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Abstract—Many real world learning problems can be recast
as multi-task learning problems which utilize correlations
among different tasks to obtain better generalization per-
formance than learning each task individually. The feature
selection problem in multi-task setting has many applications in
fields of computer vision, text classification and bio-informatics.
Generally, it can be realized by solving a L-1-infinity regu-
larized optimization problem. And the solution automatically
yields the joint sparsity among different tasks. However, due
to the nonsmooth nature of the L-1-infinity norm, there lacks
an efficient training algorithm for solving such problem with
general convex loss functions. In this paper, we propose an
accelerated gradient method based on an “optimal” first order
black-box method named after Nesterov and provide the con-
vergence rate for smooth convex loss functions. For nonsmooth
convex loss functions, such as hinge loss, our method still
has fast convergence rate empirically. Moreover, by exploiting
the structure of the L-1-infinity ball, we solve the black-box
oracle in Nesterov’s method by a simple sorting scheme. Our
method is suitable for large-scale multi-task learning problem
since it only utilizes the first order information and is very
easy to implement. Experimental results show that our method
significantly outperforms the most state-of-the-art methods in
both convergence speed and learning accuracy.

Keywords-multi-task learning; L-1-infinity regularization;
optimal method; gradient descend

I. INTRODUCTION

The traditional learning problem is to estimate a function

f : X �→ Y , where X is the input space and Y is either

a continuous space for regression or a discrete space for

classification. In many practical situations, a learning task

can often be divided into several related subtasks. Since the

related subtasks always share some common latent factors,

learning them together is more advantageous than learning

each one independently. Consequently, this leads to the

popularity of multi-task learning (MTL) in recent years [1]–

[4]. More formally, given M related tasks, the objective of

MTL is to estimate M functions f (k) : X (k) �→ Y(k) jointly.

Moreover, it is often the case that different tasks share the

same input space but with different output spaces.

Feature selection for MTL has received increasing atten-

tion in machine learning community due to its applications

in many high-dimensional sparse learning problems. For sin-

gle task, feature selection is often performed by introducing

the �1 regularization term [5]. A well-known property of �1

regularization is its ability to recover sparse solutions. For

feature selection task in MTL, the use of mixed norms, such

as the �1,2 [6]–[8] and the �1,∞ [9], [10], has been shown to

yield joint sparsity on both the feature level and task level.

In particular, the �1,∞ is sometimes more advantageous than

the �1,2 as it can often lead to an even more sparse solution.

In this paper, we mainly consider multi-task learning

problem with the �1,∞ regularizer. Recently, there has been

a lot of interest in this problem. However, there still lacks

an efficient training algorithm for large-scale application.

Turlach et al. [10] develop an interior point method which

requires computation of Hessian matrix of the objective

function. This thus limits its application due to the po-

tentially huge memory requirement. In contrast, gradient

methods only need the first order information (gradient

for smooth optimization and subgradient for nonsmooth

optimization), thus making them suitable for large-scale

learning problems. Most recently, Quattoni et al. [11] pro-

pose a projected subgradient method. The convergence rate

of this algorithm is only O(1/
√

t), where t is the number

of iterations. Han et al. [12] propose a simple blockwise

coordinate descent algorithm for multi-task Lasso. However,

their algorithm lacks theoretical analysis of the convergence

rate and can only handle square loss. Duchi et al. [13]

provide another algorithm, forward looking subgradients

method, for this problem. However, its convergence rate is

still only O(1/
√

t). Recently, Ji et al. [14] take advantage

of the composite gradient mapping [15] and propose an

accelerated gradient method for trace norm minimization

with a convergence rate O(1/t2). However, their goal is

to solve the convex relaxation of matrix rank minimization

problem instead of joint sparsity for multi-task learning.

The main difficulty for solving the �1,∞ regularized

formulation of multi-task learning problem lies in the non-

smooth property of the �1,∞ regularizer. In general, projected

subgradient based methods, as in [11], [13], can only achieve

very slow convergence rate of O(1/
√

t). In this paper,

we present an accelerated gradient descent algorithm with

the convergence rate O(1/t2) by a variation of Nesterov’s

method [16]. We particularly note that Nesterov’s algorithm

calls a black-box oracle in the projection step at each itera-

tion. By exploiting the structure of the �1,∞ ball, we show

that the projection step can be efficiently solved by a simple
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sorting procedure. In sum, our accelerated gradient method

can solve the �1,∞-norm regularized problem with smooth

convex loss function in O(d(N + M log M)/
√

ε) time,

where N , M , d, ε denote the number of training examples,

the number of tasks, the dimensionality of the feature vector,

and the desired accuracy, respectively. Although we mainly

consider the �1,∞ norm, the �1,2 penalized learning problem

can also be readily solved in our framework.

The rest of the paper is structured as follows. Section II

gives some background and presents the formulation of our

problem. Section III then proposes the accelerated gradient

method and shows how to solve the gradient mapping update

efficiently. We also briefly discuss the efficient gradient map-

ping update scheme for other regularizer, such as the �1,2.

Subsections III-A and III-B present the convergence rate and

time complexity respectively. Section IV reports experiments

on multi-task classification and regression. Experimental

results show that the proposed method significantly outper-

forms the most recent state-of-the-art algorithms proposed in

2009, [11], [13]. Finally, we conclude our work and point

out some potential future work.

II. BACKGROUND AND NOTATIONS

Assume the dataset contains N tuples, zi = (xi, yi, ki)
for i = {1 . . . N}, where xi ∈ R

d is the feature vector and

ki ∈ {1 . . . M} is the indicator specifying which task the

example (xi, yi) corresponds to. yi is either a real number

in regression case or yi ∈ {−1,+1} for binary classification.

Our goal is to learn M linear classifiers of the form wT
k ·x.

In this work, we mainly consider three different types of

loss:

1) square loss: �s(z, W ) = (y − wT
k · x)2;

2) logistic loss: �l(z, W ) = ln(1 + exp(−ywT
k · x));

3) hinge loss: �h(z, W ) = max(0, 1 − ywT
k · x).

where z = (x, y, k).
Let W = [w1,w2, . . . ,wM ] ∈ R

d×M and W j be the

jth row of W . In sparse multi-task learning, we enforce the

joint sparsity across different tasks by adding the l1,∞ norm

of the matrix W to the loss function, which leads to only a

few non-zero rows of W . In sum, we formulate our problem

as:

min
W

F (W ) = f(W )+ψ(W ) =
1
N

N∑
i=1

�(zi,W )+λ‖W‖1,∞,

(1)

where

‖W‖1,∞ =
d∑

j=1

‖W j‖∞ =
d∑

j=1

max
1≤k≤M

|Wjk|. (2)

A natural way to solve (1) is subgradient method. Namely,

Wt+1 = Wt − htF
′(Wt), (3)

where Wt is the solution at t’s step and ht is the step

size. The most common strategy is to set ht = h√
t+1

.

F ′(W ) ∈ ∂F (W ) is the subgradient of F (W ) at W and

∂F (W ) denotes the subdifferential of F (W ) at W [17].

According to [18], the subdifferential of sup-norms can be

characterized as following:

Proposition 1: The subdifferential of ‖ · ‖∞ is:

∂‖ · ‖∞ |x=

{
{y : ‖y‖1 ≤ 1} x = 0,

conv{sign(xi)ei : |xi| = ‖x‖∞} x �= 0.
(4)

where conv denotes the convex hull and ei is the vector

with one at ith entry and zeros at all other entries. Due

to the additivity property of subdifferential, we can easily

obtain the subgradient of ‖W‖1,∞ and then plug into

the subgradient descent procedure. However, as shown in

[19], the convergence rate of subgradient method is only

O(1/
√

t), i.e.

F (Wt) − F (W ∗) ≤ τ√
t
, (5)

where τ is some constant and W ∗ is the optimal solution.

III. ACCELERATED GRADIENT METHOD

For smooth convex functions, Nesterov [19] introduces a

so-called “optimal” first order (gradient) method in the sense

of complexity with the convergence rate O(1/t2). How-

ever, in our formulation (1), the objective function is non-
smooth due to the �1,∞ regularizer. The recent unpublished

manuscript by Nesterov [15] considers the minimization

problem with the objective function composed of a smooth

convex part and a “simple” nonsmooth convex part. Here

“simple” means that we have the closed form minimizer of

the sum of the nonsmooth part with a quadratic auxiliary

function. The algorithm in [15] still achieves O(1/t2) con-

vergence rate. Independently, Beck et al. [20] propose the

“ISTA” algorithm for solving linear inverse problem with

the same convergence rate. [21] further extends this method

for the convex-concave optimization and obtains O(1/t)
convergence rate.

We adopt framework in [21] to provide a fast convergence

rate algorithm for solving (1). Moreover, by exploiting the

structure of the �1,∞ ball, we show that the generalized

gradient update step in each iteration can be easily solved

by a simple sorting procedure.

Firstly, we define the generalized gradient update step as

following:

QL(W,Wt) =f(Wt) + 〈W − Wt,∇f(Wt)〉
+

L

2
‖W − Wt‖2

F + λ‖W‖1,∞

qL(Wt) =argminW QL(W,Wt),

(6)

where ‖ · ‖F denotes the Frobenius norm and 〈A,B〉 =
Tr(AT B) denotes the matrix inner product.

The accelerated gradient method is presented in algorithm

1.
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Algorithm 1 Accelerated Gradient Algorithm

Initialization: L0 > 0, η > 1, W0 ∈ R
d×M , V0 = W0 and

a0 = 1.

Iterate for t = 0, 1, 2, . . . until convergence of Wt:

1) Set L = Lt

2) While F (qL(Vt)) > QL(qL(Vt), Vt)

L = ηL

3) Set Lt+1 = L and compute

Wt+1 = argminW QLt+1(W, Vt)

at+1 =
2

t + 3
δt+1 = Wt+1 − Wt

Vt+1 = Wt+1 +
1 − at

at
at+1δt+1

In addition, we suggest a look-ahead stopping criterion

for algorithm 1. Firstly, we fix a step size h and in each

iteration t, we calculate the following ratio:

κ =
max

t≤i≤t+h
F (Wi) − min

t≤i≤t+h
F (Wi)

max
t≤i≤t+h

F (Wi)
. (7)

And we stop the procedure when κ ≤ τ where τ is a prefixed

constant.

Now, we focus on how to solve the generalized gradient

update efficiently. Rewrite (6), we obtain that

qL(Vt) = argminW

(1
2
‖W − (Wt − 1

L
∇f(Wt))‖2

F

+
λ

L
‖W‖1,∞

)
.

(8)

For the sake of simplicity, we denote (Wt − 1
L∇f(Wt))

as V and λ
L as λ̃. (8) then takes the following form:

qL(Vt) =argminW

(
1
2
‖W − V ‖2

F + λ̃‖W‖1,∞

)
= argmin

W 1...W d

d∑
i=1

(
1
2
‖W i − V i‖2

2 + λ̃‖W i‖∞
)

,

(9)

where W i, V i denotes the ith row of the matrix W ,

V respectively. Therefore, (8) can be decomposed into d
separate subproblems of dimension M .

For each subproblem:

min
w

1
2
‖w − v‖2

2 + λ̃‖w‖∞, (10)

since the conjugate of a quadratic function is still a quadratic

function and the conjugate of the l∞ norm is the l1 barrier

function, the dual of (10) takes the following form:

min
α

1
2
‖α − v‖2

2 s.t. ‖α‖1 ≤ λ̃. (11)

And the vector of dual variables α satisfies the relation α =
v−w. (11) can be efficiently solved by a efficient projection

onto the l1 ball according to [22]. With the primal dual

relationship, we present algorithm 2 for solving (10).

Algorithm 2 Algorithm for projection onto the �∞ ball

Input: A vector v ∈ R
M and a scalar λ̃ > 0

1) If ‖v‖1 ≤ λ̃, set w = 0. Return.

2) Let ui be the absolute value of vi, i.e. ui = |vi|. Sort

vector u in the decreasing order: u1 ≥ u2 ≥ . . . ≥ uM

3) Find ĵ = max
{

j : λ̃ − ∑j
r=1(ur − uj) > 0

}
Output: wi = sign(vi)min

(
|vi|, (

∑ĵ
r=1 ur − λ̃)/ĵ

)
, i =

1 . . . M

In the multi-task learning setting, the step 1 of algorithm

2 is the key step to enforce the coefficients of a feature to

achieve zeros simultaneously among different tasks.

At last, we briefly describe how to solve the �1,2 penal-

ized multi-task learning problem and thus demonstrate the

universality of the algorithm.

Recall that the �1,2 norm of a matrix W is defined as:

‖W‖ =
∑

j

‖W j‖2. (12)

Note that the key step in algorithm 1 is to efficiently compute

the gradient mapping update. For the �1,2 norm, the simple

update rule can be derived. Similarly, we decompose the

gradient mapping update into d subproblems as in (9). Each

subproblem takes the following form:

min
w

1
2
‖w − v‖2

2 + λ̃‖w‖2. (13)

It is easy to show that the optimal solution w∗ must lie on

the same direction of v and takes the form: w∗ = γv with

γ ≥ 0. Otherwise, we can always remove the non-parallel

part with respect to v from the vector w∗ and achieve a

lower objective value. By forming the Lagrangian dual form,

the analytical solution of (13) can be easily obtained:

w∗ =

{(
1 − λ̃

‖v‖2

)
v ‖v‖2 > λ̃

0 ‖v‖2 ≤ λ̃.
(14)

A similar algorithm for �1,2 regularized multi-task learn-

ing problem has also been proposed very recently [23].

A. Convergence Rate Analysis

Following the same strategy as in [20] and [21], we

present the following theorem:

Theorem 1: Consider the general composite optimization

problem:

min
W

F (W ) = f(W ) + ψ(W ), (15)

where f is a smooth convex function of the type C1,1
L(f), i.e.

f is continuously differentiable and its gradient is Lipschitz

continuous with the constant L(f):
‖∇f(W ) −∇f(V )‖F ≤ L(f)‖W − V ‖F ∀ W,V.

748

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on February 25,2010 at 00:58:23 EST from IEEE Xplore.  Restrictions apply. 



And ψ(W ) is a continuous function which is possibly

nonsmooth. Furthermore, we assume the set of optimal

solution is nonempty.

Let W0 be the randomly chosen starting point, Wt, Vt

be the sequences generated by algorithm 1 and W ∗ be any

optimal solution. We assume that:

F (W ∗) ≤ F (Wt) ∀ t. (16)

Then for any t ≥ 1, we have

F (Wt) − F (W ∗) ≤ 2ηL(f)‖W0 − W ∗‖2
F

(t + 1)2
. (17)

According to theorem 1, the number of iterations to

achieve ε optimal solution, i.e.

F (Wt) − F (W ∗) ≤ ε,

is at most �
√

2ηL(f)‖W0−W∗‖2
F

ε −1�, i.e. O(1/
√

ε). In other

words, the convergence rate of algorithm 1 is O(1/t2).
Finally, we should point out that the hinge loss is non-

smooth which contradicts our assumption in theorem 1.

Therefore, we cannot guarantee O(1/t2) convergence rate

for hinge loss. It is a very challenging work to derive an

algorithm with fast convergence rate for the combination

of nonsmooth loss function and nonsmooth regularizer.

However, we find out that, simply replacing the gradient

by the subgradient of hinge loss in (6), the experiment still

has impressive performance.

B. Time Complexity Analysis

For each iteration, the main computational cost is to

calculate the gradient of the loss function and solve the

minimization problem (6). The computation of the gradient

for the above three types of loss functions lies on the

calculation of vector inner product. Thus, for each data point,

the time complexity for calculating the gradient is O(d)
and, in sum, O(dN). The time complexity of algorithm

2 is O(M log M) due to the sorting procedure. We need

to call d times algorithm 2 to solve (6). In sum, the total

time complexity for each iteration is O(d(N + M log M)).
Combining the result in section III-A, the time for achieving

ε accuracy is O(d(N + M log M)/
√

ε).
[22] proposes a randomized algorithm which has the

expected linear time complexity to project onto the �1 ball.

The similar tricks can also be applied here. Interested readers

are referred to [22].

Similarly, for the �1,2 norm regularizer, the total time

complexity is O(d(N + M)/
√

ε).

IV. EXPERIMENTS

In this section, we perform experiments on sparse multi-

task learning with �1,∞ regularization. We will compare the

proposed accelerated gradient method (denoted MTL-AGM

in the sequel) with two state-of-the-art algorithms, namely,

the projected gradient method (denoted MTL-PGM) in [11]

and the FOLOS method (denoted MTL-FOLOS) in [13].

Note that both our MTL-AGM and the MTL-FOLOS

solve the following regularization problem:

min
W

1
N

N∑
i=1

�(zi,W ) + λ‖W‖1,∞, (18)

where the amount of regularization is controlled by λ.

However, MTL-PGM puts the regularizer in the constraint,

as:

min
W

1
N

N∑
i=1

�(zi,W )

s.t. ‖W‖1,∞ ≤ C,

(19)

where the amount of regularization is controlled by C.

It is well known that, due to the Lagrangian duality, the

formulations (18) and (19) are equivalent, i.e. there is a one-

to-one correspondence between λ and C [24]. However, it

is hard to find the closed-form function to characterize this

one-to-one mapping. For a relatively fair comparison, we

choose (λ, C) that gives comparable level of sparsity.

A. Multi-Task Classification

In this section, we perform multi-task classification

experiments on the Letter data set, which is a handwritten

words data set with 45,679 examples collected from more

than 180 different writers. There are 8 binary classification

tasks for the handwritten letters: a vs o, a vs o, c vs e, g vs

y, m vs n, f vs t, i vs j, and h vs n. Each letter is represented

as an 8 × 16 binary pixel image. This data set has been

studied in the context of multi-task learning by Obozinski

et al. [7].

We randomly split the data into training and testing sets

such that each of them contains roughly half of the entire

data set. We run the algorithms for three different types

of loss functions: (a) square loss; (b) logistic loss and (c)

hinge loss, and then report the values of the (a) optimization

objective, (b) training error, (c) testing error and (d) sparsity

level. Here, sparsity level means the number of relevant

features (non-zero rows) in the coefficient matrix W .

In the first experiment, we only enforce a small amount

of regularization by using a small λ (λ = 0.01) and a

large C (C = 100). This leads to the non-sparse results

as shown in Figure 1. As can be seen, obviously, MTL-

AGM converges much faster than MTL-FOLOS and MTL-

PGM. The objective values for MTL-AGM decrease rapidly

at the first few iterations and become stable after about 30

iterations for the square loss and hinge loss, and 70 iterations

for the logistic loss. As for the other metrics, MTL-AGM

also performs much faster than the other multi-task learning

algorithms.

To achieve larger sparsity level, we increase λ to 0.05, and

decrease C to 50. The corresponding experimental results

are reported in Figure 2. Again, we can see that MTL-AGM
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Figure 1: Performance of MTL methods on the Letter data set
(with weak sparsity). 1st row: objective value; 2nd row: training
error rate; 3rd row: testing error rate; 4th row: sparsity level. (a)-

(d): square loss; (e)-(h): logistic loss; (i)-(l): hinge loss.

achieves significantly better performance over MTL-FOLOS

and MTL-PGM on all performance metrics.

B. Multi-Task Regression

We further demonstrate the efficiency and effectiveness

of MTL-AGM on a multi-task regression problem. We

experiment on the commonly used School data set [7], which

contains 139 regression tasks with 15, 362 instances. Again,

we randomly take half of each task’s data for training, and

the rest for testing.

As it is a regression task, we use the square loss and report

the objective value, root mean squared error (RMSE), and

the sparsity level. We set λ = 1 and C = 100. Experimental

results are shown in Figure 3. As can be seen, MTL-AGM

again significantly outperforms MTL-FOLOS and MTL-

PGM on all performance metrics.

In both the classification and regression experiments, the

empirically much faster convergence speed strongly echoes

with the theoretical guarantee of the convergence rate of the

proposed algorithm.
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Figure 2: Performance of MTL methods on the Letter data set
(with strong sparsity). 1st row: objective value; 2nd row: training
error rate; 3rd row: testing error rate; 4th row: sparsity level. (a)-

(d): square loss; (e)-(h): logistic loss; (i)-(l): hinge loss.

V. CONCLUSION AND DISCUSSION

In this paper, we study the multi-task sparse learning

problem. We mainly consider the formulation based on

the �1,∞ norm regularization with the “grouping” effect

such that the coefficient among different tasks can achieve

zeros simultaneously. We present a very efficient gradient

method by composite gradient mapping and show that the

generalized gradient update in each iteration can be solved

analytically by a simple sorting procedure. We also present

the convergence rate analysis of the algorithm. Experimental

results show that our method significantly outperforms the

most state-of-the-art algorithms in both the convergence

speed and learning accuracy. Moreover, our method only

needs first order information, making it suitable for large-

scale learning problems.

In order to further improve the practical performance

of our algorithms for very large-scale setting, as in text

classification, a natural idea is to design the online version

of our algorithm. Since it is convex optimization method,

we can easily adopt online convex optimization framework

proposed in [25]. Moreover, we might take the advantage of
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(a) Objective value.
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(b) Training error rate.
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0 200 400 600 800 1000
10

15

20

25

30

Number of Iterations

S
p
a
rs

it
y

 

 

MTL−AGM
MTL−FOLOS
MTL−PGM

(d) Sparsity.

Figure 3: Performance of MTL methods on the School data set.

stochastic programming to further improve the convergence

rate for the online version of our algorithm based on the

method proposed in [26].

Another future work is to design an algorithm with the

theoretically superior convergence rate for the combination

of general nonsmooth convex loss, such as hinge loss, and

nonsmooth regularization term. Can we design a similar

algorithm and theoretically prove the fast convergence rate

for nonsmooth convex loss? It is a good question for the

further investigation.
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