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Abstract. This paper proposes a novel deep reinforcement learning
architecture that was inspired by previous tree structured architectures
which were only useable in discrete action spaces. Policy Prediction
Network offers a way to improve sample complexity and performance
on continuous control problems in exchange for extra computation at
training time but at no cost in computation at rollout time. Our approach
integrates a mix between model-free and model-based reinforcement
learning. Policy Prediction Network is the first to introduce implicit
model-based learning to Policy Gradient algorithms for continuous action
space and is made possible via the empirically justified clipping scheme.
Our experiments are focused on the MuJoCo environments so that they
can be compared with similar work done in this area.

1 Introduction

Reinforcement learning algorithms can be model-free or model-based. Model-free
reinforcement learning attempts to find a policy through interacting with the
environment and improving the policy based on previous states and rewards.
Model-based reinforcement learning attempts to learn the dynamics of the envi-
ronment and uses the model to improve the policy through various methods such
as planning, exploration, and even training on generated data [5, 19]. Though
historically, model-based methods capable of predicting near perfect observa-
tions [2, 10] usually have the benefit of reduced sample complexity, they still
struggle to perform as well as model-free methods [8,9,17]. It is therefore appeal-
ing to explore achieving the best of both worlds, as collecting the large amount of
experience required by model-free methods is oftentimes expensive or infeasible.

Model-based agents traditionally learn a model of the environment that
predicts future observations conditioned on previous actions and observations.
This approach is sometimes referred to as observation-prediction models [11].
Recreating the original observation is sometimes a questionable objective as the
original observation can be dominated by irrelevant information. For example, if
the observation is an image and contains a complex background, a large part of
the model’s capacity can be spent on modeling the background even though it
may be irrelevant to information necessary for planning.
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As a response to the issues faced by observation-prediction models, several
implicit model-based methods [4,11,18] were introduced and learn an implicit
transition module that predicts the value/reward of future states without being
subjected to observation reconstruction. Value Prediction Networks (VPN) [11]
and TreeQN [4] operate by expanding a tree of predicted reward and value
estimates. However, this is feasible only because each branch is linked to a
discrete action. ATreeC [4] introduces a policy gradient method but is still not
applicable to continuous action spaces because their policy is a multinomial
distribution parameterized by the Q-values associated with each branch. Implicit
models have seen success in Q-learning approaches, but are not straightforward to
apply to policy gradient methods. Many real-world problems, such as robotics or
autonomous vehicle applications, lie in continuous action spaces and Q-learning
approaches do not naturally extend to continuous action spaces like policy gradient
methods.

Policy gradient methods are of primary interest in this paper because of their
inherent flexibility in terms of their application to both discrete and continuous
action spaces. In particular, we will focus on a model-free policy gradient algorithm
called Proximal Policy Optimization (PPO) [17]. PPO is of high interest because
of its high performance on popular benchmarks and simplicity.

We propose Policy Prediction Networks (PPN), where the value, reward,
policy, and abstract-state are predicted by leveraging a transition model. PPN
uses an implicit model-based approach at training time but a model-free approach
at rollout time. An implicit model-based approach at training time helps accelerate
feature learning via predicting future policies, values, and rewards. All of which
encourage the dynamics model to learn features that are well aligned with
our objective of finding a policy that maximizes returns. To the best of our
knowledge, this is the first work on developing implicit model-based learning for
policy gradient methods.

Our contribution is a training procedure that leverages model-based learning
for policy gradient algorithms to improve performance and does not trade off
computational costs at rollout time. This work introduces implicit transition
models for Policy Gradient methods, depth-based objectives, auxiliary reward
objectives, and an empirically justified clipping scheme. Furthermore, our work
lays down the foundation for future research on using implicit transition models
to perform decision-time planning. Empirical results demonstrate the advantage
of PPN over the model-free baseline (PPO), which suggests that PPN finds a
better state embedding and reduces sample complexity.

2 Background and Related Work

In this section, we will give a brief review of related work on model-based and
model-free reinforcement learning. We also introduce terminologies to differentiate
between two general approaches in model-based reinforcement learning.
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Notations: st abstract state, at action, rt+1 reward from taking at at st, γ
discount, vθ(st) value of state st with respect to parameters θ, At advantage, Ht

policy entropy, and the subscript t denotes timesteps.

2.1 Policy Gradient Methods

Policy Gradient Methods [21] are a type of reinforcement learning algorithm
that directly optimizes policy parameters to maximize expected returns. Policy
Gradient methods are more naturally applied to environments with continuous
action spaces in comparison to Q-learning approaches. Generally, the policy
gradient loss is of the shape:

Lπt = − log πθ(at|st)At −Ht,

where At is an advantage estimate [16, 20, 21], πθ is the policy with parameter θ,
Ht is the policy entropy, st is the state at time t, and at is the action taken in
state st.

2.2 Trust Region Policy Optimization

Trust Region Policy Optimization (TRPO) attempts to generate monotonically
improving policies following inspiration from conservative policy iteration [7].
However, TRPO contains a few theoretical relaxations that are required to make
a practical algorithm. TRPO is left with a hard KL divergence constraint to be
less than or equal to δ. This hard constraint can be seen as a trust region on the
mean KL divergence.

Let θ′ be the old parameters, θ be the new proposed parameters, AGAEt be
the generalized advantage estimate [16]. Which is defined as

AGAEt = δt + (γλ)δt+1 + · · ·+ (γλ)n−t+1δn−1, (1)

where λ is a hyperparameter controlling the bias-variance trade-off, and δt =
rt+1 + γvθ′(st+1)− vθ′(st).TRPO’s optimization problem is then formulated as:

πθ = max
πθ

Lπθ′ (πθ) : D̄KL(πθ′ , πθ) ≤ δ,

where Lπθ′ (πθ) = πθ(a|s)
πθ′ (a|s)

AGAE is the objective using importance sampling to

estimate expected advantage under the new policy, and D̄KL(πθ′ , πθ) is the
mean KL divergence between the new and old policy. At this point TRPO offers
theoretical inspiration but does not actually offer theoretical guarantees for
monotonically improving policies.

2.3 Proximal Policy Optimization

Proximal Policy Optimization (PPO) [17] was introduced as offering similar
benefits as TRPO [15], but via a simpler approach. PPO replaces a KL divergence
constraint in TRPO via a clipped policy gradient loss:

Lπt = max(−ratiot ·AGAEt ,−ratiot,clip ·AGAEt ), (2)
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where

ratiot =
πθ(a = at|s = st)

πθ′(a = at|s = st)
,

ratiot,clip = clip

(
πθ(a = at|s = st)

πθ′(a = at|s = st)
, 1− ε, 1 + ε

)
. (3)

Clipping no longer guarantees D̄KL(πθ′ , πθ) ≤ δ. Instead, it serves to approximate
it (see [6] for further details).

PPO2 [3] is a GPU implementation from OpenAI that offers a key difference
from PPO, namely, that the critic is also clipped. More specifically, the critic
loss (Lvt ) is now:

Lvt = max((vθ(st)−Rt)2, (vt,clip −Rt)2) (4)

Where vt,clip = clip(vθ(st)− vθ′(st),−ε, ε) + vθ′(st) is the clipped value estimate,
Rt = γnvθ′(st+n) +

∑n
i=1 γ

i−1rt+i is the bootstrapped n-step return at time
t, and n is the number of steps in the bootstrapped estimate. At this point
theoretical guarantees in Conservative Policy Iteration have been dropped to
make TRPO a practical algorithm, and the theoretical justifications in TRPO
have again been weakened to make the more versatile and empirically superior
PPO.

2.4 Model-based Reinforcement Learning

The essence of model-based reinforcement learning revolves around using a model
or learning a model of the environment, and using this to improve a policy. We will
be focused on the challenging class of problems where the environment dynamics
are unknown and must be learned. In this case, the problem can be broken down
further into dynamics models that are learned implicitly and dynamics models
that are learned explicitly. It was not until recent years that implicitly learned
model-based algorithms received attention [4, 11,18].

Explicit Model-based Methods Cases of explicit model-based methods involve
some form of directly predicting future observations and including this in the
loss function, as in:

Lmodelt =
1

2
‖x̂t − xt‖2,

where x̂t is the predicted observation at time t and xt is the ground truth
observation. Several variations exist that involve learning to predict in an abstract
state space [2,5, 13,14], and predicting the grounded observation over multiple
time steps [10]. This has seen some success and can be useful for learning, planning,
and exploration.

These methods are particularly useful when observations contain entirely
useful information. However, it can be misleading in the class of problems where
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parts of the observation do not include useful information. For example, when
generating an image frame, a large part of the network’s capacity could be
dedicated to learning less useful information like the background or objects that
are not well aligned with the agent’s interest [13].

Implicit Model-based Methods Implicit model-based methods are interesting
because they are not explicitly tied to reproducing original observations or
an encoded observation. Rather, the dynamics model is indirectly learned by
finding parameters that allow for an agent to perform optimally. This is done
by learning to predict future characteristics such as the value or reward [4,11],
but without having a constraint on predicting the ground truth observation.
Unfortunately, a downside to implicit approaches is that it is difficult to know
what is actually taking place during planning since it is hard to reconstruct the
predicted observations.

VPN [11] involve expanding a Q-tree, performing a linear backup along
the maximal path, and selecting the maximal backed-up path. At training
time, the loss is computed along the tree path followed by rollout actions. The
Predictron [18] is similar to VPN except learning is done entirely in an abstract
space, whereas VPN is grounded to transitions experienced by the rollout policy.
Predictron also offers a meta-objective called consistency which lines up individual
estimates with respect to backed-up estimates. We do not explore this in our
work, but note that it could serve as an orthogonal improvement. TreeQN and
ATreeC [4] introduce a Q learning approach (TreeQN) and a policy gradient
approach (ATreeC) that make use of a differentiable tree structure. ATreeC
involves expanding a pseudo Q-tree. This is pseudo because the nested value
predictions are not directly constrained to represent the value. The backed-up
pseudo Q-values are treated as logits and are used to parameterize and sample
from a multinomial distribution. These samples are then used as the actions.
VPN, ATreeC, and TreeQN are limited to only operating in discrete action
spaces. Predictron was used in a continuous action space, the MuJoCo pool
environment [22], but was done through discretizing the action space.

3 Policy Prediction Network

Policy Prediction Network uses a combination of model-free and model-based
techniques. Actions are made with a model-free approach by the behavior policy
at rollout time. However, learning is done with a model-based approach that
follows the rollout trajectory. A latent space transition model is embedded into
the architecture so that we are able to backpropagate from multiple simulation
steps into the future back to a grounded observation. Backpropagation from
predictions through the dynamics model, and back to a grounded observation
enables the dynamics model to learn features which align with accurate reward
predictions, accurate value predictions, and maximizing advantage. This is as
opposed to maximizing observation reconstruction as is traditionally done in
explicit model-based reinforcement learning.
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Our novel contribution is a training scheme that integrates model-free and
model-based reinforcement learning to improve sample complexity and perfor-
mance in exchange for extra computation at training time but at no extra cost
in computation at rollout time. Additionally our work offers a foundation for
decision-time planning for policy gradient methods and implicit transition models.
Our empirical results in Section 4 demonstrate the advantage of PPN over model-
free baseline (PPO), which suggests that PPN finds a better state embedding
and reduces sample complexity.

3.1 Architecture

Fig. 1: PPN learns to predict policies,
rewards, abstract states, and the value
of the abstract states.

PPN is comprised of a few compo-
nents. The components are parameter-
ized by θ = {θenc, θv, θr, θtr, θπ} de-
scribed below. In the following, a hat
over variables represents that it is an
estimate as opposed to a grounded ob-
servation or reward. The superscript
represents the forward step predictions.
The depth-rollout is expanded to a
depth d. For example, ŝit is the pre-
dicted state i steps (where 0 ≤ i ≤ d)
forward in time from t.
Encoding (fencθ (xt) = ŝ0t,θ) function
embeds the observation (xt) in an ab-
stract state (ŝ0t,θ ∈ Ry).

Value (fvθ (ŝit,θ) = v̂it,θ) function esti-

mates the value (v̂it,θ ∈ R) of the abstract state.

Policy (N (fµθ (ŝit,θ), f
Σ(T )) = πθ(ŝ

i
t,θ)) function parameterizes a distribution

over actions to take given a state ŝit,θ. The policy module has two parts. The

first (fµθ ) producing estimates of the mean (µ ∈ Rz where z is dimensionality of
action space) and the second (fΣ) producing estimates of a diagonal covariance
matrix (Σ ∈ Rz×z) to parameterize a normal distribution for the policy (π). This
is further described in Section 3.2.
Reward (frθ (ŝit,θ, at+i) = r̂i+1

t,θ ) function predicts the reward (r̂i+1
t,θ ∈ R) for

executing the action at+i at abstract state ŝit,θ.

Transition (f trθ (ŝit,θ, at+i) = ŝi+1
t,θ ) function transforms the abstract state given

an action to the next abstract state (ŝi+1
t,θ ∈ Ry) by predicting ∆ = ŝi+1

t,θ − ŝit,θ.
We adopt a similar convention from VPN [11] which defines a core module.

Figure 1 shows the core module which performs a depth-1 rollout by composing
the modules:

fencθ (xt) = ŝ0t,θ,

fvθ (ŝ0t,θ) = v̂0t,θ,

f coreθ (ŝit,θ, at+i) = (π(ŝit,θ), r̂
i+1
t,θ , v̂

i+1
t,θ , ŝ

i+1
t,θ ).
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There are 4 subtle but important differences between PPN depth rollouts and
Value Prediction Network depth rollouts.

1. PPN estimates the policy based on the abstract state (π(ŝit,θ)) at each step of
the core module; while in VPN there is no need to predict a policy π because
it is a Q-learning method. However, this means it does not naturally apply
to continuous action-spaces.

2. PPN produces a value estimate (v̂0t,θ) at the base of the depth rollout and
uses this as the critic. In VPN, this is not necessary because it is not an
actor-critic method.

3. The actions used in PPN come from samples generated by the behavior policy
(πθ′), seen later in Equation (5); while in VPN, the actions are chosen by
exhaustively simulating all possible actions. Simulating all possible actions is
only feasible in a discrete action space.

4. PPN only uses the depth-based rollout at training time. VPN’s behavior
policy can use decision-time planning [20]. However, this is not straightforward
to apply to continuous action spaces and we leave this for future work.

If d > 1, the PPN recursively calls the core function (f coreθ ) to generate a
trajectory of simulated rewards, policies, values, and abstract states conditioned
on an initial abstract state (ŝ0t,θ) and action trajectory (at, . . . , at+d−1). Each
recursive call passes on the predicted abstract state (ŝ = ŝ′).

3.2 Planning

Here we introduce our approach to background planning [20] in continuous
action spaces performed at training time. PPN has the ability to predict the
future abstract states and based on these predicted future abstract states make
additional predictions of future rewards, values, and policies. We use a basic
planning method which simulates up to a certain depth d collecting reward, value,
and policy estimates along the way.

Background planning is done by following the actions performed by the
behavior policy and recursively calling f core with the predicted abstract state.
Action generation by the rollout policy (πθ′) is done by sampling from a normal
distribution defined as follows:

at ∼ N(µ = fµθ′(ŝ
0
t,θ′), Σ = fΣ(T )|ŝ0t,θ′ , T ). (5)

fΣ(T ) is a function of the number of samples T seen since the beginning of
training, and does not depend on the model parameters. In our experiments
the standard deviation used to parameterize a diagonal covariance matrix is
exponentially decayed with respect to the number of samples seen, as is done in
PPO [17].

3.3 Learning

PPN is trained in a similar manner to typical Policy Gradient algorithms. The
novel differences we introduce are depth-based losses, a latent transition model



8 Z. Wellmer, J. T. Kwok

Algorithm 1 Policy Prediction Network(PPN), PPO style.

Initialize parameters θ
θ′ = θ
for iteration=1, 2, . . . do

Run policy πθ′ in environment for n time steps
Compute advantage estimates AGAE1 , . . . , AGAEn

for epoch= 1, . . . , K do
Shuffle n samples into mini-batches of size M ≤ n
for each mini-batch do
T is the set of samples selected for the mini-batch
Lmb = 1

M

∑
t∈T Lt

Optimize Lmb w.r.t. θ
end for

end for
θ′ = θ

end for

(f tr) embedded into the architecture, auxiliary reward objectives, and a clipping
scheme for depth-based losses. Depth-based losses are necessary to train the
implicit transition model. The implicit transition model and auxiliary reward
help with feature learning via background-planning.

PPN seeks to optimize auxiliary objectives and perform multiple updates
on a batch. Trust regions as seen in TRPO can not be directly applied to both
cases described above [17] and thus we introduce a clipping approach. Clipping
all the network heads is crucial because the parameters of the reward network
and value network all share parameters (f tr, f enc) with the policy network. For
a visual reference of parameter sharing please see Figure 1. This means that if
any of the networks are updated in an uncontrolled fashion, it can also cause
dramatic changes to the policy.

In addition, in Algorithm 1, we show that PPN performs a similar learning
algorithm as was done in PPO.

The major differences in training between PPN and PPO come from the
loss formulation (L). The behavior policy with parameters (θ′) generates an
n-step trajectory (x1, a1, x2, a2, r2, . . . , xn+1, rn+1). The depth-i predictions are
grounded based on the generated n-step action trajectories. The loss at time t
accumulates error over the planned trajectory up to a depth d and is defined as:

Lt = Lπt + αvLvt + αrLrt , (6)

where minimizing Lπt corresponds to maximizing expected advantage, Lvt results
in an accurate critic, and Lrt leads to reward predictions that represent the
environment’s actual reward for a state action pair. αv, αr are the penalty
coefficients for the value loss and reward loss respectively.

Specifically, we define

Lπt =
1

dπ

dπ−1∑
i=0

max(−ratioitA
GAE
t+i ,−ratioit,clipA

GAE
t+i )− αhH, (7)
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where ratioit =
πθ(a=at+i|s=ŝit,θ)

π
θ
′ (a=at+i|s=ŝ0t+i,θ′ )

is the importance sampling ratio between the

new policy and the old policy at depth i, ratioit,clip is the clipped ratio used to
ensure the new parameter’s estimate to be near the old parameter’s estimate. We
offer two possible formulations to clipping in Section 3.4. AGAE

t is the generalized
advantage estimate defined in (1), and αh is a hyperparameter for the entropy
coefficient.

As for the critic objective, we have the critic loss

Lvt =
1

dv + 1

dv∑
i=0

1

2
max((v̂it,θ −Rt+i)2, (v̂it,clip −Rt+i)2), (8)

which encourages the current value estimate v̂it,θ to be close to the bootstrapped
return Rt+i at each depth i without moving closer to the target than the clipped
estimate (v̂it,clip). The clipped estimate is guaranteed to be near the old parame-
ter’s estimate. Notice that Lvt is over an extra iteration of the summation. This
is because value estimates are made at every state (ŝ0t,θ, . . . , ŝ

d
t,θ) in the forward

plan.
Similarly, the reward loss is

Lrt =
1

dr

dr−1∑
i=0

1

2
max((r̂it,θ − rt+i)2, (r̂it,clip − rt+i)2), (9)

encourages the reward estimate r̂it,θ to be close to the reward rt+i at each depth

i without moving closer to the target than the clipped estimate (r̂it,clip).
The maximum in Equations (7)-(9) is taken between the unclipped surrogate

objective and clipped surrogate objective. In the case of the critic and reward
losses (Lvt and Lrt ), this means that updates only take place when the estimate
from the new parameters (θ) are farther from the target (Rt+i in Equation 8
and rt+i in Equation 9) than the clipped estimate. When the new parameter’s
estimate is closer, the max in Equation 8 and 9 will select the clipped surrogate.
The gradient of the clipped surrogate with respect to parameters (θ) will be zero,
and thus will not change any parameters. This is desirable because it attempts
to prevent destructive updates that push estimates made by θ far from estimates
made by θ′.

Remark 1. PPN can be reduced to PPO2 if (αr = 0), dπ = 1, and dv = 0.

It’s possible to use different values of depth for the objectives but unless
otherwise noted d = dπ = dv = dr.

3.4 Clipping

We present two approaches to clipping called grounded and ungrounded clipping.
In this case, grounded and ungrounded refer to whether we have access to the
ground truth observation (xt). Grounded clipping offers a less strict clipping
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region, while ungrounded clipping is more aligned with theoretical justifications
found in Conservative Policy Iteration [7], TRPO [15], and PPO [17]. Our clipped
objectives are advantageous for two reasons. First, they allow for auxiliary reward
and depth based updates. Second, they allow us to share parameters between
the transition, policy, value, reward, and embedding networks. Both of these
are essential to learn the implicit transition model and are helpful with feature
learning.

Grounded Clipping The clipping region is grounded with respect to both
the action trajectory (at, . . . , at+d) and the latent state (ŝ0t,θ′ , . . . , ŝ

0
t+d+1,θ′). The

three grounded clipped estimates are shown in Equations (10), (11), and (12):

ratioit,clip = clip(ratioit, 1− ε, 1 + ε), (10)

v̂it,clip = clip(v̂it,θ − v0t+i,θ′ ,−ε, ε) + v̂0t+i,θ′ , (11)

r̂it,clip = clip(r̂it,θ − r̂0t+i,θ′ ,−ε, ε) + r̂0t+i,θ′ . (12)

The clipping region is based on the grounded estimates from the old parameters
(θ′) rather than predicted estimates from old parameters.

Ungrounded Clipping The clipping region in this case is grounded with respect
to only the action trajectory, but ungrounded with respect to the latent state.
The ungrounded clipping estimates are defined as:

ratioit,clip = clip

(
πθ(a = at+i|s = ŝitθ)

πθ′ (a = at+i|s = ŝit,θ′)
, 1− ε, 1 + ε

)
πθ′ (a = at+i|s = ŝit,θ′)

πθ′ (a = at+i|s = ŝ0t+iθ′)
,

v̂it,clip = clip(v̂it,θ − vit,θ′ ,−ε, ε) + v̂it,θ′ , (13)

r̂it,clip = clip(r̂it,θ − r̂it,θ′ ,−ε, ε) + r̂it,θ′ , (14)

and ratioit =
πθ(a=at+i|s=ŝit,θ)

π
θ
′ (a=at+i|s=ŝ0t+i,θ′ )

. Notice the change in how ratioit,clip is defined.

We first clip the ratio between new and old ungrounded policies to be no more
or less 1± ε and then perform importance sampling to account for the advantage
being calculated with respect to the rollout policy.

4 Experiments

Our experiments seek to answer the following questions: (1) Is clipping necessary?
If so, which type of clipping performs best(Section 4.2)? (2) Does PPN outperform
model-free baselines(Section 4.3)? (3) What effect does depth have on perfor-
mance(Section 4.4)? (4) Is the implicit transition module actually predicting
abstract states that are useful to the policy(Section 4.5)?
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observation dimensions action dimensions

Hopper-v2 11 3
Walker2d-v2 17 6
Swimmer-v2 8 2

HalfCheetah-v2 17 6
InvertedPendulum-v2 4 1

InvertedDoublePendulum-v2 11 1
Humanoid-v2 376 17

Ant-v2 111 8

Table 1: Summary of the MuJoCo environments used.

4.1 Experimental Setup

Our experiments investigate the comparison of PPN to PPO2 [3] on the OpenAI
Gym MuJoCo environments [1, 22]. Preprocessing was done similarly to that of
PPO [17]. Both PPO2 and PPN were implemented in Pytorch [12].

The comparison against PPO2 is run over all 8 environments listed in Table 1.
Due to returns being subject to high variance, we run tests over 15 seeds (which
is 3-5 times more than the related works in [11, 17]). 1 Due to computational
constraints in other experiments we run over 5 seeds on the Walker2d-v2 and
Ant-v2 environments.

Our PPO2 implementation uses the same hyperparameters as the baselines
implementation [3]. The largest difference in our PPO2 implementation is that
we do not perform orthogonal initialization. We did not include orthogonal
initialization because it was not mentioned in the original PPO and we did
not notice any clear performance benefits. For example, our implementation
receives roughly double the returns on the HalfCheetah-v2 environment than the
results reported by the baselines [3] implementation of PPO2 using orthogonal
initialization.

Our PPN implementation uses similar hyperparameters: 2 fully connected
layers for the embedding. 2 fully connected residual layers with unit length
projections of the abstract-state [4] for the transition module. 1 fully connected
layer for the policy mean, value and reward. All hidden layers have 128 hidden
units and tanh activations. In practice we use Huber losses instead of L2 losses,
as was done in related implicit model based works [11].

4.2 Clipping

We first look into the effect grounded clipping the network heads has on returns
gathered by PPN agents. Here we test to see if a strong policy can still be learned if
the other network heads (fr, fv) are not clipped.

1 Due to computational constraints InvertedDoublePendulum-v2 only uses 5 seeds
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Grounded Ungrounded

Hopper-v2 2172.28 1356.14
Walker2d-v2 2937.20 1717.23
Swimmer-v2 83.22 85.27

HalfCheetah-v2 3509.34 3485.59
InvertedPendulum-v2 996.44 998.47

InvertedDoublePendulum-v2 4336.93 4071.19
Humanoid-v2 574.15 676.31

Ant-v2 1602.15 1566.06

Table 2: Returns using grounded and ungrounded clipping
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(a) Walker2d-v2
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Fig. 2: Comparison of returns with
and without (grounded) clipping of
reward and critic.

As similarly done by Ilyas et al. [6],
we fit a normal distribution to the returns
achieved by the random seeds. Then we
compare points on the cumulative distribu-
tion functions (CDF) that correspond to
returns of 2, 20, 200, 2000 for Ant-v2 and
4, 40, 400, 4000 for Walker2d-v2.

In Figure 2a and 2b we can see that
clipping all the network heads turns out
to be imperative to learn a useful policy.
As stated in Section 3.3 clipping all the
network heads is imperative because they
all share parameters (f tr, f enc) with the
policy. Additionally, we look into which
type of clipping performs best. For the
most part Table 2 shows grounded clipping
offers the most robust returns. For all other
PPN experiments we use the grounded
clipping scheme.

4.3 Baseline Comparison

To test our model, we chose to benchmark
against PPO2 and use the environments
in Table 1. As is done in related works [4],
we include depth d = 1 and d = 2 in
our baseline comparison. However, we note
that it is possible that larger depth values could be better on other environments.

As can be seen in Figure 3, we find that PPN finds a better if not comparable
policy in all of the environments. We notice that PPN tends to do well in
complex environments such as Ant-v2. Indeed Humanoid-v2 is an exception to
this observation. Perhaps this is because Humanoid-v2’s number of observation
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Fig. 3: Results on 1 million step MuJoCo benchmark. Dark lines represent the
mean return and the shaded region is a standard deviation above and below the
mean.

dimensions(376) are far larger than the latent space(128). Additionally, we notice
optimal depth is environment dependent and is further studied in Section 4.4.

4.4 Depth

In this section, we explore the effect depth has on returns gathered by PPN
agents. Increasing depth forces the agent to learn abstract state which contains
information relevant to longer-term environment dynamics.

As seen in Figure 4 increasing depth (d) offers performance improvements
but only up to a certain point. As the depth grows, we become more reliant on
having a good transition function and eventually leads to a worse policy.
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Fig. 4: Returns with respect to d values of 1, 2, 5, and 10.
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Fig. 5: Returns with respect to three difference action selection approaches.

In Walker2d-v2 (Figure 4a) we can clearly see a depth of 2 offers performance
gains over a depth of 1. However after this point returns decrease as we increase
depth. We suspect that optimal depth for Walker2d-v2 may be less than Ant-v2
because the implicit transition module is less accurate. A similar conclusion can
be drawn from our observation in Section 4.5. Optimal depth is a recurring issue
in implicit model-based approaches [4, 11].

4.5 Transition Ablation

We are curious whether the implicit transition module is actually predicting
abstract states that resemble reality closely enough to actually be useful to the
policy. To test this we perform an ablation study of 3 different types of policy
prediction networks. The first type Model Predictive Control (MPC) represents
a perfect implicit transition module as the policy in this case has access to the
ground truth observation. The standard MPC approach is where only the first
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action is followed and the rest are replanned. The second type, ”trajectory”,
represents the strength of the transition module. In this case, every d steps
a new trajectory is generated by recursively calling f core with the predicted
abstract states and the sampled actions the predicted policy. The third type,
”repeat”, represents a meaningless transition module. In this case, every d steps
a new action is generated by the policy and repeated for d steps. If the implicit
transition module is bad we expect the returns from trajectory and repeat to
be more or less the same. If the implicit transition module is good we expect
returns somewhere in between the MPC and repeat curves. Note that all 3 of
these approaches are trained in the same manner and have exactly the same
parameters.

In Figures 5a and 5b we see that the trajectory approach performs much
better than repeat but not quite as well as MPC. This is interesting because
the trajectory approach only has access to the grounded observation and must
simulate d-steps into the future, where as in the MPC approach the action taken
at time t always has access to the observation from time t. These results show
that the implicit transition module is indeed useful and could be used in future
work for decision-time planning.

5 Conclusion

Introduced in this work is a learning scheme for Policy Gradient methods which
integrates model-free and model-based learning that reduces sample complexity
at no extra cost in computation at rollout time. Additionally, PPN’s implicit
transition model acts as a first step towards decision-time planning with tree
structured architectures in continuous action-spaces. It is interesting to note that
while we only explored continuous action spaces in this work it is also possible to
extend this to discrete action spaces.

For future work we would like to adapt PPNs to be less sensitive to planning
depth and to leverage the transition model for decision-time planning. Decision-
time planning is interesting but not straight forward to apply because it changes
the behavior policy distribution in ways that are hard to measure.
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