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Abstract

Regularized risk minimization often involves
nonsmooth optimization. This can be par-
ticularly challenging when the regularizer is
a sum of simpler regularizers, as in the over-
lapping group lasso. Very recently, this is
alleviated by using the proximal average, in
which an implicitly nonsmooth function is
employed to approximate the composite reg-
ularizer. In this paper, we propose a novel
extension with accelerated gradient method
for stochastic optimization. On both gener-
al convex and strongly convex problems, the
resultant approximation errors reduce at a
faster rate than methods based on stochastic
smoothing and ADMM. This is also verified
experimentally on a number of synthetic and
real-world data sets.

1 Introduction

Regularized risk minimization is a fundamental tool
in machine learning. It admits a tradeoff between the
empirical loss and regularization, as

min
x

1

n

n∑
t=1

`(x; st, lt) + r(x). (1)

Here, x ∈ Rd is the model parameter, n is the number
of samples, `(x; st, lt) is the empirical loss on sample t
with input st and output lt, and r(x) is a regularizer
on x. In this paper, we will only focus on convex loss-
es and convex regularizers. A number of optimization
tools have been proposed for solving (1). Among these,
an important family is the gradient descent. It uses
only first-order information, and is easy to implement
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and highly scalable. When both the loss and regulariz-
er are smooth, first-order methods can be accelerated
by Nesterov’s optimal approach [12]. In particular, it
enjoys a convergence rate of O

(
1
T 2

)
, where T is the

number of iterations. Equivalently, an ε-accurate so-

lution can be obtained in O
(

1√
ε

)
iterations.

Many modern learning models involve nonsmooth
components. For example, in the SVM, the hinge loss
is nonsmooth and allows for sparse support vectors; in
lasso [19], its nonsmooth `1-regularizer performs auto-
matic feature selection during learning. More exam-
ples can be found in [1]. However, gradient descent
becomes less appealing when nonsmooth components
are present in the optimization objective. Indeed, a di-
rect extension using the subgradient is often criticized

for its slow convergence rate of O
(

1√
T

)
[11].

In recent years, more sophisticated optimization algo-
rithms have been developed to handle nonsmooth ob-
jectives. When only the regularizer is nonsmooth, the
(accelerated) proximal methods [5, 14] employ a linear
approximation at the current solution estimate, while
leaving the nonsmooth term (typically the regularizer)
intact. This enjoys the optimal convergence rate as for
smooth problems. An essential building block in each
of its iterations is the proximal step

Mη
r(x) = min

y

‖x− y‖2

2η
+ r(y), (2)

where η > 0. Though this step can often be efficiently
solved for “simple” regularizers [7], it becomes more
challenging in problems such as the generalized las-
so [20] and overlapping group lasso [24], in which r(x)

is a composite regularizer of the form
∑K
k=1 wkrk(x)

for some wk ≥ 0 and convex rk(x)’s. Pioneering work-
s [3, 10] often convert this proximal step to its dual,
which is then solved with nonlinear optimization (such
as the network flow algorithm or Newton’s method).
However, this approach is difficult to generalize as the
dual is highly problem-dependent. Moreover, despite
a faster theoretical convergence rate, it may be even
slower than stochastic gradient descent in practice [21].
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To handle a combination of regularizers, a useful strat-
egy is “divide-and-conquer”. In particular, methods
based on the alternating direction method of multipli-
ers (ADMM) [6] duplicate the model parameter in each
regularizer, and enforce the duplicates to be identical
with equality constraints. It can be shown that updat-
ing these duplicated variables is equivalent to solving
the proximal step for each regularizer separately [6].
Nesterov’s smoothing technique [13], which first ap-
proximates the nonsmooth term with a smooth func-
tion and then solve the resultant smoothed problem
with accelerated gradient method, is also applicable in
this scenario. As pointed out in [23], the most popu-
lar approximation, which adds a quadratic function to
each regularizer, is indeed computing a proximal step
to replace the original regularizer.

Very recently, Yu [23] introduced the proximal average
technique for proximal gradient methods (PA-APG).
Instead of directly solving the proximal step associated
with a composite regularizer, it averages the solutions
from the proximal problems for each regularizer. It is
shown that this approximation is strictly better than
that of Nesterov’s smoothing, while enjoying the same
per-iteration time complexity and convergence rate.

In the context of regularized risk minimization, the de-
terministic setting corresponds to batch learning, and
each iteration needs to visit all the training samples.
With the proliferation of data-intensive application-
s, this can quickly become computationally infeasible.
To alleviate this problem, stochastic techniques have
recently drawn a lot of interest. Most are based on
(variants of) the stochastic gradient descent (SGD).
Recently, a stochastic variant of the smoothing tech-
nique is developed in [15], while stochastic versions of
the ADMM are proposed in [16, 18]. However, for the
proximal average technique in [23], how to extend it
for the stochastic setting, together with its theoret-
ical analysis and empirical performance, still remain
open. Besides, Yu [23] does not take strong convexity
into consideration, though it is well-known that it can
often speed up first-order methods.

In this paper, we develop a stochastic accelerated gra-
dient algorithm based on the proximal average. It
will be shown that the proposed algorithm has a con-

vergence rate of O
(

1
T 2 + 1

T
3
2

+ 1
T + 1√

T

)
on general

convex problems, and a O
(

1
T 2 + log T

T 2 + 1
T

)
rate on

strongly convex problems. Here, the O
(

1

T
3
2

)
and

O
(

log T
T 2

)
terms are due to the use of proximal average,

and are faster than the O
(

1
T

)
rate for ADMM-based

and stochastic smoothing methods [15, 16, 18].

The rest of this paper is organized as follows. Sec-

tion 2 introduces the problem formulation and gives
brief reviews on accelerated gradient methods, Nes-
terov’s smoothing technique and the proximal average.
Section 3 then describes the proposed algorithm. Ex-
perimental results are presented in Section 4, and the
last section gives some concluding remarks.

Notation. In the sequel, the transpose of vec-
tor/matrix is denoted by the superscript T , and ‖x‖
denotes the Euclidean norm of a vector x. For a dif-
ferentiable function f , we use ∇f for its gradient.

2 Background and Related Work

2.1 Problem Formulation

We consider the following stochastic optimization
problem

min
x∈Rd

φ(x) ≡ Eξ[f(x, ξ)] + Eξ[g(x, ξ)] + r(x), (3)

where ξ is a random variable, and the three compo-
nents on the RHS satisfy the following assumptions:

A1 f(x) ≡ Eξ[f(x, ξ)] is µ-strongly convex (where
µ ≥ 0) with Lf -Lipschitz continuous gradient. In
other words, for any x,y ∈ Rd,

f(x) +∇f(x)T (y − x) +
µ

2
‖x− y‖2 ≤ f(y),

f(x) +∇f(x)T (y − x) +
Lf
2
‖x− y‖2 ≥ f(y).

A2 g(x) ≡ Eξ[g(x, ξ)] is convex but nonsmooth.
Moreover, for a given ξ, g(x, ξ) can be written
as

g(x, ξ) = max
y∈Ω

(Aξx)Ty −Q(y), (4)

where Q is convex and continuous, Aξ is a matrix
associated with ξ, and Ω is a convex set. This
particular structure will be useful in applying Nes-
terov’s smoothing technique [13] (Section 2.3).

A3 r is a convex combination of convex functions
r1, r2, . . . , rK , i.e.,

r(x) =

K∑
k=1

wkrk(x), (5)

where wk ≥ 0 and
∑K
k=1 wk = 1. Each rk is pos-

sibly nonsmooth but assumed to be Lrk -Lipschitz
continuous, i.e., |rk(x)− rk(y)| ≤ Lrk‖x− y‖ for
any x,y ∈ Rd.

In the context of regularized risk minimization, x is
the model parameter to be learned, f and g are the
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empirical losses, and rk’s the regularizers. While most
machine learning models have only one loss term, here
we have two as this gives added flexibility. Besides, as
will be seen, they have different contributions to the
convergence rate. Depending on the application, one
can set f = 0 or g = 0.

The following shows the forms of r(x) in (5) for some
popular machine learning models.

• Overlapping group lasso [10, 24]: Here, the model
parameter x is divided into K possibly overlap-
ping groups. Let group k be gk ⊆ {1, 2, . . . , d},
and the corresponding subvector of x be xgk . In
(5), rk(x) = ‖xgk‖p (where p = 2 or ∞), and wk
is the (normalized) weight for group k. This reg-
ularizer can be used to select groups of features.

• Graph-guided fused lasso [15]: Here, features are
represented as vertices in a graph, and related fea-
tures are connected by edges. K in (5) is then the
number of edges, wk is the (normalized) weight for
edge k, and rk(x) = |xk1 − xk2 | where k1, k2 are
features connected by edge k. This regularizer en-
courages coefficients of highly related features to
be similar to each other.

• Sparse and low-rank matrix estimation [17]: In
this case, x is a matrix, and a combination of
the `1-regularizer (r1(x) =

∑
ij |xij |) and nuclear

norm regularizer (r2(x) = ‖x‖∗, the sum of x’s
singular values) encourages the solution to be si-
multaneously sparse and low-rank. Thus, K in
(5) is 2, and w1, w2 are the tradeoff parameters.

2.2 Accelerated Gradient Methods

Though highly scalable, gradient descent is often criti-
cized for its slow convergence rate. Nesterov pioneered
the accelerated gradient descent (AGD) method for s-
mooth optimization, which achieves the optimal con-
vergence rate for a black-box model [12]. Later, it
is extended to accelerated proximal gradient (APG)
[5, 14] for composite optimization problems, in which
the objective contains a smooth term f(x) and a nons-
mooth term r(x). In each iteration t, a quadratic func-
tion is used to upper bound the smooth f(x), while
leaving the nonsmooth r(x) intact, leading to the op-
timization problem

min
x
f(yt) +∇f(yt)

T (x− yt) +
‖x− yt‖2

2ηt
+ r(x), (6)

where ηt is the stepsize, and yt is a linear combination
of the last two estimates xt and xt−1. It is easy to see
that (6) can be converted to the proximal step Mη

r(x)
in (2). For APG to be effective, the nonsmooth r(x)

has to be “simple”, i.e., the corresponding Mη
r(x) needs

to allow efficient computation.

Both AGD and APG enjoy the optimal convergence
rate of O

(
1
T 2

)
. Recently, several stochastic extensions

are introduced [8, 22], which have a convergence rate of

O
(

1
T 2 + 1√

T

)
. Here, the extra O( 1√

T
) term is related

to the variance of the stochastic gradients. While these
stochastic accelerated variants may be as slow as the
simple stochastic gradient methods when the variance
is large, this can be alleviated by reducing the variance
with the use of mini-batch [8].

2.3 Smoothing Nonsmooth Functions

As discussed in Section 1, nonsmooth functions are
more difficult to optimize than smooth functions. Nes-
terov [13] showed that a smooth approximation with
Lipschitz-continuous gradient can be obtained when
the nonsmooth component, denoted h(x), is of the for-
m

h(x) = max
y∈Ω

(Ax)Ty −Q(y), (7)

where Q is convex, and Ω is a convex set. Specifically,
let ω be a ζ-strongly convex function, and define

ĥ(x) = max
y∈Ω

(Ax)Ty −Q(y)− γω(y), (8)

where γ > 0 is constant. It can be shown that ĥ(x)

is convex and its gradient ∇ĥ(x) = ATy(x) is ‖A‖
2

γζ -

Lipschitz continuous, where y(x) is the optimal y (for
the given x) in (8), and ‖A‖ = maxx,y(Ax)Ty :
‖x‖ = ‖y‖ = 1. Interestingly, when h(x) is convex
and Lipschitz-continuous, Yu [23] showed that it can
always be written in the form of (7), with A = I and
Ω being the domain of the Fenchel conjugate of h(x).
On using ω(y) = 1

2‖y‖
2, it can be further shown that

ĥ(x) is the same as Mγ
h(x) in (2).

The following Lemma shows that the smooth surrogate
ĥ(x) is close to the original h(x) with a sufficiently

small γ. With a carefully choosing γ, AGD on ĥ(x)
has a convergence rate of O

(
1
T

)
[13].

Lemma 1 [13] 0 ≤ h(x)− ĥ(x) ≤ γDΩ, where DΩ =
maxy∈Ω ω(y).

As an application, note that the composite regularizer
r(x) in (5) is typically nonsmooth and thus smooth-
ing can be used. Specifically, as all the rk’s in (5) are
convex and Lipschitz-continuous, each of them can be
smoothed separately, leading to the smooth approxi-
mation

r(x) '
K∑
k=1

wkMγ
rk

(x). (9)
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Figure 1: Accelerated Stochastic Gradient Descent with Proximal Average (PA-ASGD).

1: Input: Sequences {Lt}, {αt}, {ηt} and {γt}.
2: Initialize: ȳ−1 = z−1 = 0, α0 = λ0 = 1.
3: for t = 0, . . . do
4: xt =

[
(1− αt)(µ+ Ltαt)ȳt−1 + Ltα2

tzt−1

]
/ [µ(1− αt) + Ltαt];

5: yt = xt − ηt [∇f(xt, ξt) +∇ĝ(xt, ξt)];

6: ȳt =
∑K
k=1 wkPηtrk(yt);

7: zt = zt−1 − [Lt(xt − ȳt) + µ(zt−1 − xt)] / [Ltαt + µ];
8: end for
9: Output ȳt.

Recently, this smoothing technique is extended to the
stochastic setting [15]. When the nonsmooth g(x, ξ) is
of the form in (4) (such as the hinge loss [15]), it can
be approximated by the smooth function

ĝ(x, ξ) = max
y∈Ω

(Aξx)Ty −Q(y)− γω(y), (10)

with Lipschitz-continuous gradient

∇ĝ(x, ξ) = AT
ξ yξ(x), (11)

where yξ(x) is the optimal y in (10). Analogous
to Lemma 1, ĝ(x) = E[ĝ(x, ξ)] is close to g(x) =
E[g(x, ξ)] with a sufficiently small γ.

Lemma 2 [15] 0 ≤ g(x)− ĝ(x) ≤ γDΩ.

2.4 Proximal Average

As mentioned in Section 1, the proximal step (2) is
a fundamental building block in proximal gradien-
t methods. Its use with simple regularizers (such as
r(x) = ‖x‖1 or ‖x‖∞) has been extensively studied
in the literature [7]. However, when r(x) is a combi-
nation of regularizers as in (5), efficient solutions for
Mη
r(x) are often hard to obtain. Recently, this prob-

lem is tackled with the introduction of the proximal
average [23]. Interestingly, it is closely connected to
the smoothing technique but strictly better.

Definition 1 (Proximal Average) [4, 23] Let
Pηr(x) = arg Mη

r(x), where Mη
r(x) is as defined in

(2). Given functions {rk}Kk=1 and weights {wk}Kk=1,

where wk ≥ 0 and
∑K
k=1 wk = 1, for a fixed η > 0,

there exists an unique convex function r̂, called the
proximal average, such that

Mη
r̂(x) =

K∑
k=1

wkMη
rk

(x), Pηr̂(x) =
K∑
k=1

wkPηrk(x). (12)

The following Lemma bounds its approximation error
with r(x) [23].

Lemma 3 0 ≤ r(x) − r̂(x) ≤ ηL̄2

2 , where L̄2 =∑K
k=1 wkL

2
rk

.

Recall from (9) that r(x) can be replaced by∑K
k=1 wkMη

rk
(x), which is the same as Mη

r̂(x) on us-
ing (12). It can be shown that as an approximation
of r(x), the proximal average r̂(x) is at least as good
as the smooth surrogate Mη

r̂(x), i.e., Mη
r̂(x) ≤ r̂(x) ≤

r(x) [23].

In [23], Mη
r̂(x) is used to replace Mη

r(x). If all the
rk’s are simple regularizers, Mη

rk
(x)’s and Pηrk(x)’s can

be easily computed, and subsequently so are Mη
r̂(x)

and Pηr̂(x) by (12). It can be easily seen that using
this substituted proximal step is the same as running
the proximal gradient (with a stepsize of η) on the
nonsmooth surrogate f(x) + r̂(x). With a suitable η,
a convergence rate of O( 1

T ) can be obtained. Though
this is only the same as applying smoothing on r(x)
(Section 2.3), using proximal average is strictly better
than smoothing when the constant factor inside the
O(·) is taken into consideration [23].

3 Accelerated Stochastic Gradient
with Proximal Average

In this section, we combine the techniques of accelerat-
ed gradient, smoothing and proximal average to solve
the stochastic optimization problem in (3).

3.1 Proposed Algorithm

The whole procedure is shown in Figure 1, and will
be called “accelerated stochastic gradient descent with
proximal average” (PA-ASGD) in the sequel. As in
Section 2.3, the nonsmooth component g(x, ξ) in the
objective is replaced by the smooth approximation
ĝ(x, ξ) in (10). Similar to other accelerated stochastic
gradient methods [8, 15], we maintain three sequences
of variables {xt}, {ȳt} and {zt}. Sequences {Lt}, {αt}
and {ηt} are used to control the convergence rate;
while sequence {γt} controls the approximation quali-
ty of ĝ(x, ξ) according to Lemma 2. Their settings on
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general and strongly convex problems will be specified
in Section 3.3.

In Figure 1, Step 5 performs a gradient descent step
on the smooth surrogate f(xt, ξt) + ĝ(xt, ξt), where ηt
is the stepsize at iteration t. Extension to the use of a
mini-batch is straightforward. In a standard proximal
gradient algorithm, the next step will involve comput-
ing the proximal step associated with the composite
regularizer r(x). Here, Step 6 instead computes the
solution of the proximal step Pηtr̂t (yt), where r̂t is the
proximal average of the rk’s with η = ηt. As discussed
in Section 2.4, this is much easier when the individual
rk’s are simple but not their weighted combination r.
Finally, it can be shown that Steps 4 and 7 together
make xt a combination of ȳt−1 and ȳt−2. This can be
seen clearly when µ = 0, when we then have

xt = ((1− αt)ȳt−1 + αtȳt−2) +
αt
αt−1

(ȳt−1 − ȳt−2).

Thus, similar to AGD and APG [12, 5], the proposed
PA-ASGD algorithm performs proximal gradient de-
scent based on a combination of the estimates obtained
in the previous two iterations.

3.2 Discussion

Note that, in contrary, a constant stepsize η is used in
PA-APG. However, in stochastic optimization solvers,
η often decreases with t (typically as O(t

3
2 ) for general

convex problems, and O(t2) for strongly convex prob-
lems [8, 9]). The use of a decreasing {ηt} sequence is
also beneficial with our use of the proximal average,
as {r̂t(x)} becomes closer and closer to the original
composite regularizer r(x) according to Lemma 3.

The most expensive steps in Figure 1 are

• Step 5, which computes ∇ĝ(xt, ξt) using (11). In
turn, this involves solving (10).

• Step 6, which computes the proximal averages of
all the Pηtrk(yt)’s.

In many applications, solving (10) and computing each
Pηtrk(yt) take time (almost) linear in d (the dimension
of x) [7, 13, 15, 23]. For example, this is the case when
g(xt, ξt) is the hinge loss and the rk’s are simple. The
time complexity of each PA-ASGD iteration is then
O(d(nb + K)), where nb is the mini-batch size. It is
the same as methods based on smoothing and ADMM-
based methods [18, 16], as they also have to compute
the proximal step Mηt

rk
(·).

3.3 Convergence Analysis

In this section, we study the convergence rates of PA-
ASGD on both general convex and strongly convex

problems. We assume that the stochastic gradient
∇f(xt, ξt) (resp. ∇ĝ(xt, ξt)) is an unbiased estima-
tor of ∇f(xt) (resp. ∇ĝ(xt)), i.e., Eξt [∇f(xt, ξt)] =
∇f(x) and Eξ[∇ĝ(xt, ξt)] = ∇ĝ(xt). Moreover, we as-
sume that E[‖x∗ − zt‖2] ≤ D2 for some constant D,
where x∗ is the optimal solution of (3).

3.3.1 General Convex Problems

Theorem 1 For t ≥ 0, on setting
Lt = b(t+ 1)

3
2 + Lf +

E‖Aξ‖2
γtζ

,

αt = 2
t+2 ,

γt = αt,

ηt = 1
Lt ,

(13)

where b > 0 is a constant, and ζ,DΩ are as defined in
Section 2.3, the expected error of the PA-ASGD solu-
tion can be bounded as

E[φ(ȳT )]− φ(x∗) ≤ C1

T 2
+
C2

T
3
2

+
C3

T
+

C4√
T
, (14)

where

C1 = 3LfD
2,

C2 = 4L̄2b−1,

C3 = 2E[‖Aξ‖2]ζ−1D2 + 4DΩ,

C4 = 3D2b+ 2σ2b−1,

and σ is an upper bound of the stochastic noise.

The RHS of (14) has four components. The first one
comes from the smooth component f in the objective,
and the others are errors introduced by the proximal
average on r(x), smoothing1 of g(x, ξ) and the variance
of the stochastic gradient, respectively.

For the special case where g ≡ 0, the bound in (14)

reduces to O
(

1
T 2 + 1

T
3
2

+ 1√
T

)
. For comparison, if

we instead apply smoothing on r(x) (i.e., approxi-

mate it as
∑K
k=1 wkMγ

rk
(x)) in (9), and then run ANS-

GD [15] or PA-ASGD, the convergence rate degener-

ates to O
(

1
T 2 + 1

T + 1√
T

)
. Hence, PA-ASGD can de-

crease the error faster.

When both g ≡ 0 and σ = 0 (i.e., regularized batch
learning problems with a smooth loss), setting b = 0 in

(13) eliminates the slowest O
(

1√
T

)
term. However, it

also make C2 in (14) go to infinity. Interestingly, it can

be shown that if we change Lt in (13) to Lf+ b̃
γt

, where

b̃ > 0, PA-ASGD converges at the rate of O
(

1
T 2 + 1

T

)
.

1As expected, the O( 1
T

) rate here is the same as in [15],
though with a slightly different constant.
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Note that PA-APG uses a fixed stepsize η, which has
to be very small when a good approximation is desired
[23]. On the other hand, our ηt decreases with t and
is not directly tied to the desired approximation qual-
ity. Hence, PA-ASGD may employ a more aggressive
stepsize at the beginning, and thus be faster than PA-
APG. This will be empirically verified in Section 4.4.

3.3.2 Strongly Convex Problems

When the problem is strongly convex (µ > 0), the fol-
lowing Theorem shows that the convergence rate can
be further improved.

Theorem 2 Assume the same conditions as in The-
orem 1. Set

Lt = Lf +
E‖Aξ‖2
γtζ

+ µ
2α2
t
− µ

αt
,

α0 = 1 and αt = 2
t+1 , t ≥ 1,

γt = αt,

ηt =
(
Lt + µ

αt

)−1

.

(15)

The expected error of PA-ASGD can be bounded as

E[φ(ȳT )]− φ(x∗) ≤ C̃1

T 2
+
C̃2 log T

T 2
+
C̃3

T
, (16)

where

C̃1 = (12Lf + 4(C̃4 + 1)E‖Aξ‖2ζ−1)D2 + 8L̄2,

C̃2 = 8L̄2µ−1,

C̃3 = 3DΩ + 4σ2µ−1,

C̃4 = max

{
2

(
Lf
µ

) 1
3

,
4E‖Aξ‖2

ζµ

}
.

For the three terms in (16), the first one comes from a
combination of the smooth component f in the objec-
tive, smoothing and proximal average; the second one
from the proximal average on r(x), and the last one is
due to errors introduced by smoothing of g(x, ξ) and
variance of the stochastic gradient. As can be seen,
the term due to proximal average converges at a faster

rate (O
(

log T
T 2

)
) than that of smoothing (O

(
1
T

)
rate).

In the batch setting, one can remove the 4σ2µ−1 term
from C̃3. The other parameters (Lt, ηt, αt and γt) are
independent of the noise in the stochastic gradient.

4 Experiments

In this section, we perform experiments on the (general
convex) overlapping group lasso and (strongly convex)
graph-guided logistic regression models, under both
the stochastic and batch settings.

4.1 Setup

The following methods are compared:

1. the proposed PA-ASGD, which uses the settings
in (13) for general convex problems, and (15) for
strongly convex problems;

2. OPG-ADMM [18]: stochastic ADMM based on
stochastic gradient descent;

3. RDA-ADMM [18]: stochastic ADMM based on
regularized dual average [22];

4. ANSGD [15]: accelerated stochastic gradient de-
scent with Nesterov’s smoothing technique;

5. PA-PG [23]: deterministic gradient descent with
proximal average; and

6. PA-APG [23]: deterministic accelerated gradient
descent with proximal average.

Note that PA-PG and PA-APG can only be used in
the batch setting.

For the models considered here (overlapping group las-
so and graph-guided logistic regression), both the gra-
dient and proximal step Mη

rk
(·) can be computed in

time linear in the dimension d. Hence, all the algo-
rithms above have the same per-iteration complexity.
Consequently, we compare their performance only in
terms of the number of iterations. Moreover, we do
not compare with other stochastic algorithms such as
SGD, as they have been shown to be inferior [15, 18].

Each algorithm has some free data-dependent parame-
ter(s) (such as b in (13)). To tune these, we use a small
training subset, and choose the parameter setting with
the smallest training objective value after running the
stochastic algorithm for 200 iterations.

All methods are implemented in MATLAB. Experi-
ments are performed on a PC with Intel i7-2600K CPU
and 32GB memory. To reduce statistical variability,
results are averaged over 10 repetitions.

4.2 Overlapping Group Lasso

We first perform experiments on the overlapping group
lasso model [24] with the hinge loss:

min
x∈Rd

1

n

n∑
i=1

[1− lixT si]+ + λ
K∑
k=1

‖xgk‖,

where [a]+ = a if a ≥ 0; and 0 otherwise. Sim-
ilar to [23], we set the ground truth x∗ as x∗j =

(−1)j exp(− j−1
100 ), and the groups are defined as

{1, . . . , 100}, {91, . . . , 190}, . . . , {d− 99, . . . , d}︸ ︷︷ ︸
K groups

,

1091



Leon Wenliang Zhong, James T. Kwok

(a) K = 5. (b) K = 10. (c) K = 20. (d) K = 50.

Figure 2: Objective value versus number of iterations on stochastic overlapping group lasso.

where d = 90K + 10. The input si ∈ Rd of each
sample is generated i.i.d. from the normal distribution
N (0, 1). Its output li is set to 1 if x∗T si+ϑi ≥ 0 (where
ϑi ∼ N (0, 1)); and −1 otherwise. We set λ = K/(5n),
and vary K in {5, 10, 20, 50}. Moreover, n = d and the
mini-batch size is nb = n/10.

For PA-ASGD and ANSGD, the hinge loss is smoothed
as in [15], while ADMM-based methods directly use its
subgradient. As for the composite regularizer r(x), all
the tested algorithms require computing Mη

rk
(x) for

each group gk, and the corresponding solution is [23]

[Pηrk(x)]j =

{
xj j /∈ gk[
1− η

‖xgk
‖

]
+
xj j ∈ gk.

Figure 2 shows how the optimization objective varies
with the number of iterations. As PA-ASGD also em-
ploys smoothing for the hinge loss, there is no notice-
able improvement over ANSGD except for K = 5.
On the other hand, RDA-ADMM is comparable with
accelerated stochastic gradient methods, while OPG-
ADMM is the slowest.

4.3 Graph-Guided Logistic Regression

In this section, we perform experiments on graph-
guided logistic regression [16]:

minx∈Rd
1

n

n∑
i=1

log(1 + exp(−lixT si))

+λ

‖x‖2 +
∑

{k1,k2}∈E

|xk1 − xk2 |

 .

Here, E is the set of edges for the graph defined on the
d variates of x. Following [16], we construct this graph
by sparse inverse covariance selection [2]. A similar
problem is considered in the generalized lasso [20] and
graph-guided SVM [16], though with a different loss
function. Note that with the introduction of the ‖x‖2
regularizer, the optimization problem is now strongly

convex. For an edge k connecting features k1 and k2,[
Pηrk(x)

]
j

is given by [23]{
xj−sign(xk1−xk2) min

{
η,
|xk1−xk2 |

2

}
j = k1 or k2;

xj otherwise.

Experiments are performed on four popular binary
classification data sets2 (Table 1) [18]. For each da-
ta set, 80% of the samples are used for training, and
the rest for testing. We fix λ = 10−4, and use 1% of
the training samples as mini-batch.

Table 1: Summary of the data sets.

data set number of samples dimensionality
a9a 32,561 123

covertype 581,012 54
quantum 50,000 78

sido 12,678 4,932

Figure 3 shows the objective values and testing losses
obtained by the various algorithms versus the number
of iterations. As can be seen, PA-ASGD is the fastest
and rapidly leads to a model with good generalization
performance. The second best is RDA-ADMM, and
ANSGD is the slowest.

4.4 Comparison in the Batch Setting

As discussed in Section 3.3, the proposed method can
be used in the batch setting. In this section, we per-
form experiments on the overlapping group lasso re-
gression:

min
x∈Rd

1

n

n∑
i=1

(li − xT si)
2 + λ1‖x‖2 + λ2

K∑
k=1

‖xgk‖,

2Data sets a9a and covertype are download-
ed from http://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets/, quantum is from http:
//osmot.cs.cornell.edu/kddcup and sido from
http://www.causality.inf.ethz.ch/home.php.
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(a) a9a (b) covertype (c) quantum (d) sido

(e) a9a (f) covertype (g) quantum (h) sido

Figure 3: Performance versus number of iterations on stochastic graph-guided logistic regression. Top: Objective
value; Bottom: Testing loss.

(a) K = 5. (b) K = 10. (c) K = 20. (d) K = 50.

Figure 4: Objective value versus number of iterations for batch overlapping group lasso.

where λ1 = 10−4 and λ2 = 10−2. The data set is
generated in the same manner as in Section 4.2, but
with a larger ϑi ∼ N (0, 100). In this batch setting,
all methods use the whole data set to compute the
gradient. Moreover, PA-PG and PA-APG [23], which
can only be used in a batch setting, are also included
for comparison. Following Theorem 1 of [23], we set
its µ = 2ε/L̄2, where L̄2 = λ2

2K
2 while ε = 10−2 and

10−4 for PA-PG and PA-APG, respectively.

Results are shown in Figure 4. As can be seen, the
PA-ASGD has the fastest convergence, which is then
followed by ANSGD. PA-APG, because of its more
conservative stepsize, is worse than the other APG-
based methods. The ADMM-based methods and PA-
PG are the slowest.

5 Conclusion

In this paper, we developed a novel stochastic acceler-
ated gradient algorithm for regularized risk minimiza-
tion problems with composite regularizer. Using the
proximal average, it enjoys the same computational
simplicity as existing stochastic methods based on s-
moothing or ADMM, but with a faster convergence
rate. Empirical results on both general convex and
strongly convex problems demonstrate its efficiency
over existing methods.

Acknowledgments

This research was supported in part by the Research
Grants Council of the Hong Kong Special Administra-
tive Region (Grant 614311).

1093



Leon Wenliang Zhong, James T. Kwok

References

[1] F. Bach, R. Jenatton, J. Mairal, and G. Obozin-
ski. Convex optimization with sparsity-inducing
norms. In Optimization for Machine Learning,
pages 19–53. 2011.

[2] O. Banerjee, L. El Ghaoui, and A. d’Aspremont.
Model selection through sparse maximum like-
lihood estimation for multivariate Gaussian or
binary data. Journal of Machine Learning Re-
search, 9:485–516, 2008.

[3] A. Barbero and S. Sra. Fast Newton-type method-
s for total variation regularization. In Proceedings
of the 28th International Conference on Machine
Learning, pages 313–320, June 2011.

[4] H. H. Bauschke, R. Goebel, Y. Lucet, and
X. Wang. The proximal average: Basic theory.
SIAM Journal on Optimization, 19(2):766–785,
2008.

[5] A. Beck and M. Teboulle. A fast iterative
shrinkage-thresholding algorithm for linear in-
verse problems. SIAM Journal on Imaging Sci-
ences, 2(1):183–202, 2009.

[6] S. Boyd. Distributed optimization and statistical
learning via the alternating direction method of
multipliers. Foundations and Trends in Machine
Learning, 3(1):1–122, 2010.

[7] P. L. Combettes and J.-C. Pesquet. Proximal s-
plitting methods in signal processing. In Fixed-
Point Algorithms for Inverse Problems in Science
and Engineering, pages 185–212. Springer, 2011.

[8] C. Hu, J. Kwok, and W. Pan. Accelerated gradi-
ent methods for stochastic optimization and on-
line learning. In Advances in Neural Information
Processing Systems 23, pages 781–789, 2009.

[9] G. Lan. An optimal method for stochastic com-
posite optimization. Mathematical Programming,
133(1-2):365–397, 2012.

[10] J. Mairal, R. Jenatton, G. Obozinski, and
F. Bach. Network flow algorithms for structured
sparsity. In Advances in Neural Information Pro-
cessing Systems 24, pages 1558–1566. 2010.

[11] A. Nemirovsky and D. Yudin. Problem complexi-
ty and method efficiency in optimization. Transl.
from the Russian by ER Dawson, 1983.

[12] Y. Nesterov. Introductory Lectures on Convex
Optimization: A Basic Course. Springer Nether-
lands, 2004.

[13] Y. Nesterov. Smooth minimization of non-
smooth functions. Mathematical Programming,
103(1):127–152, 2005.

[14] Y. Nesterov. Gradient methods for minimiz-
ing composite objective function. Technical Re-
port 76, Catholic University of Louvain, 2007.

[15] H. Ouyang and A. Gray. Stochastic smoothing for
nonsmooth minimizations: Accelerating SGD by
exploiting structure. In Proceedings of the 29th
International Conference on Machine Learning,
July 2012.

[16] H. Ouyang, N. He, L. Tran, and A. Gray. Stochas-
tic alternating direction method of multipliers. In
Proceedings of the 30th International Conference
on Machine Learning, 2013.

[17] E. Richard, P.-A. Savalle, and N. Vayatis. Es-
timation of simultaneously sparse and low rank
matrices. In Proceedings of the 29th Internation-
al Conference on Machine Learning, pages 1351–
1358, July 2012.

[18] T. Suzuki. Dual averaging and proximal gradient
descent for online alternating direction multiplier
method. In Proceedings of the 30th International
Conference on Machine Learning, pages 392–400,
2013.

[19] R. Tibshirani. Regression shrinkage and selection
via the lasso. Journal of the Royal Statistical So-
ciety: Series B (Methodological), 58(1):267–288,
1996.

[20] R. J. Tibshirani and J. Taylor. The solution
path of the generalized lasso. Annals of Statis-
tics, 39(3):1335–1371, 2011.

[21] S. Villa, S. Salzo, L. Baldassarre, and A. Ver-
ri. Accelerated and inexact forward-backward
algorithms. SIAM Journal on Optimization,
23(3):1607–1633, 2013.

[22] L. Xiao. Dual averaging methods for regularized
stochastic learning and online optimization. Jour-
nal of Machine Learning Research, 11:2543–2596,
2010.

[23] Y. Yu. Better approximation and faster algorithm
using the proximal average. In Advances in Neural
Information Processing Systems 26, 2013.

[24] P. Zhao, G. Rocha, and B. Yu. The composite
absolute penalties family for grouped and hier-
archical variable selection. Annals of Statistics,
37(6A):3468–3497, 2009.

1094


