Learning with Idealized Kernels

James T. Kwok
Ivor W. Tsang

JAMESK@QCS.UST.HK
IVOR@QCS.UST.HK

Department of Computer Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon,

Hong Kong

Abstract

The kernel function plays a central role in
kernel methods. Existing methods typically
fix the functional form of the kernel in ad-
vance and then only adapt the associated ker-
nel parameters based on empirical data. In
this paper, we consider the problem of adapt-
ing the kernel so that it becomes more similar
to the so-called ideal kernel. We formulate
this as a distance metric learning problem
that searches for a suitable linear transform
(feature weighting) in the kernel-induced fea-
ture space. This formulation is applicable
even when the training set can only provide
examples of similar and dissimilar pairs, but
not explicit class label information. Compu-
tationally, this leads to a local-optima-free
quadratic programming problem, with the
number of variables independent of the num-
ber of features. Performance of this method
is evaluated on classification and clustering
tasks on both toy and real-world data sets.

1. Introduction

In recent years, there has been a lot of interest on using
kernels in various aspects of machine learning, such as
classification, regression, clustering, ranking and prin-
cipal component analysis (Cristianini & Shawe-Taylor,
2000; Scholkopf & Smola, 2002; Vapnik, 1998). The
basic idea of kernel methods is to map the data from
an input space to a feature space F via some map
¢, and then apply a linear procedure there. It is now
well-known that the computations do not involve ¢ ex-
plicitly, but depend only on the inner product defined
in F, which in turn can be obtained efficiently from a
suitable kernel function (the “kernel trick”).

Because of the central role of the kernel, a poor kernel

choice can lead to significantly impaired performance.
Typically, the practitioner has to select the kernel be-
fore learning starts, with common choices being the
polynomial kernel and radial basis function (RBF) ker-
nel. The associated kernel parameters (such as the
order in polynomial kernel, or the width in RBF ker-
nel) can then be determined by optimizing a quality
functional of the kernel (Ong et al., 2003). Examples
of quality functionals include kernel target alignment
(Cristianini et al., 2002b), generalization error bounds
(Chapelle et al., 2002; Vapnik, 1998), Bayesian prob-
abilities (Sollich, 2002) and cross-validation error.

Instead of adapting only the kernel parameters, a re-
cent development is on adapting also the form of the
kernel itself. As all information on the feature space
is encoded in the kernel matrix (also called the Gram
matriz), one can bypass the learning of the kernel func-
tion by just learning the kernel matrix instead, using
techniques such as semi-definite programming (Lanck-
riet et al., 2002) or alignment maximization (Cristian-
ini et al., 2002b). However, these usually work better
in transduction problems. For the induction setting,
a novel approach that selects the kernel function di-
rectly is by using the superkernel (Ong et al., 2003),
which is a linear combination of kernels in a reproduc-
ing kernel Hilbert space on the space of kernels itself.
A related approach is to obtain this kernel combina-
tion by boosting (Crammer et al., 2003). An earlier
kernel adaptation work based on information geometry
has also been proposed in (Amari & Wu, 1999).

On the other hand, as a kernel defines an inner prod-
uct (and, consequently, a distance metric) in the fea-
ture space F, the kernel design problem can also be
regarded as the problem of finding a good distance
metric or a set of good feature weights in F. In
the past decades, a large number of feature weight-
ing methods have been proposed (Wettschereck et al.,
1997). However, standard feature weighting methods

Proceedings of the Twentieth International Conference on Machine Learning (ICML-2008), Washington DC, 2003.

operate in the input space and the number of param-
eters (weights) increases with the number of features.
Hence, they cannot be easily kernelized, as the dimen-
sionality of F is usually very large (sometimes even
infinite). Note that some feature weighting methods
have recently been proposed specifically for support
vector machines (SVMs) (e.g., (Grandvalet & Canu,
2003)). However, they again can only select features
in the input space, but not in the feature space.

Another limitation of existing kernel design methods
and most feature weighting methods is that they are
designed for classification problems, and thus assume
the availability of class label information in the train-
ing set. However, this is sometimes difficult to ob-
tain and we may only know that certain pairs of pat-
terns are similar (or dissimilar). Recently, (Xing et al.,
2003) proposed a distance metric learning method that
utilizes such similarity information using convex pro-
gramming. Experimentally, this leads to significantly
improved clustering performance. However, it involves
an iterative procedure with projection and eigen de-
composition, and becomes very computationally ex-
pensive when the number of features is large.

More informally, the kernel can be regarded as a func-
tion defining the pairwise similarity between patterns.
For perfect classification (clustering), two patterns
should be considered “similar” if and only if they be-
long to the same class (cluster). The resultant kernel
constructed from such an “oracle” is called the ideal
kernel (Cristianini et al., 2002b). This, of course, im-
plies perfect knowledge of the problem and such an
“oracle” does not exist in practice.

While obtaining the ideal kernel function is infeasible,
in a classification problem, one can at least define the
ideal kernel matrix on the training patterns based on
the provided label information. As the ideal kernel is
optimal, we can idealize a given kernel by making it
more similar to the ideal kernel matrix. The crucial
question, however, is on how to generalize this to pat-
terns outside the training set. In this paper, we con-
strain the kernel adaptation by a linear transform on
F, which can also be regarded as learning the feature
weights or distance metric in F. We then show that
this can be further extended from classification prob-
lems to situations where only similarity information
is available. Computationally, we obtain a quadratic
programming problem, as is commonly encountered in
the kernel literature.

The rest of this paper is organized as follows. Section 2
gives a short review on the ideal kernel and alignment
as detailed in (Cristianini et al., 2002a; Cristianini
et al., 2002b). Section 3 describes the proposed kernel

adaptation method. Experimental results on both toy
and real-world data sets are presented in Section 4,
and the last section gives some concluding remarks.

2. Ideal Kernel and Alignment

Consider a two-class classification problem with train-
ing set {(x1,v1);--.,(Xn,yn)}, where x; € R and
y € {—1,41}. The kernel function defines an inner
product or, more generally, a pairwise similarity mea-
sure, in the feature space. In the ideal case where the
class label y(x) for any pattern x can be obtained from
an “oracle”, two patterns x;,x; should be considered
“similar” if and only if they belong to the same class.
Thus, the optimal kernel, or the so-called ideal kernel,
K* is given by (Cristianini et al., 2002b)*:

Of course, this requires perfect knowledge of the prob-
lem and such an “oracle” does not exist in practice.
Another extreme in kernel design is to avoid the use of
domain knowledge completely. However, this will lead
to the trivial kernel and is impossible to learn (Cris-
tianini et al., 2002b). Hence, some prior knowledge
or constraint is always needed in designing the ker-
nel. A commonly used constraint is that the desired
kernel is a weighted combination of some base kernels
(Cristianini et al., 2002a; Lanckriet et al., 2002).

To assess the quality of a kernel, we will focus on
one particular quality functional called the alignment
(Cristianini et al., 2002b). The (empirical) alignment
of a kernel k; with a kernel ky w.r.t. to the sample is

defined as: A(ky, ko) = T <KK11>’53(2 = where K;

is the kernel matrix for the sample using kernel &;, and
(-,-) is the Frobenius product?. When K> is the ideal
kernel, this (kernel target) alignment can be used to
measure the similarity between the kernel and target.
Moreover, the estimate of alignment is concentrated?®,
meaning that if we obtain a high alignment on the
training set, we can also expect a high alignment on
the test set. Finally, high alignment also implies good
generalization performance of the resulting classifier.

'In (Cristianini et al., 2002b), Kj; = —1 if y(xi) #
y(x;).

“The Frobenius product between two matrices M =
[mi;] and N = [n;;] is given by (M, N) = 37, mi;ni;.

3An empirical estimate is concentrated if the probabil-
ity that it deviates from its mean can be bounded as an
exponentially decaying function of that deviation.

3. Adapting the Kernel
3.1. The Idealized Kernel

In this Section, we consider idealizing a given kernel K
such that it becomes more similar to the ideal kernel
K*. A simple way is to modify K to

K=K+%K*, 2)

where 7 > 0 is a parameter to be determined (Sec-
tion 3.2.3). For a two-class problem, this means

K':{ Kij+3 vi=uyj,

Y Kij Yi £ Yj-

As both K and K™ are valid kernels, so is the idealized
kernel K. On restricting the value of v to 2, K reduces
to the kernel proposed in (Zhang et al., 2002).

As we would expect, K will have a higher alignment.

Proposition 1 Assuming that v > 0, then the align-
ment of the idealized kernel K will be greater than that
of the original kernel K if v > —ffg(’fn;)) ,
are the numbers of positive and megative examples in
the training set respectively.

where ny ,n_

Proof. The alignments for K and K are A(K,K*) =
KK apd KD respectively.
VK K*)\/(K,K) VK" K*)\/(K.K)

Now, (K*,K*) = ni + n?, (K,K*) = (K +
1K*,K*) = (K,K*) —f; I(n% +n2) and (K,K) =
(K,K) + v(K,K*) + Z-(n% + n?). Using the facts
that (K, K) > 0,]A(K, K*)| < 1 and the assumption
that v > 0, result then follows after some simplifica-
tion. O

Remark. As vy > 0, s0 as long as (K, K*) > 0 (i.e.,, K
is aligned in the “right” direction), then the idealized
kernel will have an increased alignment.

Extending to C' > 2 classes is straightforward. Anal-
ogous to (1), the ideal kernel matrix K* will be block
diagonal (after some row/column permutations) of the
form:

11, 0 - 0
o 11, -+ 0
K* - . . ’
o - 0 11,

where n; is the number of patterns belonging to the
ith class, and 11}, is a n; x n; matrix with all ones.
Obviously, both K* and K are again valid kernels, and
K will have a higher alignment if v > _<KC7K;)2 In
general, we may assign different weights to different
classes (as when the classes are highly unbalanced),
and similar properties on K still apply.

3.2. Formulation as Distance Metric Learning

Recall that the ideal kernel can only be defined on the
training patterns in practice, and so consequently is
the idealized kernel in (2). An important question is
then on how to generalize this for unseen patterns. In
this Section, we first address the linear kernel (and the
feature space is thus identical to the input space), and
the nonlinear case will be postponed to Section 3.3.

First, assume that the original inner product for any
two patterns x;, x; in input space R is defined as s;; =
K;; = x{Mx;, where M, is a positive semi-definite
matrix. The corresponding squared distance is then
@ = (x; —x;)'M(x; — x;). On changing K to K, this
squared distance will be changed to

Kii + Kj; — 2K = { dzj Y (3)
di; +v vi #y;

Now, consider incorporating input feature weights as
in (Wettschereck et al., 1997), and modify the inner
product to

§ij - X;AAIX]‘. (4)

Here, Apxp = [a1,...,a,] where the a;’s are a set
of “useful” directions in the input space. The corre-
sponding distance metric becomes:

di; = (x; — x;)' AA' (x; — x;). (5)

Note that as AA’ is positive semi-definite, d is always
a valid distance metric.

We now search for an A such that the distance metric
(5) obtained from feature weighting approximates the
desired (3) obtained from the idealized kernel:

G\ >dG 4y v £y

In other words, patterns in different classes will be
pulled apart (by an amount at least equal to «y) un-
der the modified distance metric, while those in the
same class may get closer together. This is again in
line with the traditional wisdom of reducing intra-class
variability and increasing inter-class variability.

The above formulation can be easily extended to the
case where only similarity information is available. De-
note the sets containing similar and dissimilar pairs by
S and D respectively. (6) can then be modified to:

2 52 S 0 (Xiaxj) € S:
dij dij { >y (thj) cD. (7)

This setting will be our main focus in the sequel.

3.2.1. PRIMAL AND DuAL

In general, we may not be able to perfectly enforce (7)
for all pairs in D and S. Hence, as for SVMs, slack
variables will be introduced in the optimization prob-
lem below. Moreover, recall that A performs a pro-
jection onto a set of useful features. This set should
ideally be small, meaning that a small rank for A (or
AA’ asrank(AA') = rank(A)) will be desirable. As-
sume that the eigen decomposition of AA’ is UXU'.
Then, rank(AA’) = rank(X) = ||X|lo. However, a
direct minimization of the zero norm is difficult and
hence we will approximate it by the Euclidean norm
[[X]]2 = [|AA'||]2. The above discussion thus leads to
the following primal problem*, which is similar to that
of the »-SVM (Schélkopt et al., 2000):

1 .

A3 S Y g

A v,

N,
S(Xz'an)ES
+C + ¢
D vy N. ij |
(xi,%;)€D
subject to

a7 > df; — &, (xi,x;) €S, (8)

& — di; > v — &, X;,X;j) €D, (9)
&i > 0,
v > 0

Here, Ns and Np are the numbers of pairs in & and
D respectively, and Cs,Cp,v are non-negative ad-
justable parameters.

To solve this constrained optimization problem, we use
the standard method of Lagrange multipliers. The La-
grangian function is

1 Cs
L = §||AAI||§+— > &

N,
S (xi,x;)€S
1
+Cp | —vy + Np Z &ij
(xi,x;)€ED

- Y ayllxi— %) (M= AA)(x; - x;)

(xi,x;)€S
+&ij)
- aij ((xi — x;)' (AA" = M)(x; — x;)

(xi,x;)€ED
=y +&j) — Z Mij&ij — Y- (10)

>]

“Note that di; = di; = 0 and hence (7) is always satisfied
when i = j (with &; = 0). Thus, in the optimization
problem, we only need to consider those £;;’s with i # j.

Setting the derivatives w.r.t. the primal variables to
zero, we obtain (on assuming that A is non-singular®),

AN = - Y ay(- xg) (ki - xg)
(xi,x;)€S
+ Y gl —x)(x — %), (11)

(xi,%;)€D
1

V=5 Y ag—nul, (12)

(xi,%;)€D
e =
Y 82 —nij (xi,x;) €D.

Substitute into (10), the dual problem becomes maxi-
mizing (w.r.t. the a;;’s)

vo= - Z iy (% — x;5)" M(x; — x;)
(xi,x;)€S
+ Z a;j(x; — x5)'M(x; — x;)
(xi,%;)€D
1 5
D) > agjap((xi — x5)" (X — 1))
(xi,%;),(xk,%1)ES
1
D) > agap((x; —x5)" (xk — x1))°
(xi.%;),(xk,%x1) €D
+ D > agan((xi —x;) (xk — x1))?,
(xi,%;)ES (xk,%1)ED
(14)
subject to
1
Cn Z Qij 2V, (15)
(xi,x;)€D
and
0<ay; < X (xix) €S, (16)

This is a standard quadratic programming (QP) prob-
lem with Ng+ Np variables (which is independent of p,
the dimensionality of x). Being a QP problem, it thus
does not suffer from the problem of local optimum.
Recently, (Xing et al., 2003) also proposed a distance
metric learning method based on similarity informa-
tion by using a full (or diagonal) distance metric ma-
trix. However, this leads to a convex programming
problem with p? (or p) variables when a full (diago-
nal) matrix is used, and involves an iterative proce-
dure comprising projection and eigen decomposition.
It is thus more costly, especially when p is high.

5This is always the case in the experiments. Geometri-
cally, this means that the neighborhood at any point will
not extend to infinity.

Finally, using (11) and the ay;’s obtained from the
dual, we can compute the modified inner product from
(4) and the corresponding distance metric from (5).

3.2.2. “SuPPORT VECTORS” AND “ERROR PAIRS”

In general, the Lagrangian multipliers in a constrained
optimization problem measure the rates of change in
the objective function, consequent upon changes in the
corresponding constraints. Hence, a;; reflects how dif-
ficult it is for the modified distance metric d to sat-
isfy the requirements in (7). By studying the Karush-
Kuhn-Tucker (KKT) conditions of the primal problem,
we obtain the following proposition:

Proposition 2 For (x;,x;) € D,

_ C

= 0<Oéij<ﬁa

ai; =0,
_C

S’Y aij_N_z;

whereas for (x;,x;) € S,

=0 0<OLZ']‘<]C\;—§,

di; —di; >0 a; =0,
SO Qi =]C\',—z

Proof. The KKT conditions of the primal are:

ai(dl —di +&;) = 0, (xi,%;) €S,(17)
ay(dy —di —v+&;) = 0, (xi,%;) € D,(18)
UISTREE (19)

py = 0. (20)

When (x;,x;) € D, there are three possible cases.
First, 0 < a5 < ZCV—’; (18) gives

szZ'j - dzz'j —7+&; =0, (21)

while (13) leads to 1;; > 0, which in turn gives &; =0
on using (19). Putting this back into (21), we obtain
d?, — d?; = . For the second case, consider a;; = 0.
Again, from (13), we have 7;; > 0 and thus &; = 0.
Substituting back into the constraint in (9), we obtain
d? — d? > . For the last case, consider a;; = &
Again, a;; > 0 leads to (21). Moreover, from (13),
ni; = 0 which means &;; may be nonzero (from (19)).

Thus d?, — d?; < 7.

Now, consider (x;,%;) € S. When 0 < a5 < f,—i, (17)
gives

while (13) leads to n;; > 0, which in turn gives &; =0
on using (19). Putting this back into (22), we obtain

d? — d? = 0. For the second case, consider a;; = 0.
Again, from (13), we have 7;; > 0 and thus &; = 0.
Substituting back into the constraint in (8), we obtain
2 — d% > 0. For the last case, consider a;; = <.
Again, a;; > 0 leads to (22). Moreover, from (13),
ni; = 0 which means &;; may be nonzero (from (19)).
Thus d2, — dZ < 0. O

Remark. In other words, when the Lagrange multi-
pliers are nonzero but less than the upper bound, the
constraints in (7) will be exactly met. When the La-
grange multipliers are zero, the constraints in (7) will
be met with a larger “margin” and the correspond-
ing pairs will not appear in the final solution in (11)
(i.e., they are not “support vectors”). Finally, when
the Lagrange multipliers are at the upper bound, the
constraints in (7) may be violated (“error”) and the
corresponding &;;’s may be nonzero. The situation is
thus analogous to that of SVM.

3.2.3. VALUE OF v

Consider taking a pair (x;,x;) € D such that 0 <
ai; < f,—’; Using Proposition 2, v can then be ob-
tained as v = d?; — d?, (which is also intuitive from
(7)). In the implementation, we obtain an average
value of 7y over all (x;,%;) pairs that satisfy the above

criteria.

3.2.4. INTERPRETATION OF v

Analogous to v-SVM (Scholkopf et al., 2000), we have:

Proposition 3 v is a lower bound on the fraction of
support vectors in D. Moreover, if v > 0, then v is

also an upper bound on the fraction of error pairs in
D.

Proof. From (15), (16), we have

1 1 C
v S & Y wisSg X x

N

b (xi,%x5)ED, ;>0 (x4i,%x5)ED,a5>0 b
#((xi,x;) € D,a;; > 0)
Np)

Recall that there are Np a;;’s in D and all support
vectors have a;; > 0. Hence, v is a lower bound on
the fraction of support vectors in D. Moreover, as
~v >0, then g =0 from (20), and (12) yields

1 1 Cp

v o= — Qi > —— > D
C 2 a2z C N

P (xix;)€D P (xi,xj) €D, ;=% P

D
Np
#((xiaxj) € Daaij =]C\Iz)

Nop '

The inequality holds as the second summation includes
only a subset of the nonzero a;;’s. Recall that for the
error pairs in D, a;; is at the upper bound CD . Hence,
v is also an upper bound on the fraction of error pairs
in D. O

3.2.5. HEURISTIC FOR COMPUTATIONAL SPEEDUP

Recall that our QP problem has Ns + Np variables.
When similarity information is abundant, Ns+Np can
be of O(n?) for a data set with n patterns, and hence
computationally expensive for large data sets. In this
paper, we use a simple heuristic inspired from locally
linear embedding (Roweis & Saul, 2000). The basic
idea is that for each pattern x, its local neighborhood
will be the most influential. Hence, we only select the
m closest (x,x;) pairs in S and D such that each of
these x;’s is also within a radius of R from x°. Thus,
Ns + Np will at most be of O(n).

3.3. Kernel Version

The previous results can be easily kernelized by re-
placing all the x by ¢(x), where ¢ is the feature map
corresponding to the original kernel K. The idealized
kernel K is then given by:

K(xa,x) = — > ay(Ke—
(xi,xj)€S

+ i (Kai —
(xi,%;)€D

Kqj) (K — Kjp)

Koj)(Kip — Kjp).

and the distance metric is:

cp(xa, xp) =
(xi,x;)ES

+ ij (Kai — Kaj
(xi,xj)€D

4. Experiments

In this Section, we perform experiments on one toy
data set and four real-world data sets (Table 1)7. The
toy data has one relevant feature, for which the first
class is normally distributed as N (3, 1) and the second
class as N(—3,1), and ten other irrelevant features,
each of them is distributed as N(0, 25).

Experiments in Section 4.1 assume only the availability
of similarity information, while Section 4.2 uses a stan-
dard classification setting. Our results are compared

In the experiments, m is set to 5 and R is set to the
median of distances for all pairs in § and D.

"soybean and wine are from the UCI machine learn-
ing repository, while colon and lymphoma are from
http://www.kyb.tuebingen.mpg.de/bs/people/weston/10.

- Z ij(Kai — Koj — Kpi + Kyj)?

— Ky + ij)2.

with those of the original kernels (linear kernel and
RBF kernel) and, wherever possible®; those of (Xing
et al., 2003) with a full distance metric matrix. To
reduce statistical variability, results here are based on
averages over 50 random repetitions.

Table 1. Datasets used in the experiments.

data set dim class

toy 11

patterns
50
50
22
40
61
35
10
10
10
17
39
71
48

—_

colon 2000

lymphoma 4026

soybean 35

wine 12

WK R WD FEIN N N

4.1. With Similarity Information Only

The experimental setup is similar to that in (Xing
et al., 2003). S is generated as a random subset of
all pairs of patterns that belong to the same class.
Its size is chosen such that the number of resulting
connected components is roughly 70% of the size of
the original data set. The learned distance metric is
then used for both classification (using the l-nearest
neighbor classifier) and clustering (using the k-means
clustering algorithm?).

As can be seen from Tables 2 and 3, the learned met-
ric leads to better classification and clustering results.
Figure 1 shows the kernel matrices for the toy data on a

8 As mentioned in Section 3.2.1, the number of param-
eters in (Xing et al., 2003) scales quadratically with the
number of features. Hence, we cannot apply this method
on the colon and lymphoma data sets, nor for adapting the
RBF kernel (which induces an infinitely-dimensional fea-
ture space).

9Here, k is set to the number of classes in each data set.
Moreover, clustering accuracy is defined as (Xing et al.,
2003):

accuracy = Z {1 _0 ?n}(?:—l{lc)z = CJ}}

i>7

where 1{-} is the indicator function, n is the number of
patterns in the data set, ¢; is the true cluster label for
pattern x;, and ¢; is the corresponding label returned by
the clustering algorithm.

Table 2. Classification errors with kernel adaptation using
similarity information.

data kernel Euclidean learned Xing
set metric metric et al.
toy linear 28.25% 9.83% 9.83%
rbf 27.75% 16.50% -
colon linear 28.75% 17.08% -
rbf 27.83% 22.67% -
lymphoma linear 14.17% 8.50% -
rbf 11.00% 9.94% -
soybean linear 2.82% 0.11% 0.71%
rbf 1.76% 0.94% -
wine linear 28.03% 12.00% 13.00%
rbf 27.36% 26.28% -

typical run of the clustering experiment. The original
kernel matrix corresponding to the Euclidean metric
(Figure 1(a)) is very noisy, due to the presence of ir-
relevant features. In contrast, those obtained from the
learned metrics exhibit clear block structures, though
the one produced by (Xing et al., 2003) still has some
undesirable lines (Figure 1(c)).

Table 3. Clustering errors with kernel adaptation using
similarity information.

data kernel Euclidean learned Xing
set metric metric et al.
toy linear 44.67% 0.00% 1.89%
rbf 49.84% 0.00% -
colon linear 22.85% 17.72% -
rbf 17.77% 14.87% -
lymphoma linear 20.50% 11.14% -
rbf 20.50% 15.08% -
soybean linear 16.37% 0.00% 0.00%
rbf 15.55% 0.00% -
wine linear 28.13% 22.37% 26.54%
rbf 27.96% 26.88% -

4.2. With Class Label Information

In this Section, we employ a standard classification
setting. A subset of patterns (60 for toy, 50 for colon,
60 for lymphoma, and about two-third of the whole
data set for soybean and wine) are randomly selected
to form the training set, while the remaining patterns
are used for testing. The sets S and D are constructed
by defining two patterns as similar if they belong to
the same class, and dissimilar otherwise.

(¢) Xing et
al..

Figure 1. Kernel matrices on the toy data (with linear ker-
nel).

Table 4 shows the classification results and the changes
in alignments. Again, our method compares favorably
with the original kernel and (Xing et al., 2003). More-
over, the alignments on both the training and test sets
typically improve after adaptation.

5. Conclusion

In this paper, we propose a kernel idealization scheme
that aims at adapting a given kernel to be more similar
to the ideal kernel. Because in practice the ideal kernel
can only be defined on the training patterns, this can-
not be achieved in a straightforward manner. However,
by noting that a kernel effectively defines a distance
metric on the corresponding feature space, we formu-
late this idealization task as a distance metric learn-
ing problem that looks for a suitable linear transform
(feature weighting) in the feature space. Moreover,
this formulation only requires a training set with ex-
amples of similar and dissimilar pairs, but not explicit
class label information. Computationally, it leads to
a local-optima-free quadratic programming problem,
with the number of variables is independent of the
number of features. Experiments on toy and real-
world data sets demonstrate that our proposed method
yields improved performance on both classification and
clustering tasks, with the presence of either similarity
or class label information.

Acknowledgments

This research has been partially supported by the Re-
search Grants Council of the Hong Kong Special Ad-
ministrative Region under grants HKUST2033/00E
and HKUST6195/02E. The authors would like to
thank Eric Xing for providing his code used in (Xing
et al., 2003).

Table 4. Classification errors with kernel adaptation using class label information.

data kernel Euclidean learned Xing train align train align test align test align
set metric metric et al. (before) (after) (before) (after)
toy linear 28.50% 3.08% 3.33% 0.17 0.62 0.15 0.53
rbf 27.75% 7.92% - 0.70 0.77 0.69 0.73
colon linear 29.83% 14.67% - 0.15 0.28 0.31 0.33
rbf 27.83% 16.83% - 0.74 0.70 0.76 0.68
lymphoma linear 14.17% 8.11% - 0.19 0.30 0.18 0.20
rbf 13.67% 11.17% - 0.68 0.69 0.70 0.75
soybean linear 2.82% 0.12% 0.59% 0.60 0.70 0.61 0.68
rbf 2.82% 1.17% - 0.77 0.86 0.79 0.84
wine linear 28.03% 10.13% 22.58% 0.53 0.54 0.55 0.56
rbf 27.62% 26.82% - 0.71 0.58 0.66 0.50
References Roweis, S., & Saul, L. (2000). Nonlinear dimensional-

Amari, S., & Wu, S. (1999). Improving support vector
machine classifiers by modifying kernel functions.
Neural Networks, 12, 783-789.

Chapelle, O., Vapnik, V., Bousquet, O., & Mukherjee,
S. (2002). Choosing multiple parameters for support
vector machines. Machine Learning, 46, 131-159.

Cramimer, K., Keshet, J., & Singer, Y. (2003). Kernel
design using boosting. Advances in Neural Informa-
tion Processing Systems 15. Cambridge, MA: MIT
Press.

Cristianini, N., Kandola, J., Elisseeff, A., & Shawe-
Taylor, J. (2002a). On kernel target alignment. Sub-
mitted to Journal of Machine Learning Research.

Cristianini, N., & Shawe-Taylor, J. (2000). An in-
troduction to support vector machines. Cambridge
University Press.

Cristianini, N., Shawe-Taylor, J., Elisseeff, A., &
Kandola, J. (2002b). On kernel-target alignment.
Advances in Neural Information Processing Sys-
tems 14. Cambridge, MA: MIT Press.

Grandvalet, Y., & Canu, S. (2003). Adaptive scaling
for feature selection in SVMs. Advances in Neu-

ral Information Processing Systems 15. Cambridge,
MA: MIT Press.

Lanckriet, G., Cristianini, N., Bartlett, P., El Ghaoui,
L., & Jordan, M. (2002). Learning the kernel matrix
with semi-definite programming. Proceedings of the

International Conference on Machine Learning (pp-
323-330).

Ong, C., Smola, A., & Williamson, R. (2003). Superk-
ernels. Advances in Neural Information Processing
Systems 15. Cambridge, MA: MIT Press.

ity reduction by locally linear embedding. Science,
290, 2323-2326.

Scholkopf, B., & Smola, A. (2002). Learning with ker-
nels. MIT.

Scholkopf, B., Smola, A., Williamson, R., & Bartlett,
P. (2000). New support vector algorithms. Neural
Computation, 12, 1207-1245.

Sollich, P. (2002). Bayesian methods for support vector
machines: Evidence and predictive class probabili-
ties. Machine Learning, 46, 21-52.

Vapnik, V. (1998). Statistical learning theory. New
York: Wiley.

Wettschereck, D., Aha, D., & Mohri, T. (1997). A
review and empirical evaluation of feature weight-
ing methods for a class of lazy learning algorithms.
Artificial Intelligence Review, 11, 273-314.

Xing, E., Ng, A., Jordan, M., & Russell, S. (2003). Dis-
tance metric learning, with application to clustering
with side-information. Advances in Neural Informa-
tion Processing Systems 15. Cambridge, MA: MIT
Press.

Zhang, Z., Kwok, J., Yeung, D., & Wang, W. (2002).
A novel distance-based classifier using convolution
kernels and Euclidean embeddings (Technical Report
HKUST-CS02-28). Department of Computer Sci-
ence, Hong Kong University of Science and Tech-
nology.

