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Abstract. Mean shift is an iterative mode-seeking algorithm widely
used in pattern recognition and computer vision. However, its conver-
gence is sometimes too slow to be practical. In this paper, we improve
the convergence speed of mean shift by dynamically updating the sample
set during the iterations, and the resultant procedure is called dynamic
mean shift (DMS). When the data is locally Gaussian, it can be shown
that both the standard and dynamic mean shift algorithms converge
to the same optimal solution. However, while standard mean shift only
has linear convergence, the dynamic mean shift algorithm has superlin-
ear convergence. Experiments on color image segmentation show that
dynamic mean shift produces comparable results as the standard mean
shift algorithm, but can significantly reduce the number of iterations for
convergence and takes much less time.

1 Introduction

Mean shift is a nonparametric, iterative mode-seeking algorithm widely used in
pattern recognition and computer vision. It was originally derived by Fukunaga
and Hostetler [1] for nonparametric density gradient estimation, and was later
generalized by Cheng [2]. Recent years have witnessed many successful applica-
tions of mean shift in areas such as classification [3, 4], image segmentation [5, 6],
object tracking [7] and video processing [8].

In a general setting [2], there are two data sets involved in mean shift, namely,
the sample (or data) set S, and the “cluster centers” set T . In the standard
mean shift algorithm [2], T evolves iteratively by moving towards the mean, as
T ← mean(T ). Here, mean(T ) = {mean(x) : x ∈ T },

mean(x) =
∑

s∈S K(s − x)w(s)s
∑

s∈S K(s − x)w(s)
,

K is the kernel and w is the weight function. The algorithm terminates when a
fixed point mean(T ) = T is reached.
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However, the mean shift algorithm often converges too slowly to be practical
on large-scale applications [9]. Works on improving its convergence are relatively
few. Recently, Fashing and Tomasi [10] showed that mean shift is closely related
to optimization methods, particularly Newton’s method and bound optimiza-
tion. They conjectured that information on the shape of the kernel K can be
used to tighten the bound for faster convergence. However, the difficulty is in
finding a bound which is computationally easy to maximize [10]. On a more
practical side, Yang et al. [9] proposed an improved mean shift algorithm based
on quasi-Newton methods. This leads to faster convergence. However, approxi-
mating the Hessian matrix and determining the search direction in each iteration
become more computationally expensive. Consequently, while the complexity of
the standard mean shift algorithm is only linear in the data dimensionality, that
of Yang et al. ’s method rises to cubic.

In this paper, we improve the convergence speed of the mean shift algorithm
by dynamically updating the sample set S, depending on its behavior in the it-
erations. In particular, we focus on the case where S is updated iteratively based
on the set of cluster centers T computed in the previous step. This modified pro-
cedure will be called dynamic mean shift (DMS), as opposed to the traditional,
static mean shift (SMS) algorithm. We will prove that, under certain conditions,
this procedure gradually shrinks the data set, and converges asymptotically to
the same density maximum as SMS, but with a higher convergence rate (to be
more specific, superlinear convergence instead of linear convergence). Besides,
the DMS algorithm is also very efficient in that its computational complexity is
only linear in the data dimensionality.

The rest of this paper is organized as follows. Section 2 gives a brief review
on the traditional mean shift algorithm. Section 3 then describes the dynamic
mean shift algorithm. A detailed discussion on its faster convergence properties
will be presented in Section 4. Experimental results on color image segmentation
are presented in Section 5, and the last section gives some concluding remarks.

2 Standard Mean Shift Algorithm

Let S = {x1,x2, . . . ,xn} be a set of samples in the d-dimensional space R
d.

Using kernel k, the kernel density estimator at x is given by [3]

f̂K(x) =
1
n

n∑

i=1

|Hi|−
1
2 K(x − xi;Hi),

where Hi is a symmetric, positive definite d × d bandwidth matrix associated
with xi. Instead of referring to kernel K, it is often convenient to use its profile
k : [0, ∞) → R defined by K(x;H) = k(x′H−1x). To emphasize its dependence
on H, we also sometimes write k(x′H−1x) as kH(x).

The mean shift vector is defined as [1, 2]

m(x) ≡ Hx ·
∑n

i=1 H−1
i xi|Hi|−

1
2 k′

Hi
(x − xi)

∑n
i=1 |Hi|−

1
2 k′

Hi
(x − xi)

− x, (1)
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where H−1
x ≡

�n
i=1 H−1

i |Hi|−
1
2 k′

Hi
(x−xi)

�
n
i=1 |Hi|−

1
2 k′

Hi
(x−xi)

. It can be shown that [3]:

m(x) =
c

2
Hx

∇̂fK(x)
f̂G(x)

, (2)

where f̂G(x) is the density estimator using kernel G(x;Hi) = −ck′(x′H−1
i x),

and c is a normalization constant such that G integrates to one. Equation (2)
shows that the mean shift vector m(x) points towards the direction of maximum
increase of the density. Therefore, if we initialize the cluster center set T (t) =
{y(t)

1 ,y(t)
2 , · · · ,y(t)

n } as the original sample set S, i.e., T (0) = S, then the iteration

y(t+1) = y(t) + m(y(t)), t = 0, 1, 2, . . .

can be used to locate the local maxima of the estimated density of S.
In this paper, we are particularly interested in the case where the data set

follows the normal distribution N (µ, Σ), with mean µ and covariance matrix
Σ. This is an assumption commonly used in the theoretical analysis of the mean
shift algorithm (e.g., [3]), and is expected to hold at least locally. As will be
shown in the sequel, this allows us to obtain the convergence rates explicitly for
both the standard and dynamic versions of the mean shift algorithm.

Suppose the use of the Gaussian kernel with fixed bandwidth H in the mean
shift algorithm. Under the normality assumption of the data distribution, the
estimated density f̂K will also be a Gaussian asymptotically, with mean µ and
covariance Σ + H [11]. Plug this into (2), then the mean shift vector m(x) at x
becomes (note that when K is Gaussian, we have c = 2 and K = G in (2) [3])

m(x) = H
∇̂fG(x)
f̂G(x)

= −H(H + Σ)−1(x − µ). (3)

3 The Dynamic Mean Shift Algorithm

In the standard mean shift algorithm, the data set S is fixed and only the
cluster center set T is updated. Each point in T will keep moving based on
the mean shift vector (1) at each step until it reaches a local maximum, and
then another point in T will be processed. In contrast, the dynamic mean shift
algorithm updates both S and T . In each DMS iteration, after moving all the
points in T along their mean shift vectors for one step, we then use the shifted
cluster center set T ′ to replace the data set S for the next iteration. More
formally, denote the sample set and the cluster center set at the tth iteration
by S(t) = {x(t)

1 ,x(t)
2 , . . . ,x(t)

n } and T (t) = {y(t)
1 ,y(t)

2 , . . . ,y(t)
n } respectively. They

are first initialized as T (0) = S(0) = S, the original set of samples. At the tth
iteration, we have

y(t+1)
i =

∑
x(t)

i ∈S(t) K
(
x(t)

i − y(t)
i

)
x(t)

i

∑
x(t)

i ∈S(t) K
(
x(t)

i − y(t)
i

) , i = 1, 2, ..., n.
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The shifted cluster center set T (t+1) = {y(t+1)
1 ,y(t+1)

2 , . . . ,y(t+1)
n } then replaces

the sample set at the next iteration,

S(t+1) = T (t+1),

and the whole process is repeated until a fixed state S(t+1) = S(t), or equiva-
lently, T (t+1) = T (t), is reached.

In the following Sections, we study some properties of this dynamic mean
shift algorithm. As mentioned in Section 1, a key advantage of this dynamic
version over the standard one is its faster convergence. Hence, we will postpone
and dedicate its detailed discussion to Section 4.

3.1 Gradual Shrinking of the Samples

As mentioned in Section 1, we assume that the samples follow a d-dimensional
normal distribution, i.e., S = S(0) ∼ N (µ, Σ) with mean µ ∈ R

d and covari-
ance matrix Σ ∈ R

d×d. Recall that this assumption holds at least in the local
neighborhood of each sample in S. Moreover, we assume the use of a Gaussian
kernel with fixed bandwidth H (which is positive definite). Besides, the identity
matrix will be denoted I, vector/matrix transpose denoted by the superscript ′,
and the determinant of a matrix A by |A|.

Proposition 1. Assume that the sample set S(t) = {x(t)
i } at the tth iteration

follows N (µ, Σ(t)). After one dynamic mean shift iteration, the updated sample
set S(t+1) = {x(t+1)

i } still follows a normal distribution N (µ,P(t)Σ(t)(P(t))′),
where

P(t) = I − H(H + Σ(t))−1. (4)

Proof. After one iteration, sample x(t)
i will be moved, according to (3), to

x(t+1)
i = x(t)

i + m(x(t)
i ) =

(
I − H(H + Σ(t))−1

)
x(t)

i + H(H + Σ(t))−1µ

= P(t)x(t)
i + C(t), (5)

where P(t) = I− H(H + Σ(t))−1, and C(t) = H(H + Σ(t))−1µ. Hence, S(t) and
S(t+1) are related by a linear transform. Since S(t) follows N (µ, Σ(t)), S(t+1) also
follows a normal distribution with mean P(t)µ+C(t) = (I−H(H+Σ(t))−1)µ+
H(H + Σ(t))−1µ = µ and variance P(t)Σ(t)(P(t))′. �

Remark : In other words, after one dynamic mean shift iteration, the sample
mean will remain unchanged while the covariance is updated to

Σ(t+1) = P(t)Σ(t)(P(t))′. (6)

Moreover, as the original data set S is assumed to be a Gaussian, all the S(t)’s
will also remain as Gaussians.

Before a detailed study on how the covariance Σ(t) of the sample set S(t)

evolves in the DMS iterations, we first introduce two useful lemmas.
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Lemma 1. Given two symmetric, positive semi-definite matrices A and B, all
the eigenvalues of C = AB are non-negative.

Proof. Let the eigen-decompositions of A and B be A = Q1Λ1Q′
1, B = Q2Λ2Q′

2,
where the columns of Q1 and Q2 contain the eigenvectors of A and B, re-
spectively, and the diagonal matrices Λ1 and Λ2 contain their correspond-
ing eigenvalues. Let Q = Q′

1Q2 (which is orthonormal) and M = Q′
1CQ1,

then M = Q′
1Q1Λ1Q′

1Q2Λ2Q′
2Q1 = Λ1N, where N = QΛ2Q′ is positive

semi-definite. Let λ be an eigenvalue of M, i.e., Mv = λv. Note that M and
N ≡ Λ

1/2
1 NΛ

1/2
1 share the same eigenvalues as Mv = λv ⇒ Λ1Nv =

λv ⇒ (Λ1/2
1 NΛ

1/2
1 )(Λ−1/2

1 v) = λ(Λ−1/2
1 v), and M also has the same eigen-

values with C, therefore C must have the same eigenvalues with N. Moreover,
v′Nv = v′Λ1/2

1 NΛ
1/2
1 v = (Λ1/2

1 v)′N(Λ1/2
1 v) ≥ 0 for all v’s as N is positive

semi-definite. Therefore, N is positive semi-definite, and all its eigenvalues will
be non-negative. So all the eigenvalues of C must be non-negative, too. �

Lemma 2. For the P(t) defined in (4), |P(t)| < 1 for all t.

Proof. From (4),

P(t) = I −
(
(H + Σ(t))H−1

)−1
= I −

(
I + Σ(t)H−1

)−1
. (7)

Let the eigen-decomposition of Σ(t)H−1 be

Σ(t)H−1 = U(t)Λ(t)(U(t))−1, (8)

where the columns of U(t) contain the eigenvectors of Σ(t)H−1, and Λ(t) =
diag(λ1, λ2, . . . , λd) contains its eigenvalues. Then P(t) can be decomposed as
(after some simplifications)

P(t) = I − (I + Σ(t)H−1)−1 = U(t)
(
I − (I + Λ(t))−1

)
(U(t))−1,

and its determinant can be written as

|P(t)| = |I − (I + Λ(t))−1| =
∣
∣
∣
∣diag

(
λ1

1 + λ1
,

λ2

1 + λ2
, · · · ,

λd

1 + λd

)∣
∣
∣
∣ (9)

Note that both Σ(t) and H (and hence H−1) are symmetric, positive semi-
definite. Therefore, using Lemma 1, the eigenvalues of Σ(t)H−1 must all be
non-negative, i.e., λi ≥ 0. Hence, except for the meaningless case where all λi’s
are zero, we always have |P(t)| < 1 according to (9). �

Proposition 2. |Σ(t)| decreases with t, and limt→∞ |Σ(t)| = limt→∞ |P(t)| = 0.

Proof. From (6), |Σ(t)| = |Σ(t−1)| · |P(t−1)|2. Since |P(t)| < 1 by Lemma 2, |Σ(t)|
will decrease with t. Suppose |P(τ)| = max

0≤τ≤t−1
|P(t)|. Note that |P(t)| < 1 for all

t ≥ 0, therefore |P(τ)| < 1. So we have
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|Σ(t)| = |Σ(0)| ·
t−1∏

j=0

|P(j)|2 < |Σ(0)| ·
t−1∏

j=0

|P(τ)|2 = |Σ(0)| · |P(τ)|2t → 0,

as t → ∞. Using (8), we have |Λ(t)| = |Σ(t)H−1| = |Σ(t)|/|H|. Therefore,

lim
t→∞ |Λ(t)| = lim

t→∞ |Σ(t)H−1| = 0, (10)

and all the eigenvalues (λis) of ΣH−1 will also approach zero. Substituting this
into (9), we then have lim

t→∞ |P(t)| = 0. �

Remark : Note that |Σ(t)| can be used as a measure of the spread of the sample
set S(t) at the tth iteration. Hence, Proposition 2 implies that S(t) gradually
shrinks, and the amount of shrinkage is determined by |P(t)|.

Due to the data shrinkage, a fixed-bandwidth kernel will cover more and
more samples in S(t) as the algorithm proceeds. In other words, using a fixed
bandwidth here achieves the same effect as using a variable bandwidth in the
standard mean shift algorithm on the original sample set S. Note that the use
of variable bandwidth is often superior to the fixed bandwidth case [5].

On the other hand, as the amount of data shrinkage can differ significantly
along different directions, this can lead to both very small and very large variance
components. This can be problematic if the local covariance matrix of S(t) is
chosen as the bandwidth, as its inverse may be badly scaled. To avoid this
numerical problem, one can simply replace the very small eigenvalues of the
local covariance matrix by some small number.

3.2 Stopping Rule

The data shrinking behavior discussed in Section 3.1 also allows the design of
more efficient stopping rules. As the samples x(t)

i ’s move closer and closer towards
the density peaks, so once a group of samples have converged inside a small
window, they will converge to one point in the following iterations. From the
clustering point of view, we will then have enough information to decide their
class labels (as these samples must belong to the same class), and so the iterations
for these samples can be stopped early. By removing these converged clusters,
computations involved in the dynamic mean shift algorithm can be reduced. In
comparison, the stopping criterion in standard mean shift is often based on the
step length. Since samples usually move very slowly near the density peaks in the
standard mean shift algorithm [6], our stopping rule can be much more effective.

3.3 Time Complexity

The complexities of both the standard and dynamic mean shift algorithms are
O(dsN2), where d is the data dimensionality, s is the number of iterations re-
quired for convergence, and N is the number of samples. As will be shown in
Section 4.2, DMS has superlinear convergence while SMS only has linear conver-
gence. Hence, the number of iterations (s) required by DMS is typically much
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smaller than that by SMS. Moreover, the stopping rule discussed in Section 3.2
allows samples to be thrown away early near the end of the DMS iteration
process. Thus, the number of samples (n) “actively” involved in the remaining
computations gradually decreases, which further reduces the time complexity of
the DMS algorithm.

One may be concerned that DMS has to move all the samples in order to update
the data distribution, and this could be less efficient than the mean shift algorithm
that only moves a group of selected samples [12]. Indeed, the dynamic updating of
the sample distribution in DMS can be realized as well by only moving a small set
of “representative” samples. By decomposing the data set into disjoint, spatially
local subsets Z1, Z2, . . . , Zm, one can model the density at each local subset Zi by
a single Gaussian ni

n N (µi, h
2I), where ni and µi are the size and mean of subset

Zi respectively, and h is the bandwidth of the kernel used in the density estimator
[13]. The whole density distribution can then be modeled as a combination of
these Gaussians n1

n N (µ1, h
2I), n2

n N (µ2, h
2I), . . . , nm

n N (µm, h2I). In this variant
of the DMS, we only have to shift the representatives µi’s, whose movement leads
to the update of the corresponding Gaussians Nis, and hence the whole density
function.

4 Convergence Properties of Dynamic Mean Shift

In Section 4.1, we will first show that both the original and dynamic mean shift
algorithms converge asymptotically to the same optimal solution, when the data
is locally Gaussian. We will then show in Section 4.2 that the dynamic mean
shift algorithm has superlinear (and thus faster) convergence while the standard
version only has linear convergence.

4.1 Asymptotic Convergence of Dynamic Mean Shift

In the following, we assume, as in Section 3.1, that the samples follow the
d-dimensional normal distribution N (µ, Σ). This holds at least in the local
neighborhood of each sample in S. We then have the following property:

Proposition 3. The dynamic mean shift procedure converges asymptotically to
the mean µ.

Proof. Using (3) and (7), we have

m(x(t)) = −H(H + Σ(t))−1(x(t) − µ(t)) = −(I + Σ(t)H−1)−1(x(t) − µ(t)).

Moreover, from (10) in Proposition 2, we have lim
t→∞ |Σ(t)H−1| = 0. Therefore

lim
t→∞m(x(t)) = −(x(t) − µ). Since µ(t) = µ by Proposition 1, one mean shift

iteration will ultimately move all x(t)’s to x(t) + m(x(t)) = µ, the mean of the
original Gaussian. �

Remark : It is well-known that standard mean shift will find the mode of the
underlying density, which is µ in this case. Thus, both standard and dynamic
mean shift converge to the same optimal solution asymptotically.
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4.2 Convergence Rates

In this Section, we will show that DMS converges faster than the standard mean
shift algorithm. But first, we will provide additional insight on the convergence
of standard mean shift by the following 1-D example. Suppose that the data
set is the 1-D Gaussian N (µ, σ2), the bandwidth of the Gaussian kernel is h2,
and that the iteration starts from x(0). Using (3), m(x(0)) = −ρ(x(0) − µ) where
ρ = h2

h2+σ2 . Then x(0) will be shifted to x(1) = x(0) +m(x(0)) = x(0) −ρ(x(0) −µ).
At the next iteration, the mean shift vector becomes m(x(1)) = −ρ(x(1) − µ) =
−ρ(1 − ρ)(x(0) − µ), and x(1) is shifted to x(2) = x(1) + m(x(1)), and so on. It
is easy to show by induction that the mean shift vector is of the form m(t) =
m(x(t)) = −ρ(1−ρ)t(x(0) −µ). Note that {|m(t)|}t=1,2,··· is a geometric sequence
that decreases monotonically, indicating slower and slower convergence. This is
illustrated in Figure 1, where we set µ = 0, σ = 1, h = 0.1, and x(0) = 3. As
can be seen, the step length indeed decreases monotonically. The corresponding
step lengths for the dynamic mean shift algorithm are also shown in Figure 1.
Note that not only is its step length usually much larger than that for standard
mean shift, but it actually increases at the first few iterations.

In the following, we compare the convergence rates of DMS and SMS. In
the optimization literature, convergence can be measured by how rapidly the
iterates z(t) converge in a neighborhood of the (local) optimum z∗. If the error
e(t) = z(t)−z∗ behaves according to ‖e(t+1)‖2/‖e(t)‖p

2 → c, where c > 0 and ‖·‖2
denotes the (vector) two-norm, then the order of convergence is defined to be pth
order [14]. In particular, if p = 1, we have first order or linear convergence. Note
that linear convergence can be equivalently defined as ‖e(t+1)‖2/‖e(t)‖2 ≤ c.
Faster convergence can be obtained if the local rate constant c tends to zero,
i.e., ‖e(t+1)‖2/‖e(t)‖2 → 0. This is also known as superlinear convergence.

As in previous sections, we will again focus on the case when the samples are
normally distributed as N (µ, Σ). Recall that Section 4.1 has shown that both
DMS and SMS converge to the mean µ, and hence the optimum z∗ = µ here.
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Fig. 1. Step lengths taken by DMS and SMS on a 1-D data set. Note that DMS
converges in only 10 iterations.
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Theorem 1. SMS converges linearly, while DMS converges superlinearly.

Proof. At the tth iteration, both DMS and SMS shift the current x(t) to x(t+1) =
x(t) + m(x(t)). Using (3), we have

x(t+1) − x∗ = (x(t) − µ) − H(H + Σ)−1(x(t) − µ) = P(t)(x(t) − µ),

with P(t) defined in (4). Hence,

‖x(t+1) − µ‖2

‖x(t) − µ‖2
=

∥
∥P(t)(x(t) − µ)

∥
∥

2∥
∥x(t) − µ

∥
∥

2

≤ ‖P(t)‖2,

by definition of the matrix two-norm1 of P(t) [15]. In SMS, the sample set S keeps
unchanged. Therefore P(t)’s are all fixed at P = I−H(H+Σ)−1, implying linear
convergence for SMS. For DMS, we have limt→∞ |P(t)| → 0 by Proposition 2, so
all its eigenvalues will approach 0. Since ‖P(t)‖2 is the maximum singular value
of P(t), therefore ‖P(t)‖2 → 0, i.e., DMS converges superlinearly. �

Here, we give an illustration on the numbers of iterations required for conver-
gence in SMS and DMS. The data set follows the 1-D Gaussian N (0, 1), and
the bandwidth is chosen as h = 0.5. Figure 2(a) shows the number of itera-
tions N(x) when starting at different initial positions x’s. As can be seen, DMS
requires much fewer iterations than the standard mean shift algorithm. More-
over, since we know that the data set follows a normal distribution, we can also
compute the average number of iterations by integrating N(x) w.r.t. the (nor-
mal) density G(x). Figure 2(b) plots the density-weighted number of iterations
N(x)G(x). The average number of iterations required by DMS is calculated to
be roughly 70% less than that for SMS.
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Fig. 2. Number of iterations required for convergence when starting the standard /
dynamic mean shift algorithm at different positions

We now investigate the effect of the bandwidth on the number of iterations
required for convergence. Again, we use the same 1-D data set that follows

1 The matrix two-norm of a matrix A is defined as ‖A‖2 = maxx�=0

�
‖Ax‖2
‖x‖2

�
. It is

also equal to the maximum singular value of A.
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Fig. 3. The average number of iterations for convergence at various values of h2/σ2

N (0, 1). As can be seen from Figure 3, DMS needs much fewer iterations than
SMS when h2/σ2 varies from 0.1 to 2. In practice, h2/σ2 should be reasonably
small, or else serious misclassifications may occur near the class boundaries.

5 Image Segmentation Experiments

In this Section, we compare the performance of dynamic and standard mean
shift algorithms for color image segmentation. The segments are obtained by

Fig. 4. Segmentation results using SMS and DMS algorithms. Top: Original images;
Middle: SMS segmentation results; Bottom: DMS segmentation results.



Accelerated Convergence Using Dynamic Mean Shift 267

Table 1. Total wall time (in seconds) and the average number of iterations on the
various image segmentation tasks

SMS DMS
image size time # iterations time # iterations

plane 321×481 2.62 15.79 1.84 11.86
eagle 321×481 10.03 21.78 4.77 10.79
house 192×255 12.65 20.40 6.43 10.84

clustering in the RGB feature space. The sample size, which is equal to the
number of pixels in the image, can be very large (in the order of 100,000).
Hence, instead of using/moving all the samples in the mean shift iterations,
we only use a set of “representative” samples. As discussed in Section 3.3, the
whole data set is first divided into m local subsets, each of them is modeled by
a Gaussian γiN (ui, h

2
i I). This step can be performed efficiently. Moreover, the

number of clusters, m, is much smaller than the sample size. Only these m cluster
means, each weighted by the γi, are used in the DMS and SMS algorithms. In
the experiment, we use the Gaussian kernel with bandwidth h2I (h = 12). All
codes are written in VC++ and run on a 2.26GHz Pentium-III PC.

Figure 4 shows the segmentation results, and Table 1 shows the total wall
time (from finding the local cluster representatives to mean shift clustering) and
the number of iterations (averaged over all the cluster representatives). One can
see that DMS obtains comparable segmentation results as SMS, but converges
in much fewer iterations and takes much less time.

6 Conclusions

In this paper, we extend the mean shift algorithm by dynamically updating
the set of samples during the iterations. This has the interesting property of
gradually shrinking the sample set, and allows a fixed bandwidth procedure to
achieve the same effect as variable bandwidth mean shift. More importantly, it
allows faster convergence both in theory and practice. When the data is locally
Gaussian, it is shown that dynamic mean shift converges to the same optimal
solution as the standard version, but while standard mean shift can only converge
linearly, the dynamic mean shift algorithm converges superlinearly. Experiments
on color image segmentation show that dynamic mean shift produces comparable
results as the standard mean shift approach, but the number of iterations and
the elapsed time are both reduced by half.
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