this paper, we propose a contin-
uation algorithm that is applicable to a large class of nons-
mooth regularized risk minimization problems, can be flexi-
bly used with a number of existing solvers for the underlying
smoothed subproblem, and with convergence results on the
whole algorithm rather than just one of its subproblems. In
particular, when accelerated solvers are used, the proposed
algorithm achieves the fastest known rates of O(1/T 2) on
strongly convex problems, and O(1/T ) on general convex
problems. Experiments on nonsmooth classification and re-
gression tasks demonstrate that the proposed algorithm out-
performs the state-of-the-art.

Introduction

In regularized risk minimization, one has to minimize the
sum of an empirical loss and a regularizer. When both are
smooth, it can be easily optimized by a variety of solvers
(Nesterov 2004). In particular, a popular choice for big data
applications is stochastic gradient descent (SGD), which is
easy to implement and highly scalable (Kushner and Yin
2003). For many nonsmooth regularizers (such as the �1 and
nuclear norm regularizers), the corresponding regularized
risks can still be efficiently minimized by the proximal gra-
dient algorithm and its accelerated variants (Nesterov 2013).
However, when the regularizer is smooth but the loss is non-
smooth (e.g., the hinge loss and absolute loss), or when both
the loss and regularizer are nonsmooth, proximal gradient
algorithms are not directly applicable.

On nonsmooth problems, SGD can still be used, by sim-
ply replacing the gradient with subgradient. However, the
information contained in the subgradient is much less in-
formative (Nemirovski and Yudin 1983), and convergence
is hindered. On general convex problems, SGD converges
at a rate of O(log T/

√
T ), where T is the number of it-

erations; whereas on strongly convex problems, the rate is
O(log T/T ). In contrast, its smooth counterparts converge

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

with the much faster O(1/
√
T ) and O(1/T ) rates, respec-

tively (Rakhlin, Shamir, and Sridharan 2012; Shamir and
Zhang 2013). Recently, Shamir and Zhang (2013) recovered
these rates by using a polynomial-decay averaging scheme
on the SGD iterates. However, a major drawback is that it
does not exploit properties of the regularizer. For example,
when used with a sparsity-inducing regularizer, its solution
obtained may not be sparse (Duchi and Singer 2009).

Nesterov (2005b) proposed to smooth the nonsmooth ob-
jective so that it can then be efficiently optimized. This
smoothing approach is now popularly used for nonsmooth
optimization. However, the optimal smoothness parame-
ter needs to be known in advance. This restriction is later
avoided by the (batch) excessive gap algorithm (Nesterov
2005a). In the stochastic setting, Ouyang and Gray (2012)
combined Nesterov’s smoothing with SGD. Though these
methods achieve the fastest known convergence rates in
the batch and stochastic settings respectively, they assume
a Lipschitz-smooth regularizer, and nonsmooth regularizers
(such as the sparsity-inducing regularizers) cannot be used.

Recently, based on the observation that the training set is
indeed finite, a number of fast stochastic algorithms are pro-
posed for both smooth and composite optimization problems
(Schmidt, Roux, and Bach 2013; Johnson and Zhang 2013;
Xiao and Zhang 2014; Mairal 2013; Defazio, Bach, and
Lacoste-Julien 2014). They are based on the idea of vari-
ance reduction, and attain comparable convergence rates as
their batch counterparts. However, they are not applicable
when both the loss and regularizer are nonsmooth. To alle-
viate this, Shalev-Shwartz and Zhang (2014) suggested run-
ning these algorithms on the smoothed approximation ob-
tained by Nesterov’s smoothing. However, as in (Nesterov
2005b), it requires a careful setting of the smoothness pa-
rameter. Over-smoothing deteriorates solution quality, while
under-smoothing slows down convergence.

The problem of setting the smoothness parameter can
be alleviated by continuation (Becker, Bobin, and Candès
2011). It solves a sequence of smoothed problems, in which
the smoothing parameter is gradually reduced from a large
value (and the corresponding smoothed problem is easy to
solve) to a small value (which leads to a solution closer to
that of the original nonsmooth problem). Moreover, solu-
tion of the intermediate problem is used to warm-start the
next smoothed problem. This approach is also similar to that
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of gradually changing the regularization parameter in (Hale,
Yin, and Zhang 2007; Wen et al. 2010; Mazumder, Hastie,
and Tibshirani 2010). Empirically, continuation converges
much faster than the use of a fixed smoothing parameter
(Becker, Bobin, and Candès 2011). However, the theoretical
convergence rate obtained in (Becker, Bobin, and Candès
2011) is only for one stage of the continuation algorithm
(i.e., on the smoothed problem with a particular smoothing
parameter), while the convergence properties for the whole
algorithm are not clear. Recently, Xiao and Zhang (2012)
obtained a linear convergence rate for their continuation al-
gorithm, though only for the special case of �1-regularized
least squares regression.

In this paper, we consider the general nonsmooth opti-
mization setting, in which both the loss and regularizer may
be nonsmooth. The proposed continuation algorithm can
be flexibly used with a variety of existing batch/stochastic
solvers in each stage. Theoretical analysis shows that the
proposed algorithm, with this wide class of solvers, achieves
the rate of O(1/T 2) on strongly convex problems, and
O(1/T ) on general convex problems. These are the fastest
known rates for nonsmooth optimization. Note that these
rates are for the whole algorithm, not just one of its stages as
in (Becker, Bobin, and Candès 2011). Experiments on nons-
mooth classification and regression models demonstrate that
the proposed algorithm outperforms the state-of-the-art.

Notation. For x, y ∈ R
d, ‖x‖2 =

√∑d
i=1 x

2
i is its �2-norm,

‖x‖1 =
∑d

i=1 |xi| is its �1-norm, and 〈x, y〉 is the dot prod-
uct between x, y. Moreover, ∂f denotes the subdifferential
of a nonsmooth function f , if f is differentiable, then ∇f
denotes its gradient. I is the identity matrix.

Related Work

Consider nonsmooth functions of the form

g(x) = ĝ(x) + max
u∈U

[〈Ax, u〉 −Q(u)], (1)

where ĝ is convex, continuously differentiable with L̂-
Lipschitz-continuous gradient, U ⊆ R

p is convex, A ∈
R

p×d, and Q is a continuous convex function. Nesterov
(2005b) proposed the following smooth approximation:

g̃γ(x) = ĝ(x) + max
u∈U

[〈Ax, u〉 −Q(u)− γω(u)] , (2)

where γ is a smoothness parameter, and ω is a nonnegative
ζ-strongly convex function.

For example, consider the hinge loss g(x) = max(0, 1 −
yiz

T
i x), where x is the linear model parameter, and (zi, yi)

is the ith training sample with yi ∈ {±1}. Using ω(u) =
1
2‖u‖22, g can be smoothed to (Ouyang and Gray 2012)

g̃γ(x) =

⎧⎨
⎩

0 yiz
T
i x ≥ 1

1− yiz
T
i x− γ

2 yiz
T
i x < 1− γ

1
2γ (1− yiz

T
i x)

2 otherwise
. (3)

Similarly, the �1 loss g(x) = |yi − zTi x| can be smoothed to

g̃γ(x) =

⎧⎨
⎩

yi − zTi x− γ
2 yi − zTi x ≥ γ

−(yi − zTi x)− γ
2 yi − zTi x < −γ

1
2γ (yi − zTi x)

2 otherwise
. (4)

Other examples in machine learning include popular regu-
larizers such as the �1, total variation (Becker, Bobin, and
Candès 2011), overlapping group lasso, and graph-guided
fused lasso (Chen et al. 2012).

Minimization of the smooth (and convex) g̃γ can be
performed efficiently using first-order methods, including
the so-called “optimal method” and its variants (Nesterov
2005b) that achieve the optimal convergence rate.

Nesterov Smoothing with Continuation

Consider the following nonsmooth minimization problem

min
x

P (x) ≡ f(x) + r(x), (5)

where both f and r are convex and nonsmooth. In machine
learning, x usually corresponds to the model parameter, f
is the loss, and r the regularizer. We assume that the loss
f on a set of n training samples can be decomposed as
f(x) = 1

n

∑n
i=1 fi(x), where fi is the loss value on the

ith sample. Moreover, each fi can be written as in (1), i.e.,
fi(x) = f̂i(x) + maxu∈U [〈Aix, u〉 −Q(u)]. One can then
apply Nesterov’s smoothing, and P (x) in (5) is smoothed to

P̃ (x) = f̃γ(x) + r(x), (6)

where f̃γ(x) =
1
n

∑n
i=1 f̃i(x) and

f̃i(x) = f̂i(x) + max
u∈U

[〈Aix, u〉 −Q(u)− γω(u)] . (7)

As for r, we assume that it is “simple”, namely that its prox-
imal operator, proxλr(·) ≡ argminx

1
2‖x− ·‖2 + λr(x) for

any λ > 0, can be easily computed (Parikh and Boyd 2014).

Strongly Convex Objectives

In this section, we assume that P is μ-strongly convex.
This strong convexity may come from f (e.g., �2-regularized
hinge loss) or r (e.g., elastic-net regularizer) or both.
Assumption 1. P is μ-strongly convex, i.e., there exists μ >
0 such that P (y) ≥ P (x) + ξT (y − x) + μ

2 ‖y − x‖22, ∀ξ ∈
∂P (x) and x, y ∈ R

d.
The proposed algorithm is based on continuation. It pro-

ceeds in stages, and a smoothed problem is solved in each
stage (Becker, Bobin, and Candès 2011). The smoothness
parameter is gradually reduced across stages, so that the
smoothed problem becomes closer and closer to the origi-
nal one. In each stage, an iterative solver M is used to solve
the smoothed problem. It returns an approximate solution,
which is then used to warm-start the next stage.

In stage s, let the smoothness parameter be γs, the
smoothed objective in (6) be P̃s(x), x∗s = argminx P̃s(x),
and x̃s be the solution returned by M. As M is warm-
started by x̃s−1, the error before running M is P̃s(x̃s−1) −
P̃s(x

∗
s). At the end of stage s, we assume that the error is re-

duced by a factor of ρs. The expectation E below is over the
stochastic choice of training samples for a stochastic solver.
For a deterministic solver, this expectation can be dropped.

Assumption 2. EP̃s(x̃s) − P̃s(x
∗
s) ≤ ρs(P̃s(x̃s−1) −

P̃s(x
∗
s)), where ρs ∈ (0, 1).
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Table 1: Examples of non-accelerated and accelerated solvers. Note that Prox-GD and APG are batch solvers while the others are
stochastic solvers. Here, θ and p are parameters related to the stepsize, and are fixed across stages. In particular, θ ∈ (0, 0.25) and
satisfies (1− 4θ)ρs − 4θ > 0, and p ∈ (0, 1) and satisfies ρs >

p(2+p)
1−p . Accelerated Prox-SVRG has Ts = O(

√
κs log(1/ρs))

only when a sufficiently large mini-batch is used.

Ts φ(ρs) a b c

non-accelerated

Prox-GD (Nesterov 2013) 4κs log(1/ρs) log(1/ρs) 4 0 0
Prox-SVRG (Xiao and Zhang 2014) θ

(1−4θ)ρs−4θ (κs + 4) 1
(1−4θ)ρs−4θ θ 4θ 0

SAGA (Defazio, Bach, and Lacoste-Julien 2014) 3n
ρs

(
3κs

n + 1
)

1
ρs

9 3n 0

MISO (Mairal 2013) nκs

ρs

1
ρs

n 0 0

accelerated APG (Schmidt, Roux, and Bach 2011)
√
κs log(2/ρs) log(2/ρs) 1 0 0

Accelerated Prox-SVRG (Nitanda 2014)
√
κs

√
2

(1−p) log
(

1
ρs
2+p− p

1−p

)
log

(
1

ρs
2+p− p

1−p

) √
2

(1−p) 0 0

We consider two types of solvers, which differ in the num-
ber of iterations (Ts) it takes to satisfy Assumption 2.

1. Non-accelerated solvers: Ts = aκsφ(ρs) + bφ(ρs) + c;

2. Accelerated solvers: Ts = a
√
κsφ(ρs) + bφ(ρs) + c.

Here, κs is the condition number of the objective, a, b, c ≥ 0
are constants not related to κs and φ(ρs). Moreover, φ sat-
isfies (i) φ(ρs) > 0 and non-increasing for ρs ∈ (0, 1); (ii)
φ(ρs) is not related to κs. Note that when κs is large (as is
typical when the smoothed problem approaches the original
problem), non-accelerated solvers need a larger Ts than ac-
celerated solvers. Table 1 shows some non-accelerated and
accelerated solvers popularly used in machine learning.

Algorithm 1 shows the proposed procedure, which will
be called CNS (Continuation for NonSmooth optimization).
It is similar to that in (Becker, Bobin, and Candès 2011),
which however does not have convergence results. More-
over, a small but important difference is that Algorithm 1
specifies how Ts should be updated across stages, and this is
essential for proving convergence. Note the different update
options for non-accelerated and accelerated solvers.

Algorithm 1 CNS algorithm for strongly convex problems.
1: Input: number of iterations T1 and smoothness param-

eter γ1 for stage 1, and shrinking parameter τ > 1.
2: Initialize: x̃0.
3: for s = 1, 2, . . . do

4: P̃s ← smooth P with smoothing parameter γs;
5: x̃s ← minimize P̃s(x) by running M for Ts itera-

tions;
6: γs+1 = γs/τ ;
7: Option I (non-accelerated solvers): Ts+1 = τTs;
8: Option II (accelerated solvers): Ts+1 =

√
τTs;

9: end for
10: Output: x̃s.

The following Lemma shows that when T1 is large
enough, error reduction can be guaranteed across all stages.

Lemma 1. For both non-accelerated and accelerated
solvers, if T1 is large enough such that ρ1 ≤ 1/τ2, then
ρs ≤ 1/τ2 for all s > 1.

If κ1 is known, a sufficiently large T1 can be obtained
from Table 1; otherwise, we can obtain T1 by ensur-
ing P̃1(x̃1) ≤ P̃1(x̃0)/τ

2, which then implies P̃1(x̃1) −
P̃1(x

∗
1) ≤ (P̃1(x̃0)− P̃1(x

∗
1))/τ

2.

Convergence when Non-Accelerated Solver is used Let
x∗ = argminx P (x), and Du = maxu∈U ω(u). The fol-
lowing Lemma shows that if x is an ε-accurate solution of
the P̃s (i.e., P̃s(x)− P̃s(x

∗
s) ≤ ε), it is also an (ε+ γsDu)-

accurate solution of the original objective P .

Lemma 2. P̃s(x) − P̃s(x
∗
s) − γsDu ≤ P (x) − P (x∗) ≤

P̃s(x)− P̃s(x
∗
s) + γsDu.

Since Lemma 2 holds for any x, it also holds in expecta-
tion, i.e., EP̃s(x̃s)− P̃s(x

∗
s)− γsDu ≤ EP (x̃s)−P (x∗) ≤

EP̃s(x̃s)− P̃s(x
∗
s) + γsDu.

Theorem 1. Assume that T1 in Algorithm 1 is large enough
so that ρ1 ≤ 1/τ2. When non-accelerated solvers are used,

EP (x̃S)−P (x∗)≤
(

S∏
s=1

ρs

)
(P (x̃0)−P (x∗))+O

(
γ1Du

T

)
, (8)

where S is the number of stages, T =
∑S

s=1 Ts, and∏S
s=1 ρs = O(1/T 2).
The first term on the RHS of (8) reflects the cumulative

decrease of the objective after S stages, while the second
term is due to smoothing. The condition ρ1 ≤ 1/τ2 is used
to obtain the O(1/T ) rate in the last term of (8). If we instead
require that ρ1 ≤ 1/τ , it can be shown that the rate will be
slowed to O(log T/T ); if ρ1 ≤ 1/

√
τ , it degrades further to

O(1/
√
T ). On the other hand, if ρ1 ≤ 1/τ c with c > 2, the

rate will not be improved.
Corollary 1. Together with Lemma 1, we have

EP (x̃S)− P (x∗)≤ P (x̃0)− P (x∗)
τ2S

+O

(
γ1Du

T

)
, (9)

where 1/τ2S = O(1/T 2).
Existing stochastic algorithms such as SGD, FOBOS and

RDA have a convergence rate of O(log T/T ) (Rakhlin,
Shamir, and Sridharan 2012; Duchi and Singer 2009; Xiao
2009), while here we have the faster O(1/T ) rate. Recent

2395



works in (Shamir and Zhang 2013; Ouyang and Gray 2012)
also achieve a O(1/T ) rate. However, Shamir and Zhang
(2013) use stochastic subgradient, and do not exploit prop-
erties of the regularizer (such as sparsity). This can lead to
inferior performance (Duchi and Singer 2009; Xiao 2009;
Mazumder, Hastie, and Tibshirani 2010). On the other hand,
(Ouyang and Gray 2012) is restricted to r ≡ 0 in (5).

Next, we compare with the case where continuation is not
used (i.e., γs is a constant). Equivalently, this corresponds to
setting τ = 1 in Algorithm 1.
Proposition 1. When continuation is not used, let ρ ∈ (0, 1)
be the error reduction factor at each stage, and γ > 0 be the
fixed smoothing parameter. When either an accelerated or
non-accelerated solver is used,

EP (x̃S)−P (x∗)≤ρS(P (x̃0)−P (x∗))+(1+ρS)γDu.(10)
Proposition 2. Assume that the two terms on the RHS of (9)
and (10) are equal to αε and (1 − α)ε, respectively, where
α > 0 and ε > 0. Let ρ1 = ρ = 1/τ2 in (8) and (10).
Assume that Algorithm 1 needs a total of T iterations to ob-
tain an ε-accurate solution, while its fixed-γs variant takes
T ′ iterations. Then,

T ≥ τS − 1

τ − 1

(
aκ1φ

(
1

τ2

)
+bφ

(
1

τ2

)
+c

)
,

T ′ ≥ S

(
a

(
τ2S + 1

τS+1 + τS
κ1+C

)
φ

(
1

τ2

)
+bφ

(
1

τ2

)
+c

)
,

where S ≥ log
(

αε
(P (x̃0)−P (x∗))

)
/ log

(
1
τ2

)
, C =(

1− τ2S+1
τS+1+τS

)
K
μ , and K is a constant,

T and T ′ are usually dominated by the aκ1φ(1/τ
2) term,

and T ′ is roughly S times that of T . This is also consistent
with empirical observations that continuation is much faster
than fixed smoothing (Becker, Bobin, and Candès 2011).

Convergence when Accelerated Solver is used

Theorem 2. Assume that T1 in Algorithm 1 is large enough
so that ρ1 ≤ 1/τ2. When accelerated solvers are used,

EP (x̃S)−P (x∗)≤
(

S∏
s=1

ρs

)
(P (x̃0)−P (x∗))+O

(
γ1Du

T 2

)
.

where T =
∑S

s=1 Ts, and
∏S

s=1 ρs = O(1/T 4).
As the ρs’s for non-accelerated and accelerated solvers

are different, the
∏S

s=1 ρs term here is different from that
in Theorem 1. Moreover, the last term is improved from
O(1/T ) in Theorem 1 to O(1/T 2) with accelerated solvers.
This is also better than the rates of existing stochastic al-
gorithms (O(log T/T ) in (Duchi and Singer 2009; Xiao
2009) and O(1/T ) in (Rakhlin, Shamir, and Sridharan 2012;
Shamir and Zhang 2013; Ouyang and Gray 2012)). Besides,
the black-box lower bound of O(1/T ) for strongly convex
problems (Agarwal et al. 2009) does not apply here, as we
have additional assumptions that the objective is of the form
in (1) and the number of training samples is finite. Though
the (batch) excessive gap algorithm (Nesterov 2005a) also
has a O(1/T 2) rate, it is limited to r ≡ 0 in (5).

As in Proposition 2, the following shows that if continua-
tion is not used, the algorithm is roughly S times slower.

Proposition 3. With the same assumptions in Proposition 2,

T ≥
√
τ
S − 1√
τ − 1

(
a
√
κ1φ

(
1

τ2

)
+bφ

(
1

τ2

)
+c

)
,

T ′≥S

⎛
⎝a

√
τ2S + 1

τS+1 + τS
κ1+Cφ

(
1

τ2

)
+bφ

(
1

τ2

)
+c

⎞
⎠ ,

where S,C are as defined in Proposition 2.

General Convex Objectives

When P is not strongly convex, we add to it a small �2 term
(with weight λs). We then gradually decrease γs and λs si-
multaneously to approach the original problem. The revised
procedure is shown in Algorithm 2.

Algorithm 2 CNS algorithm for general convex problems.
1: Input: number of iterations T1, smoothness parameter

γ1 and strong convexity parameter λ1 for stage 1, and
shrinking parameter τ > 1.

2: Initialize: x̃0.
3: for s = 1, 2, . . . do

4: P̃s ← smooth P with smoothing parameter γs;
5: x̃s ← minimize P̃s(x) +

λs

2 ‖x‖22 by running M for
Ts iterations;

6: γs+1 = γs/τ ; λs+1 = λs/τ ;
7: Option I (non-accelerated solvers): Ts+1 = τ2Ts;
8: Option II (accelerated solvers): Ts+1 = τTs;
9: end for

10: Output: x̃s.

We assume that there exists R > 0 such that ‖x∗‖2 ≤ R,
and ‖x∗s‖2 ≤ R for all s. Define Hs(x) = P̃s(x) +

λs

2 ‖x‖22,
and let x∗s = argminx Hs(x). The following assumption is
similar to that for strongly convex problems.
Assumption 3. EHs(x̃s) − Hs(x

∗
s) ≤ ρs(Hs(x̃s−1) −

Hs(x
∗
s)), where ρs ∈ (0, 1).

Theorem 3. Assume that T1 in Algorithm 2 is large enough
so that ρ1 ≤ 1/τ2. When non-accelerated solvers are used,

EP (x̃S)−P (x∗) ≤
(

S∏
s=1

ρs

)(
P (x̃0)−P (x∗)+

λ1

2
‖x̃0‖22

)

+O

(
λ1R2/2√

T

)
+O

(
γ1Du√

T

)
, (11)

where
∏S

s=1 ρs = O( 1
T ). For accelerated solvers,

EP (x̃S)−P (x∗) ≤
(

S∏
s=1

ρs

)(
P (x̃0)−P (x∗)+

λ1

2
‖x̃0‖22

)

+O

(
λ1R2/2

T

)
+O

(
γ1Du

T

)
, (12)

where
∏S

s=1 ρs = O( 1
T 2 ).

For non-accelerated solvers, the O(1/
√
T ) convergence

rate in (11) is only as good as that obtained in (Xiao 2009;
Duchi and Singer 2009; Ouyang and Gray 2012; Shamir and
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Zhang 2013). Hence, they will not be studied further in the
sequel. However, for accelerated solvers, the O(1/T ) con-
vergence rate in (12) is faster than the O(1/

√
T ) rate in

(Xiao 2009; Duchi and Singer 2009; Ouyang and Gray 2012;
Shamir and Zhang 2013) and the O( 1

T 2 + log T
T ) rate in

(Orabona, Argyriou, and Srebro 2012). The O(1/T ) con-
vergence rate is also obtained in (Nesterov 2005a; 2005b),
but again only for r ≡ 0 in (5).

When continuation is not used, the following results are
analogous to those obtained in the previous section.

Proposition 4. Let x̃0 = 0. When continuation is not used,
let ρ be the error reduction factor at each stage. When either
an accelerated or non-accelerated solver is used,

EP (x̃S)− P (x∗) ≤ ρS(P (x̃0)− P (x∗))

+(1 + ρS)γDu +
λ

2
R2. (13)

Proposition 5. Let x̃0 = 0. Suppose that the three terms
on the RHS of (13) are equal to αε, βε and ζε, respectively,
where α, β, ζ > 0 and α + β + ζ = 1. Let ρ1 = ρ = 1/τ2

in (12) and (13). Assume that Algorithm 2 (with accelerated
solver) needs a total of T iterations to obtain an ε-accurate
solution, while its fixed-γs variant takes T ′ iterations. Then,

T ≥ τS − 1

τ − 1

(
a
√
κ1φ

(
1

τ2

)
+ bφ

(
1

τ2

)
+ c

)
,

T ′ ≥ S

(
a

√
τ2S + 1

(τ + 1)2
κ1+Cφ

(
1

τ2

)
+ bφ

(
1

τ2

)
+ c

)
,

where S ≥ log
(

αε
(P (x̃0)−P (x∗))

)
/ log

(
1
τ2

)
, C =(

1− τ2S+1
(τ+1)2

)
+
(

τS

1+τ − τ2S+1
(τ+1)2

)
K
λ1

and K is a constant.

A summary of the convergence results is shown in Ta-
ble 2. As can be seen, the convergence rates of the proposed
CNS algorithm match the fastest known rates in nonsmooth
optimization, but CNS is less restrictive and can exploit the
composite structure of the optimization problem.

Table 2: Comparison with the fastest known convergence
rates for nonsmooth optimization problem (1). The fastest
known batch solver is restricted to r ≡ 0, while the fastest
known stochastic solver does not exploit properties of r.

strongly batch stochastic CNS (batch/stochastic)
convex solver solver non-accel. accel.

yes 1/T 2 1/T 1/T 1/T 2

no 1/T 1/
√
T 1/

√
T 1/T

Experiments

Because of the lack of space, we only report results on two
data sets (Table 3) from the LIBSVM archive: (i) the pop-
ularly used classification data set rcv1; and (ii) YearPre-
dictionMSD, the largest regression data in the LIBSVM

archive, and is a subset of the Million Song data set. We
use the hinge loss for classification, and �1 loss for regres-
sion. Both can be smoothed using Nesterov’s smoothing (to
(3) and (4), respectively). As for the regularizer, we use the

1. elastic-net regularizer r(x) = ν1‖x‖1+ ν2

2 ‖x‖22 (Zou and
Hastie 2005), and problem (5) is strongly convex; and

2. �1 regularizer r(x) = ν1‖x‖1, and (5) is (general) convex.
Here, ν1, ν2 are tuned by 5-fold cross-validation. Obviously,
all losses and regularizers are convex but nonsmooth. We use
mini-batch for all methods. The mini-batch size b is 50 for
rcv1, and 100 for YearPredictionMSD.

Table 3: Data sets used in the experiments.

#train #test #features
rcv1 20,242 677,399 47,236

YearPredictionMSD 463,715 51,630 90

The following stochastic algorithms are compared:
1. Forward-backward splitting (FOBOS) (Duchi and Singer

2009), a standard baseline for nonsmooth stochastic com-
posite optimization.

2. SGD with polynomial-decay averaging (Poly-SGD)
(Shamir and Zhang 2013), the state-of-art for nonsmooth
optimization.

3. Regularized dual averaging (RDA) (Xiao 2009): This is
another state-of-the-art for sparse learning problems.

4. The proposed CNS algorithm: We use proximal SVRG
(PSVRG) (Xiao and Zhang 2014) as the underlying
non-accelerated solver, and accelerated proximal SVRG
(ACC-PSVRG) (Nitanda 2014) as the accelerated solver.
The resultant procedures are denoted CNS-NA and CNS-
A, respectively. We set γ1 = 0.01, τ = 2, and T1 =
�n/b�. Empirically, this ensures ρ1 ≤ 1/τ2 (in Theo-
rems 1 and 3) on the two data sets.

Note that FOBOS, RDA and the proposed CNS can effec-
tively make use of the composite structure of the problem,
while Poly-SGD cannot. For each method, the stepsize is
tuned by running on a subset containing 20% training data
for a few epochs (for the proposed method, we tune η1). All
algorithms are implemented in Matlab.

Strongly Convex Objectives

Figure 1 shows convergence of the objective and testing
performance (classification error for rcv1 and �1-loss for
YearPredictionMSD). The trends are consistent with The-
orem 1. CNS-A is the fastest (with a of O(1/T 2)). This
is followed by CNS-NA and Poly-SGD, both with O(1/T )
rate (from Theorem 1 and (Shamir and Zhang 2013)). The
slowest are FOBOS and RDA, which converge at a rate of
O(log T/T ) (Duchi and Singer 2009; Xiao 2009).

Figure 2 compares with the case where continuation is
not used. Two fixed smoothness settings, γ = 10−2 and
γ = 10−3, are used. As can be seen, they are much slower
(Propositions 2 and 3). Moreover, a smaller γ leads to slower
convergence but better solution, while a larger γ leads to
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Figure 1: Objective (top) and testing performance (bottom)
vs CPU time (in seconds) on a strongly convex problem.

faster convergence but worse solution. This is also con-
sistent with Proposition 1, as using a fixed γ only allows
convergence to the optimal solution with a tolerance of
(1+ρS)γDu. Moreover, a smaller γ leads to a larger condi-
tion number, and convergence becomes slower.
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Figure 2: Effect of continuation (strongly convex problem).

General Convex Objectives

We set λ1 in Algorithm 2 to 10−5 for rcv1, and 10−7 for
YearPredictionMSD. As can be seen from Figure 3, the
trends are again consistent with Theorem 3. CNS-A is the
fastest (O(1/T ) convergence rate), while the others all have
a rate of O(1/

√
T ) (Duchi and Singer 2009; Xiao 2009;

Shamir and Zhang 2013). Also, RDA shows better perfor-
mance than FOBOS and Poly-SGD. Recall that Poly-SGD
outperforms FOBOS and RDA on strongly convex prob-
lems. However, on general convex problems, Poly-SGD is
the worst as its rate is only as good as others, and it does not
exploit the composite structure of the problem.

Figure 4 compares with the case where continuation is not
used. As in the previous section, CNS-NA and CNS-A show
faster convergence than its fixed-smoothing counterparts.
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Figure 3: Objective (top) and testing performance (bottom)
vs CPU time (in seconds) on a general convex problem.
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Figure 4: Effect of continuation (general convex problem).

Conclusion

In this paper, we proposed a continuation algorithm (CNS)
for regularized risk minimization problems, in which both
the loss and regularizer may be nonsmooth. In each of its
stages, the smoothed subproblem can be easily solved by
either existing accelerated or non-accelerated solvers. Theo-
retical analysis establishes convergence results on the whole
continuation algorithm, not just one of its stages. In particu-
lar, when accelerated solvers are used, the proposed CNS
algorithm achieves the rate of O(1/T 2) on strongly con-
vex problems, and O(1/T ) on general convex problems.
These are the fastest known rates for nonsmooth optimiza-
tion. However, CNS is advantageous in that it allows the
use of a regularizer (unlike the fastest batch algorithm) and
can exploit the composite structure of the optimization prob-
lem (unlike the fastest stochastic algorithm). Experiments on
nonsmooth classification and regression models demonstrate
that CNS outperforms the state-of-the-art.
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