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Abstract

Most tensor problems are NP-hard, and low-rank tensor
completion is much more difficult than low-rank matrix
completion. In this paper, we propose a time and space-
efficient low-rank tensor completion algorithm by using the
scaled latent nuclear norm for regularization and the Frank-
Wolfe (FW) algorithm for optimization. We show that all the
steps can be performed efficiently. In particular, FW’s linear
subproblem has a closed-form solution which can be obtained
from rank-one SVD. By utilizing sparsity of the observed
tensor, we only need to maintain sparse tensors and a set
of small basis matrices. Experimental results show that the
proposed algorithm is more accurate, much faster and more
scalable than the state-of-the-art.

Introduction

Tensors have been commonly used to describe the linear and
multilinear relationships in the data. For example, in remote
sensing applications, a hyperspectral image with multiple
bands can be naturally represented as a 3-dimensional ten-
sor. A multidimensional social network can also be modeled
as a 3-dimensional tensor, where the third mode may repre-
sent different type of relations. Higher-dimensional tensors
are also useful. For example, a multi-mode social network
(such as the DBLP network) with heterogeneous actors
(papers, authors, terms and venues) can be represented by
a 4-order tensor, and a relation can connect these four kinds
of entities (Tang, Wang, and Liu 2009).

Analogous to matrix completion (Candès and Recht
2009), tensor completion attempts to recover a low-
rank tensor that best approximates a partially observed data
tensor. For example, in recommender systems, users can rate
an item based on different criteria (e.g., story, visual effects,
actors). By treating these attributes as another dimension,
rating prediction becomes a tensor completion problem on a
3-dimensional tensor (Adomavicius, Manouselis, and Kwon
2011). Similarly, in hyperspectral imaging, as some bands
may be partially missing due to sensor problems, tensor
completion can be used to inpaint the incomplete image.
However, while matrix completion has attracted a lot of
interest, these matrix techniques cannot be readily adopted
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for tensors. Indeed, most tensor problems, even computing
the tensor rank, is NP-hard (Hillar and Lim 2013).

To impose a low-rank structure on tensors, CP and Tucker
decompositions assume that the tensor can be decomposed
into low-rank factor matrices (Kolda and Bader 2009).
This can then be learned by alternating least squares or
coordinate descent (Acar et al. 2010). Recently, Kressner,
Steinlechner, and Vandereycken (2014) proposed to utilize
the Riemannian structure on the manifold of tensors with
fixed multilinear rank, and then perform nonlinear conjugate
gradient descent. It can be speeded up by preconditioning
(Kasai and Mishra 2016). However, these models are non-
convex, can suffer from the problem of local minimum,
and has no theoretical guarantee on the convergence rate.
Moreover, its per-iteration cost depends on the product of
all the mode ranks, and so can be expensive.

Another popular approach is to unfold the tensor and
apply low-rank matrix factorization techniques on all the
resultant matricizations (Tomioka, Hayashi, and Kashima
2010; Xu et al. 2013). However, the low-rank constraint
is not directly enforced on the tensor and can be mislead-
ing (Cheng et al. 2016). To alleviate this problem, one
can use instead convex low-rank regularizers as in matrix
completion. While the matrix nuclear norm is the tightest
convex envelope of the matrix rank (Candès and Recht
2009), there are a number of norms that induce low-rank
tensors. Common examples include the tensor trace norm
(Chandrasekaran et al. 2012), overlapped nuclear norm (Liu
et al. 2013; Tomioka, Hayashi, and Kashima 2010), latent
nuclear norm (Tomioka, Hayashi, and Kashima 2010) and
scaled latent nuclear norm (Wimalawarne, Sugiyama, and
Tomioka 2014). By using these convex low-rank tensor reg-
ularizers, the resulting optimization problem can be solved
by standard convex optimizers. For example, the FaLRTC
algorithm (Liu et al. 2013) considers the overlapped nuclear
norm regularizer, and uses Nesterov’s smoothing (Nes-
terov 2005) and accelerated proximal algorithm (Beck and
Teboulle 2009) for optimization. Though convergence can
be guaranteed, these algorithms do not utilize sparsity of the
observed tensor. In each iteration, they have to operate on the
full-sized tensor. When the tensor is large, it may not even
be able to fit into memory. Moreover, low-rank tensor reg-
ularization are more complicated and difficult to optimize.
Typically, expensive multiple partial SVD operations on a
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large dense matrix are required.
On the other hand, the Frank-Wolfe (FW) algorithm has

a simple update rule and good convergence guarantees.
Recently, it has regained popularity in machine learning
(Jaggi 2013). In particular, it has been successfully used for
matrix completion with nuclear norm regularization (Zhang,
Schuurmans, and Yu 2012). However, its usefulness on
the more complicated tensor completion problem is less
clear. Yang, Feng, and Suykens (2015), Cheng et al. (2016)
recently applied the FW algorithm for tensor completion
with the tensor trace norm. However, the linear subproblem
in FW can only be solved approximately, and the resultant
convergence result is weak.

In this paper, we show that the scaled latent nuclear
norm, together with the FW algorithm, is a more appropriate
combination for low-rank tensor completion. The FW linear
subproblem then has a closed-form solution which can be
obtained efficiently from rank-one SVD. Moreover, both the
linear subproblem and line search only need to access the
observed entries, and the sparsity structure of the observed
tensor can be efficiently utilized. Besides, instead of ex-
plicitly handling the full tensors during iterations, we only
need to store the sparse tensors and a set of basis matrices
for recovering the solution tensor. The resultant algorithm
is efficient in terms of both space and time, and converges
to the optimal solution at a rate of O(1/T ), where T is
the number of iterations. Empirically, it is more accurate,
much faster and more scalable than state-of-the-art tensor
completion algorithms.
Notation: In the sequel, vectors are denoted by lowercase
boldface, matrices by uppercase boldface, and tensors
by boldface Euler. For a matrix A with singular values
σi’s, its nuclear norm is ‖A‖∗ =

∑
i σi. We follow the

tensor notations in (Kolda and Bader 2009). For a D-order
tensor X ∈ R

I1×I2×···×ID , its (i1, i2, . . . , iD)th entry is
xi1i2...iD . We use [D] to denote the range {1, 2, . . . , D},
and ID\d =

∏D
j=1,j �=d Ij . The mode-d matricizations X〈d〉

of X is a Id × ID\d matrix with (X〈d〉)idj = xi1i2···iD ,
and j = 1 +

∑D
l=1,l �=d(il − 1)

∏l−1
m=1,m �=d Im. Given

a matrix A, its mode-d tensorization A〈d〉 is a tensor
X with elements xi1i2···iD = aidj , and j is as defined
before. The inner product of two tensors X and Y is
〈X,Y〉 =

∑I1
i1=1 · · ·

∑ID
iD=1 xi1i2...iDyi1i2...iD , and the

Frobenius norm of X is ‖X‖F =
√〈X,X〉.

Related Work

Low-Rank Tensor Completion

Given a partially observed D-order tensor A, tensor com-
pletion attempts to recover a low-rank tensor X that best
approximates A on the observed entries. Let the positions
of the observed entries be indicated by Ω. Tensor completion
can be formulated as the following optimization problem:

min
X

F (X) ≡ 1

2
‖PΩ(X−A)‖2F : R(X) ≤ τ, (1)

where PΩ(X) is a tensor with [PΩ(X)]i1i2...iD = xi1i2...iD
if (i1, i2, . . . , iD) ∈ Ω, and 0 otherwise, R(X) is a low-rank

regularizer, and τ is a given parameter. In matrix completion,
the nuclear norm is often used as a convex surrogate for
the matrix rank. For tensors, several definitions of the norm
exist. The most common ones are the overlapped nuclear
norm (Liu et al. 2013) and the (scaled) latent nuclear norm
(Wimalawarne, Sugiyama, and Tomioka 2014; Tomioka,
Hayashi, and Kashima 2010).

Definition 1. For a D-order tensor X, the overlapped
nuclear norm is ‖X‖overlap =

∑D
d=1 ‖X〈d〉‖∗, and

the scaled latent nuclear norm is ‖X‖scaled =

minX1,...,XD :
∑D

d=1 Xd=X

∑D
d=1

1√
Id
‖(Xd)〈d〉‖∗. On

dropping the weight 1/
√
Id, this reduces to the latent

nuclear norm.

The overlapped nuclear norm regularizer penalizes nu-
clear norms on all modes. On the other hand, the latent
nuclear norm regularizer is more appropriate when the
target tensor can be decomposed into a set of tensors,
each of which is low-rank in a specific mode. When only
several modes are low-rank, decomposition with the latent
nuclear norm generalizes better than the overlapped nuclear
norm (Tomioka and Suzuki 2013). The scaled latent nu-
clear norm also performs better than its unscaled version
when the tensor dimensions or ranks are heterogeneous
(Wimalawarne, Sugiyama, and Tomioka 2014). A compar-
ison of their sample complexities can also be found in
(Wimalawarne, Sugiyama, and Tomioka 2014).

Frank-Wolfe Algorithm

Recently, the Frank-Wolfe (FW) algorithm has been popu-
larly used in machine learning (Jaggi 2013). It can be used
for solving problems of the form: minx∈D f(x), where f is
convex and continuously differentiable, and D is convex and
compact. In particular, Zhang, Schuurmans, and Yu (2012)
applied FW on matrix completion with the nuclear norm
regularizer. The linear subproblem (step 3 in Algorithm 1)
then has a closed-form solution which can be efficiently
obtained by rank-one SVD. Moreover, the FW algorithm
converges at a rate of O(1/T ), where T is the number of
iterations (Jaggi 2013).

Algorithm 1 Frank-Wolfe (FW) algorithm.

1: Initialize x0;
2: for t = 0, 1, . . . , T do
3: s(t+1) = mins∈D 〈s,∇f(x(t))〉;
4: γ(t+1) = argminγ∈[0,1] f(x(t) + γ(s(t+1) − x(t)));
5: x(t+1) = (1− γ(t+1))x(t) + γ(t+1)s(t+1);
6: end for

output xT .

FW Algorithm for Tensor Completion

While the FW algorithm has been successfully used for
matrix completion, it becomes more complicated for
tensor completion. First, there are several tensor norms
which are more sophisticated. Second, previous attempts
cannot solve the FW linear subproblem and line search
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efficiently. For example, Yang, Feng, and Suykens (2015),
Cheng et al. (2016) recently applied the FW algorithm
to tensor learning with the tensor trace norm (TTN)
regularizer, and the corresponding FW linear subproblem
can only be solved approximately. Instead of having
S(t+1) = argminS:‖S‖TTN≤1〈S,∇F (X(t))〉, where ‖ · ‖TTN
denotes the TTN regularizer, they can only guarantee that
〈S(t+1),∇F (X(t))〉 ≤ αminS:‖S‖TTN≤1〈S,∇F (X(t))〉
where α =

∏D−2
d=1 I

−1/2
d ∈ [0, 1].

In the following, we will show that by using the scaled
latent nuclear norm for low-rank tensor regularization, all
the steps in Algorithm 1 can be performed efficiently.

Efficient FW Linear Subproblem

In the linear subproblem, S(t+1) = argminS:‖S‖scaled≤τ

〈S,∇F (X(t))〉. The following Proposition shows that it can
be obtained from rank-one SVDs of the d matricizations
of −∇F (X(t)). Note that ∇F (X(t)) = PΩ(X

(t) − A) is
sparse, and rank-one SVD can be computed efficiently by
the power method (Halko, Martinsson, and Tropp 2011).

Proposition 1. S(t+1) = (τ
√
Id∗ud∗v
d∗)〈d

∗〉, where d∗ =

argmaxd∈[D]

√
Idσmax(−∇F (X(t))〈d〉), ud∗ ,vd∗ are the

leading left and right singular vectors of −∇F (X(t))〈d∗〉,
and σmax(·) is the largest singular value.

Many related low-rank tensor learning algorithms (Liu
et al. 2013; Tomioka, Hayashi, and Kashima 2010) require
performing rank-k SVD, where k is lower-bounded by the
maximum mode rank of the solution. Typically, performing
rank-k SVD is k times slower than rank-one SVD. In our
experiments, k is at least 20.

Efficient Line Search

With F in (1), the line search (step 4 of Algorithm 1) has the
following simple closed-form solution:

γ(t+1) =arg min
γ∈[0,1]

‖PΩ(X
(t) + γ(S(t+1) −X(t))−A)‖2F

=

⎧⎨
⎩
0 − b

2a ∈ (−∞, 0)

− b
2a − b

2a ∈ [0, 1]

1 − b
2a ∈ (1,∞)

, (2)

where a = ‖PΩ(X
(t) − S(t+1))‖2F , and b =

2〈PΩ(X
(t) −A),PΩ(S

(t+1) −X(t))〉. Both a and b
can be computed in O(‖Ω‖1) time.

Efficient Use of Sparse Structure

Note that the linear subproblem and line search only need to
access the observed entries of X(t) and S(t+1). Hence, in-
stead of storing the whole tensors during iterations, we only
calculate and store their entries indexed by Ω (sometimes
explicitly denoted as X(t)|Ω and S(t+1)|Ω). For S(t+1)|Ω in
Proposition 1, this reduces the time complexity of comput-
ing (τ

√
Id∗ud∗v
d∗)〈d

∗〉 from O(
∏D

d=1 Id) to O(‖Ω‖1).
However, S(t+1), and consequently the new iterate

X(t+1) = (1− γ(t+1))X(t) + γ(t+1)S(t+1) (3)

in step 5 of Algorithm 1, may have nonzero entries outside
Ω. Hence, we also maintain X(t) as

∑D
d=1(UdΣdVd


)〈d〉.
These matrices can be efficiently updated as follows. First,
all Ud,Σd,Vd’s are initialized to empty matrices. At the tth
iteration, for d �= d∗ in Proposition 1,

Σd ← (1− γ(t+1))Σd, Ud ← Ud, Vd ← Vd; (4)

and

Σd∗ ←
[
(1− γ(t+1))Σd∗ 0

0 γ(t+1)τ
√
Id∗

]
,

Ud∗ ← [Ud∗ ud∗ ] , Vd∗ ← [Vd∗ vd∗ ] .

(5)

It is easy to see that this satisfies (3). Moreover, X(t) needs
to be explicitly computed only when the algorithm ends or
after basis reduction (which will be discussed in the sequel).

Related low-rank tensor learning methods (Liu et al.
2013; Xu et al. 2013; Tomioka, Hayashi, and Kashima
2010) need to store the whole tensor, and so require at least
O(

∏D
d=1 Id) time and space. When the tensor is very large,

it cannot even be fit into memory. In contrast, we only store
the sparse tensors S(t+1)|Ω,X(t)|Ω and the basis matrices
{Ud ∈ R

Id×kd ,Σd ∈ R
kd×kd ,Vd ∈ R

ID\d×kd}d∈[D].
It may appear that the difference between

∏D
d=1 Id and

ID\d (=
∏D

j=1,j �=d Ij) is small. However, from Propo-
sition 1, modes with small Id’s are unlikely to be se-
lected as d∗. Hence, most of the non-empty matrices in
{Ud,Σd,Vd}d∈[D] are for d’s with large Id’s.

Recall that Yang, Feng, and Suykens (2015) used the
tensor trace norm instead. Not only is the FW linear sub-
problem hard to solve, also sparsity can no longer be
utilized. Specifically, their subroutine 2 extracts singular
vectors from the input (matricized) tensor, folds it to a
matrix, and then repeats. Even when the tensor is sparse,
its singular vectors are typically dense, and subsequent steps
then involve dense matrices.

Reducing the Size of the Basis

Let kd be the number of basis vectors in Ud (or Vd). While
storing {Ud,Σd,Vd}d∈[D] avoids explicit handling of the
full tensor X(t), one of the kd’s is increased by one in each
iteration. Thus, the matrices {Ud,Σd,Vd}d∈[D] gradually
increase in size and may cause memory problems (especially
for Vd’s). In this section, we propose to “compress” these
matrices when

∑D
d=1 kd exceeds a given threshold K.

We consider the modes one at a time. For a particular
d, let QURU (resp. QVRV) be the QR decomposition
of Ud (resp. Vd). Thus, UdΣdV



d = QUJ0Q



V, where

J0 = RUΣdR


V . The objective in (1) can be rewritten

as F (X) = 1
2‖PΩ((QUJ0Q



V)〈d〉 + Bd)‖2F , where Bd

= PΩ(
∑

i�=d(UiΣiV


i )
〈i〉 − A). Recall that the (matrix)

nuclear norm is orthogonally invariant (Parikh and Boyd
2014), i.e., ‖QUJ0Q



V‖∗ = ‖J0‖∗. We replace QUJ0Q



V

by QUJQ
V and minimize F (X) such that ‖QUJQ
V‖∗ ≤
‖QUJ0Q



V‖∗, i.e., minJ ‖PΩ((QUJQ
V)〈d〉 + Bd)‖2F :

‖J‖∗ ≤ ‖J0‖∗. This can be solved by projected gradient
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descent1, in which projection onto the nuclear-norm ball has
closed-form solution (Parikh and Boyd 2014). Algorithm 2
shows the whole basis reduction procedure.

Algorithm 2 Reducing the size of {Ud,Σd,Vd}d∈[D].

input {Ud,Σd,Vd}d∈[D];
1: for d = 1, 2, . . . , D do
2: [QU,RU] = QR(Ud), [QV,RV ] = QR(Vd);
3: J0 = RUΣdR



V ;

4: J = argminJ:‖J‖∗≤‖J0‖∗ ‖PΩ((QUJQ
V)〈d〉 +

Bd)‖2F ;
5: UJΣJV



J ← SVD(J);

6: Ud = QUUJ, Vd = QVVJ, Σd = ΣJ;
7: kd = number of nonzero elements in ΣJ;
8: end for

output {Ud,Σd,Vd, kd}d∈[D].

Obviously, the size of the processed basis will not be
increased after basis reduction, and in practice it can be
much smaller. Moreover, the objective is reduced as shown
by the following Proposition.

Proposition 2. F (
∑D

d=1(U
′
dΣ

′
dV

′

d )
〈d〉) ≤

F (
∑D

d=1(UdΣdV


d )
〈d〉), where U′d,Σ

′
d,V

′
d are the

outputs from Algorithm 2.

The Complete Procedure

The whole procedure is shown in Algorithm 3. It is known
that FW converges at a rate of O(1/T ) (Jaggi 2013).
However, because of the extra basis reduction step, the
standard convergence results cannot be directly used.

Algorithm 3 Fast FW algorithm for tensor completion
(FFWTensor).

1: Initialize X(0) = 0, k1 = · · · = kD = 0,
{Ud,Σd,Vd}d∈[D] = [];

2: for t = 0, 1, . . . , T do

3: d∗ = argmaxd∈[D]

√
Idσmax(−∇F (X(t))〈d〉);

4: [ud∗ ,vd∗ ] = leading left and right singular vectors of
−∇F (X(t))〈d∗〉;

5: S(t+1)|Ω = ((τ
√
Id∗ud∗v
d∗)〈d

∗〉)|Ω;
6: update γ(t+1) by (2);
7: X(t+1)|Ω = (1− γ(t+1))X(t)|Ω + γ(t+1)S(t+1)|Ω;
8: update {Ud,Σd,Vd}d∈[D] using (4), (5);
9: kd∗ ← kd∗ + 1;

10: if
∑D

d=1 kd ≥ K then // basis reduction
11: shrink {Ud,Σd,Vd, kd}d∈[D] by Algorithm 2;

12: X(t+1)|Ω =
(∑D

d=1(UdΣdV


d )
〈d〉

)
|Ω;

13: end if
14: end for
output X =

∑D
d=1(UdΣdV



d )
〈d〉.

1In the experiments, we only perform one descent iteration.

Let X∗ be the optimal solution of (1), and CF be the
“curvature” of F (Jaggi 2013). The following Theorem
shows that we still have the same O(1/T ) rate. Moreover,
it can be shown that CF ≤ 4τ2 here, which is independent
of the tensor dimensionality.

Theorem 1. The sequence {X(t)} generated by Algorithm 3
satisfies F (X(t))− F (X∗) ≤ 2CF /(t+ 2).

Recall that X(t) =
∑D

d=1(U
(t)
d Σ

(t)
d V

(t)
d



)〈d〉 (here, we

have explicitly included the iteration index t). The following

Proposition shows that (U
(t)
d Σ

(t)
d V

(t)
d



)〈d〉’s converge to

the latent factors of X(t) (as defined in the scaled latent
nuclear norm).

Proposition 3. Assume that limt→∞ ‖X(t)‖scaled = τ .

When t → ∞, {(U(t)
d Σ

(t)
d V

(t)
d



)〈d〉}d∈[D] is a solution of

argminX1,...,XD:
∑D

d=1 Xd=X(t)

∑D
d=1

1√
Id
‖(Xd)〈d〉‖∗.

In contrast, with the TTN regularizer, the FW linear
subproblem in (Yang, Feng, and Suykens 2015; Cheng et al.
2016) can only be solved approximately. Consequently, it
has the weaker convergence result F (X(t))− F (X∗)

α ≤ 4C
t+1 ,

where C is some constant (Cheng et al. 2016). For a large
tensor, α =

∏D−2
d=1 I

−1/2
d is close to zero, and this bound

can be very loose. Yang, Feng, and Suykens (2015) solves
the same FW linear subproblem as (Cheng et al. 2016),
but uses a different approximate solver. Unfortunately, its
convergence guarantee is even weaker.

Post-Processing

In matrix completion, the (matrix) nuclear norm may over-
penalize the singular values of the solution (Mazumder,
Hastie, and Tibshirani 2010). For tensor completion, a simi-
lar over-penalization may occur.

To alleviate this problem, we undo some of the
shrinkage by adding a post-processing step as in
(Mazumder, Hastie, and Tibshirani 2010), which re-
fits the basis without the nuclear norm constraint. Recall
that X(T ) =

∑D
d=1(UdΣdV



d )
〈d〉. Let udl (resp. vdl)

be the lth column of Ud (resp. Vd), and σdl the lth
diagonal element of Σd. X(T ) can be rewritten as
X(T ) =

∑
dl σdlWdl, where Wdl = (udlv



dl)
〈d〉. We then

minimize 1
2‖PΩ(

∑
dl σdlWdl − A)‖2F w.r.t. σ = {σdl},

which leads to a simple least-squares problem.

Experiments

Color Image Inpainting

In this section, we perform experiments on a 2901 × 3000
RGB image (Figure 1(a)). 5% of the 2901 × 3000 × 3
data tensor entries are randomly sampled as the training set,
another 20% as validation set (for parameter tuning), and the
rest as testing set. The experiment is repeated 10 times.

The proposed FFWTensor is compared with the following
state-of-the-art: (i) GeomCG2 (Kressner, Steinlechner, and

2Downloaded from http://anchp.epfl.ch/
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(a) Image used. (b) Testing RMSE vs CPU time.

Figure 1: Experiment on the color image.

Vandereycken 2014) based on Riemannian optimization on
the manifold of fixed-rank tensors; (ii) Rprecon3 (Kasai
and Mishra 2016), which exploits preconditioning on the
Riemannian manifold; (iii) Alternating direction methods of
multipliers (ADMM)4 applied on the dual form of latent
scaled norm (Tomioka, Hayashi, and Kashima 2010); (iv)
FalRTC5 (Liu et al. 2013), which performs accelerated
proximal gradient descent with the smoothed overlapped
nuclear norm6; (v) TMac7 (Xu et al. 2013), which performs
simultaneous low-rank matrix factorizations to all mode
matricizations; (vi) TTN (Cheng et al. 2016), which uses FW
with the tensor nuclear norm; (vii) ROne (Yang, Feng, and
Suykens 2015), which is similar to TTN but uses a different
procedure for the FW linear subproblem. All the codes are
in Matlab. Experiments are performed on a PC with Intel
i7 CPU and 16GB RAM. Since the algorithms are based
on different models, we use the same stopping criterion that
allows each to run for 1000 seconds. The testing root-mean-
squared error (RMSE) is used for performance evaluation.

Table 1 shows the testing RMSE obtained, and Fig-
ure 1(b) shows the convergence. The proposed FFWTensor
has the best RMSE and fastest convergence (about 20 times
faster). Table 2 shows the numbers of basis vectors (kd) in
{Ud}d∈[D]. As discussed earlier, mode 3 (with I3 = 3)
is never selected into the basis, and so we do not need to
store large basis matrices of size 2901 × 3000. Table 2 also
shows the sizes of the data tensor X, the sparsified data
tensor X|Ω, and the basis matrices (Ud’s, Σd’s and Vd’s).
As can be seen, FFWTensor is much more space-efficient
than processing the whole data tensor directly.

3Downloaded from https://bamdevmishra.com/codes/
tensorcompletion/

4Downloaded from http://ttic.uchicago.edu/∼ryotat/softwares/
tensor/

5Downloaded from http://www.cs.rochester.edu/u/jliu/code/
TensorCompletion.zip

6As suggested in (Liu et al. 2013), we use the scaled overlapped
version

∑D
d=1 ‖X〈d〉‖∗/

√
Id.

7Downloaded from http://www.math.ucla.edu/∼wotaoyin/
papers/codes/TMac.zip

Table 1: Testing RMSE on the color image. ROne runs out
of memory and is thus not reported. Result that is better than
the others, according to the paired t-test at 95% significance
level, is highlighted.

FFWTensor 0.186± 0.001
GeomCG 0.276± 0.001
Rprecon 0.219± 0.002
ADMM 0.981± 0.001
FalRTC 0.757± 0.004
TMac 0.218± 0.002
TTN 0.297± 0.002

Multi-Relational Link Prediction

Two data sets are used. The first one is ClimateNet8, which
is constructed from the 5◦ × 5◦ latitude-longitude gridded
climate data set. There are 1773 nodes (physical locations),
and 7 types of node similarities (e.g., temperature, sea-level
pressure). As in (Davis, Lichtenwalter, and Chawla 2011),
we binarize the similarities so that 27.3% of the node pairs
are linked. 5% of the entries in the 1773 × 1773 × 7 data
tensor are sampled as observed, another 20% for validation
and the rest for testing. The second one is YouTube data set9
(Tang, Wang, and Liu 2009), with 15, 088 users and 5 types
of Boolean interactions. From the 15088 × 15088 × 5 data
tensor, we randomly sample 0.8% of the entries as observed,
another 0.1% for validation and 0.15% for testing. Many
baselines (ADMM, FaLRTC, TMac, TTN) need to maintain
the whole target tensor, and run out of memory on this large
data set.10 Hence, we also experiment with a subset having
only the 1, 509 users with the most number of links. From
the 1509×1509×5 data tensor, we sample 5% of the entries
as observed, another 20% for validation, and the rest for
testing. The experiment is repeated 10 times.

For performance evaluation, we randomly select 106 pairs
to form S = {((i, j, k), (p, q, r))}, where tensor entry
(i, j, k) is a positive link, and (p, q, r) is negative. The
AUC (area under the ROC curve) is then estimated as
1
|S|

∑
((i,j,k),(p,q,r))∈S [I(Xijk>Xpqr) + 0.5I(Xijk=Xpqr)]

(Lü and Zhou 2011), where I(·) is the indicator function.
Table 3 shows the testing AUCs obtained, and Figure 2

shows the convergence. The proposed FFWTensor achieves
the best AUC, is much faster and more scalable. Moreover,
as in the image inpainting experiment, mode 3 (with a
small dimensionality) is never selected into the basis, and
FFWTensor is thus much more space-efficient (Table 2).

Figure 3 shows the basis size obtained by FFWTensor.
As can be seen, it can be effectively controlled by basis
reduction (which is triggered when the size exceeds K =
100). The basis size after each run of basis reduction remains
relatively stable, which agrees with the fact that the model
has almost converged (Figure 2).

8http://www.nd.edu/dial/software/climateNet.zip
9http://leitang.net/data/youtube-data.tar.gz

10As shown in Table 2, storing the whole data tensor alone
already takes 4.391GB memory.
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Table 2: Values of basis vectors (kd) in the various modes, and sizes of some relevant tensors/matrices.

number of basis vectors (kd) storage
mode 1 mode 2 mode 3 X X|Ω Ud’s Σd’s Vd’s

color image 39 42 0 100M 14M 1M 0.39K 3M
ClimateNet 48 47 0 84M 12M 0.65M 0.39K 5M

YouTube (subset) 34 36 0 43M 6.5M 0.57M 0.39K 3M
YouTube (full set) 43 40 0 4.391G 102M 5.7M 0.39K 29M

(a) ClimateNet. (b) YouTube (subset). (c) YouTube (full set).

Figure 2: Testing AUC vs CPU time on the link prediction data sets.

Table 3: Testing AUCs on link prediction (all numbers have
standard deviation of 0.001). Note that only FFWTensor and
GeomCG can be run on the full YouTube set.

Climate YouTube (subset) YouTube (full)
FFWTensor 0.877 0.950 0.970
GeomCG 0.873 0.949 0.966
Rprecon 0.863 0.944 0.964
ADMM 0.751 0.867 -
FalRTC 0.842 0.950 -
TMac 0.871 0.948 -
TTN 0.854 0.939 -
ROne 0.857 0.942 -

(a) ClimateNet. (b) YouTube
(subset).

(c) YouTube (full).

Figure 3: Basis size obtained by FFWTensor.

Synthetic Data

Finally, we experiment with FFWTensor and its variants
on a synthetic data set. The data are generated as A =
G ×1 A1 ×2 A2 ×3 A3, where G ∈ R

k1×k2×k3 ,A1 ∈
R

3000×k1 ,A2 ∈ R
3000×k2 ,A3 ∈ R

3000×k3 , and k1 =
5, k2 = 50, k3 = 2000. Entries of G,A1,A2,A3 are
generated from the standard normal distribution. A is then
normalized to zero mean and unit variance, and Gaussian
noise N (0, 0.05) is added. 0.6% of the entries in A are
randomly sampled as observed, 0.1% for validation, and an-
other 0.1% for testing. The experiment is repeated 10 times.
For performance evaluation, we use the testing RMSE.

Without utilizing sparsity, variant c requires a lot of

(a) Objective vs CPU time. (b) RMSE vs CPU time.

(c) Basis size vs iterations. (d) Basis size vs time (sec).

Figure 4: FFWTensor and its variants on synthetic data.

memory and cannot be run. Post-processing (FFWTensor vs
variant a) slightly slows down the algorithm (Figure 4(a)),
but can improve RMSE (Figure 4(b) and Table 4). Without
basis reduction, variant b can only run for 103 iterations
and terminates early (Figure 4(c)), leading to inferior RMSE
(Table 4). Basis reduction significantly reduces the basis
size, and has little impact on the CPU time (Figure 4(d)).

Conclusion

In this paper, we proposed a novel low-rank tensor com-
pletion algorithm by using the scaled latent nuclear norm
for regularization and the Frank-Wolfe algorithm for opti-
mization. All the steps can be performed efficiently, and
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Table 4: Testing RMSE of FFWTensor variants on synthetic
data (all numbers have standard deviation of 0.001).

sparse
structure

basis
reduction

post-
processing RMSE

FFWTensor
√ √ √

0.100
variant a

√ √ × 0.120
variant b

√ × √
0.121

variant c × × × -

can also take advantage of the sparsity structure of the
observed incomplete tensor. Experimental results show that
the proposed method is more accurate, much faster and more
scalable than the state-of-the-art.
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