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Abstract

Many real-world applications involve multi-
label classification, in which the labels are
organized in the form of a tree or directed
acyclic graph (DAG). However, current re-
search efforts typically ignore the label de-
pendencies or can only exploit the dependen-
cies in tree-structured hierarchies. In this pa-
per, we present a novel hierarchical multi-
label classification algorithm which can be
used on both tree- and DAG-structured hi-
erarchies. The key idea is to formulate the
search for the optimal consistent multi-label
as the finding of the best subgraph in a
tree/DAG. Using a simple greedy strategy,
the proposed algorithm is computationally
efficient, easy to implement, does not suf-
fer from the problem of insufficient/skewed
training data in classifier training, and can be
readily used on large hierarchies. Theoretical
results guarantee the optimality of the ob-
tained solution. Experiments are performed
on a large number of functional genomics
data sets. The proposed method consistently
outperforms the state-of-the-art method on
both tree- and DAG-structured hierarchies.

1. Introduction

Many real-world applications involve multi-label clas-
sification in which an instance can have multiple labels.
For example, a document can belong to more than one
categories in text categorization (Rousu et al., 2006);
a gene may be associated with more than one functions
in bioinformatics (Barutcuoglu & Troyanskaya, 2006);
and an image may belong to multiple semantic cate-
gories in image classification (Zhang & Zhou, 2007). A
recent survey on the progress of multi-label classifica-
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tion and its use in different applications can be found
in (Silla & Freitas, 2010; Tsoumakas et al., 2010).

In general, multi-label classification algorithms can be
divided into two categories: problem transformation
and algorithm adaptation (Tsoumakas et al., 2010).
Problem transformation methods transform a multi-
label classification problem into one or more single-
label classification problems, while algorithm adapta-
tion methods extend a specific learning algorithm for
multi-label classification. Examples include boosting,
decision trees, ensemble methods, neural networks,
support vector machines, genetic algorithms and the
nearest-neighbor classifier.

In many applications such as text categoriza-
tion (Rousu et al., 2006) and functional genomics
(Barutcuoglu & Troyanskaya, 2006), the labels are of-
ten organized in a tree-structured hierarchy. An in-
stance is associated with a certain label only if it is
also associated with the label’s parent in the hierar-
chy. However, most existing multi-label classification
algorithms do not take the label structure into con-
sideration. Instead, the labels are simply treated sep-
arately, leading to the need to train a large number
of classifiers (one for each label). Moreover, as some
labels (such as those at the lower levels of the hierar-
chy) may have very few positive examples, the training
data become highly skewed, which can be problematic
to many classifiers. Besides, the inconsistent labellings
between child and parent causes difficulty in interpre-
tation. Finally, the prediction performance is impaired
as structural dependencies among labels are not uti-
lized in the learning process.

Recently, progress has been made on multi-label classi-
fication on tree-structured hierarchies. A simple rem-
edy is to allow a classifier for a particular node to
predict positive only if the classifier of its parent also
predicts positive (Barutcuoglu & Troyanskaya, 2006).
A better approach is to construct a training set for
each node such that it only consists of samples be-
longing to its parent (Cesa-Bianchi et al., 2006). Al-
ternatively, large margin methods for structured out-
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put prediction can also be used on tree-structured hi-
erarchies (Rousu et al., 2006). A recent, state-of-the-
art approach is based on adapting the decision trees
(Blockeel et al., 2006).

Besides trees, more general label hierarchies can be
modeled as a directed acyclic graph (DAG), in which
a node can have multiple parents. An important
example of a DAG-structured hierarchy is the Gene
Ontology (GO), which contains valuable gene infor-
mation of functional class taxonomies. However, as
surveyed in (Silla & Freitas, 2010), most current re-
search efforts are only concerned with the easier tree-
structured hierarchies. The very few exceptions in-
clude (Barutcuoglu & Troyanskaya, 2006), which first
starts with independently trained classifiers for each
node, and then uses a Bayesian network to enforce
consistency with the hierarchy constraints. However,
this still needs a large number of independently trained
classifiers. Moreover, training of the Bayesian net-
work is computationally expensive. Also, it requires a
fairly large number of training examples, which would
eliminate the prediction of most biologically specific
GO terms (Jin et al., 2008). The state-of-the-art algo-
rithm for multi-label classification on DAG-structured
hierarchies is CLUS-HMC (Vens et al., 2008), which is
an extension of (Blockeel et al., 2006). Again, it is an
adaptation of the decision trees, and so belongs to the
category of algorithm adaptation methods. Hence, it
cannot benefit from advances in the developments of
other classification algorithms.

In this paper, we propose a problem transformation
approach for tree- and DAG-structured hierarchies.
This is thus more flexible and can be used with any
learner. It first uses the kernel dependency estima-
tion (KDE) approach (Weston et al., 2003) to reduce
the possibly large number of labels to a manageable
number of single-label learning problems. The core is-
sue is then on how to preserve the hierarchy informa-
tion among the labels. Inspired by a signal processing
algorithm called CSSA (Condensing Sort and Select
Algorithm) (Baraniuk & Jones, 1994), which aims to
find an optimal approximation subtree in a tree, we
propose our generalized CSSA that finds an optimal
subgraph in a DAG. This is then used to construct a
multi-label that is consistent with respect to the tree-
or DAG-structured hierarchy.

The rest of this paper is organized as follows. Sec-
tion 2 reviews the use of KDE in multi-label classifica-
tion. Section 3 then describes the proposed algorithm.
Experiments are presented in Section 4, and the last
section gives some concluding remarks. For the lack of
space, proofs will be deferred to the full version.

2. Kernel Dependency Estimation

In a multi-label classification problem, we are given
the training data {(xi,yi)}ni=1

, where xi is in some in-
put space X , yi ∈ {0, 1}

d is the output vector, and d is
the number of labels. Note that each yi can have more
than one nonzero entries. In many real-world applica-
tions, d can easily be in the thousands. For example,
in automatic keyword tagging for content retrieval, d
is the number of possible tags. Hence, it is computa-
tionally inefficient to train one classifier for each label.

This problem can be alleviated by first reducing the
large number of classifiers to a manageable amount
using the kernel dependency estimation (KDE) frame-
work (Weston et al., 2003). In general, KDE can be
used to learn the dependencies between two classes of
objects. When using it for multi-label classification,
the KDE algorithm consists of three steps:

1. Projection: Each label vector yi is projected to a
low-dimensional vector zi ∈ R

m.

2. Learning: Using {(xi, zi)}ni=1
, learn a mapping

from X to each projected dimension j = 1, . . . ,m.
Since the projected directions are orthogonal,
these m models can be trained independently.

3. Prediction: For a test sample x, first obtain the
prediction ẑ = [ẑ1, . . . , ẑm]T from the m learned
models. This is then mapped back (decoded) to
ŷ ∈ R

d in the original label space and followed by
further rounding to {0, 1}d.

The projection step can be implemented by various
standard techniques. For example, Hsu et al. (2009)
used compressed sensing (CS), while Tai & Lin (2010)
used principal components analysis (PCA). In this pa-
per, we will use PCA, which has been shown to outper-
form CS in both accuracy and efficiency (Tai & Lin,
2010). Specifically, PCA is performed on the label
vectors {y1, . . . ,yn}. The m leading eigenvectors are
used to form the projection matrix P ∈ R

m×d, and the
projected label vector is obtained as z = Py. On pre-
diction, ŷ can be simply obtained as PT ẑ (Tai & Lin,
2010). Note that this approach to multi-label classifi-
cation is a problem transformation method. It is thus
more flexible than algorithm adaptation methods and
any regressor can be used in the learning step.

Another advantage of KDE is that all m learners in
the projected space can learn from the whole training
set. In contrast, many hierarchical multi-label classi-
fication algorithms have to keep splitting the training
data along the path from the root to the leaf. Thus,
labels that are near the bottom of the hierarchy may
not have sufficient data for training.
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However, a major limitation of the current KDE-based
methods is that the label dependencies are not consid-
ered during prediction. Hence, the obtained labellings
between parent and child are inconsistent with the hi-
erarchy structure.

3. Proposed Method

In general, the label hierarchy can be modeled as a
DAG, in which each node corresponds to a label and
the directed edges represent label dependencies. For
the simpler case where the DAG is a tree T , the labels
are consistent if they satisfy the following T -property:

Definition 3.1 (T -property). If a node is labeled pos-
itive, its parent must also be labeled positive.

In a general DAG, each node may have multiple par-
ents. As pointed out in (Vens et al., 2008), there are
two interpretations for label consistency:

Definition 3.2 (AND-G property). If a node is labeled
positive, all its parents must also be labeled positive.

Definition 3.3 (OR-G property). If a node is labeled
positive, one of its parents must also be labeled positive.

On many data sets (such as the Gene Ontology), the
AND-G property is more relevant. The following sec-
tions describe how the projection and prediction steps
in KDE are to be modified to cater for the label hier-
archy information.

3.1. Projection with Hierarchy Information

In the projection step, Tai & Lin (2010) perform PCA
directly on the label vectors. This implicitly assumes
that the labels are unrelated. Because of the flexi-
bility of KDE, we can preserve the dependencies in a
label hierarchy by instead performing kernel PCA on
an appropriate label kernel. In this paper, we will use
the feature map commonly used in structured output
prediction (Tsochantaridis et al., 2005). Though orig-
inally used on trees, it can also be used for encoding
structure information in DAGs. Specifically, let N be
the number of nodes in the tree/DAG. The feature vec-
tor for node i is l(i) = [l1, . . . , lN ]T ∈ {0, 1}N , where
lk = 1 if k is an ancestor of i or k = i; and 0 other-
wise. The label kernel evaluation for two nodes i and
j is then l(i)T l(j).

3.2. Prediction on Tree Hierarchies

Suppose that it is known that the test sample x has L
labels. If the labels are unstructured, one can simply
pick the L largest entries in ŷ (in step 3 of KDE) as
its labels. Equivalently, this can be formulated as the

optimization problem:

max
ψ

d∑

i=1

ŷiψi s.t.

d∑

i=1

ψi = L,

where ψ = [ψ1, . . . , ψd]
T and ψi ∈ {0, 1}. When

the label hierarchy is a tree T , a natural extension
is to constrain ψ such that the T -property in Defini-
tion 3.1 is observed. In the sequel, such a ψ is called
T -nonincreasing1. The optimization problem is then

maxψ
∑

i∈T

ŷiψi (1)

s.t. ψi ∈ {0, 1}, ∀i ∈ T ,∑

i∈T

ψi = L.

ψ is T -nonincreasing,

3.2.1. The CSSA Algorithm

We first consider the following optimization
problem that originates in signal processing
(Baraniuk & Jones, 1994):2

maxψ
∑

i∈T

wiψi, (2)

s.t. ψi ≥ 0, ∀i ∈ T ,

ψ0 = 1,
∑

i∈T

ψi ≤ L,

ψ is T -nonincreasing, (3)

where wi ∈ R, and the root of T is indexed 0. If
the constraint (3) is replaced by the bound constraint
0 ≤ ψi ≤ 1, (2) reduces to the fractional knapsack
problem and can be easily solved by greedy algorithm.
Interestingly, Baraniuk & Jones (1994) showed that (2)
can still be efficiently solved by using greedy algorithm.

Its key idea is to ensure that {wi} is nonincreasing by
condensing the non-monotonic tree segments to su-
pernodes . A supernode S is formed by merging a node
(or a supernode) with its parent (Figure 1(a)). It is
assigned a supernode value (SNV) which is the av-
erage of the wi values over all its constituent nodes.
The resultant Condensing Sort and Select Algorithm
(CSSA) (Algorithm 1) is iterative. In each iteration,
an unassigned supernode S∗ with the largest SNV is
selected. If assigning ψ(S∗) to 1 does not violate the
T -property (i.e., ψ(pa(S∗)) = 1), the assignment will
be made permanent; otherwise, S∗ is condensed with
its parent. The process is repeated until

∑
i∈T

ψi = L.

1It is called T -nonincreasing because the ψ values are
nonincreasing as one traverses from the root to the leaves.

2In (Baraniuk & Jones, 1994), it is stated that wi ≥ 0.
However, this condition is indeed not required in the proof.
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(a) CSSA. (b) AND-CSSA.

Figure 1. Examples of a supernode. Roots of the supern-
ode are labeled in red.

Algorithm 1 The CSSA algorithm. Here, pa(i) is
the parent of (super)node i, and n(S) is the number
of nodes in S.
1: Initialize ψ0 ← 1; Γ← 1.
2: Initialize all other nodes as supernodes with ψi ←

0 and sort them according to the SNV’s.
3: while Γ < L do

4: Pick the unassigned supernode S∗ with the
largest SNV.

5: if ψ(pa(S∗)) = 1 then

6: ψ(S∗)← min{1, (L− Γ)/n(S∗).
7: Γ← Γ + n(S∗).
8: else

9: Condense S∗ and pa(S∗) as a new supernode.
10: end if

11: end while

The CSSA algorithm has been successfully used
in wavelet approximation (Baraniuk, 1999) and
more recently in model-based compressed sensing
(Baraniuk et al., 2010). Computationally, it is very
efficient. The most expensive step is in the initial sort-
ing of the N SNV’s (where N is the number of nodes
in T ). Hence, its time complexity is only O(N logN).

3.2.2. CSSA for Tree-Hierarchies

On setting wi to yi, the two optimization problems
(1) and (2) are almost identical, except that the ψ
solution in (2) may not be binary. However, it can
be easily seen that this ψ solution is essentially bi-
nary (Baraniuk & Jones, 1994), i.e., all the nodes with
nonzero ψi values have ψi = 1, except possibly for
those that are assigned in the last iteration. In our
multi-label classification context, these nodes (that are
assigned in the last iteration) are considered by the al-
gorithm as equally likely to be labeled positive. How-
ever, because of the insufficient “quota” left, each of
these just receive a fractional amount. In general, the
handling of these fractional labels may depend on the
application. In our experiments, since we are inter-

ested in obtaining the recall-precision curves, we can
treat these fractional labels as ones, and allow the total
number of labels for this instance to be slightly larger
than L. The whole algorithm is shown in Algorithm 2.

Algorithm 2 Multi-label classification on hierarchies.

1: {(Projection)} Perform KPCA using the label ker-
nel in Section 3.1, and obtain projection matrix P.

2: for j = 1, . . . ,m do {(Learning)}
3: Train the jth regressor using {(xi, (Pyi)j)}

N
i=1

.
4: end for

5: {(Prediction)} Obtain z ∈ R
m from the m learned

regressors, and decode as ŷ = PT z.
6: Obtain the final labels by feeding ŷ to the CSSA

(for tree) or CSSAG (for DAG) algorithm.

3.3. Prediction on DAG Hierarchies

In this section, we consider the more challenging situ-
ation where the label hierarchy is a DAG. Analogous
to (2), the optimization problem is now:

maxψ
∑

i∈G

wiψi, (4)

s.t. ψi ≥ 0, ∀i ∈ G,

ψ0 = 1,
∑

i∈G

ψi ≤ L,

ψ is G-nonincreasing,

where ψ is said to be AND-G (resp. OR-G) nonincreas-
ing if it satisfies the AND-G (resp. OR-G) property.

3.3.1. DAG with AND-G Property

In a DAG, a node may have multiple parents. Sub-
sequently, a supernode may also have multiple roots
(Figure 1(b)), and the CSSA does not work. In this
section, we extend it to CSSAG (CSSA for Graphs),
which is shown in Algorithm 3. Interestingly, the only
change required is on the condensation step. When
the current labeling is not consistent with the DAG
(steps 8 and 9), we merge the supernode S∗ with the
unassigned parent that has the smallest SNV. Intu-
itively, when S∗ is not consistent, its SNV is large
while the SNVs of its parents are smaller. Moreover,
the whole path from the root to S∗ may also have a
low total SNV. By merging S∗ with the parent with
the smallest SNV, the new supernode will have the
smallest possible SNV. Since step 3 always selects the
supernode with the largest SNV, existing supernodes
that may be more promising than the newly merged
supernode will be able to be considered first.

The following theorem justifies its optimality. More-
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Algorithm 3 CSSAG for DAG with AND-G property.

1: Initialization (same as Algorithm 1).
2: while Γ < L do

3: Pick the unassigned supernode S∗ with the
largest SNV.

4: if ψ(S̃) = 1 for all the parents S̃ of S∗ then

5: ψ(S∗)← min{1, (L− Γ)/n(S∗).
6: Γ← Γ + n(S∗).
7: else

8: Among all the unassigned parents of S∗, pick
S̃ with the smallest SNV.

9: Condense S∗ and S̃ as a new supernode.
10: end if

11: end while

(a) original DAG. (b) after conver-
sion.

Figure 2. Replicating a node in the DAG satisfying the
OR-G property.

over, obviously, its time complexity is still O(N logN).

Theorem 1. The ψ obtained by Algorithm 3 is an
optimal solution of (4) satisfying the AND-G property.

3.3.2. DAG with OR-G Property

In this section, we consider the case where the DAG
hierarchy satisfies the OR-G property. For a node to
be labeled positive, only one of its parents needs to be
labeled positive. The key idea is to preserve the label
consistencies by converting part of the DAG to a tree.
Specifically, on condensing a supernode S∗ with npa
parent supernodes (step 12 of Algorithm 4), since all
its parents are equally desirable because of the OR-G
property, we replicate S∗ npa times and merge each
replicate with one of its parents (Figure 2). Subse-
quently, the G-nonincreasing property degenerates to
the T -nonincreasing property, and the original CSSA
(for trees) is almost ready to be used. However, note
that when a supernode S∗ is selected and assigned ψ
value (step 4 of Algorithm 4), replicates of nodes in S∗

may still be present in other supernodes {S′}. Since
nodes in S∗ should never be considered again after
the ψ assignment, supernodes containing these repli-
cates have to be removed, while the unassigned nodes
in these supernodes are created as new supernodes for

future consideration (step 9). The complete algorithm
is shown in Algorithm 4. Again, its time complexity
is still O(N logN).

Algorithm 4 CSSAG for DAG with OR-G property.

1: Initialization (same as Algorithm 1).
2: while Γ < L do

3: Pick the unassigned supernode S∗ with the
largest SNV.

4: if ψ(S̃) = 1 for one of the parents S̃ of S∗ then

5: ψ(S∗)← min{1, (L− Γ)/n(S∗).
6: Γ← Γ + n(S∗).
7: Find all the unassigned supernodes {S′} such

that S′ ∩ S∗ 6= ∅.
8: for each S′ in that list do

9: Delete S′, and form a new supernode for
each node in S′ \ S∗.

10: end for

11: else

12: for each unassigned parent S̃ of S∗ do

13: Condense S∗ and S̃ as a new supernode.
14: end for

15: end if

16: end while

Theorem 2. The ψ obtained by Algorithm 4 is an
optimal solution of (4) satisfying the OR-G property.

4. Experiments

4.1. Setup

In this section, we perform experiments on a num-
ber of functional genomics data sets, using the same
setup as in (Vens et al., 2008). We use 12 yeast data
sets from (Clare, 2003), with each data set describing
a different aspect of the genes in the yeast genome.
Each data set has two versions of output labels. The
first version contains tree-structured labels, and are
annotated from MIPS’s FunCat3. The resultant tree
hierarchy has a depth of 5, and each example has an
average of 8.8 labels. The second version has DAG-
structured labels, and are annotated from the Gene
Ontology (GO)4. The resultant DAG has a depth of
14, and each example has 35 labels on average.

As in (Clare, 2003; Vens et al., 2008), two-thirds of
each data set are used for training and the remaining
one third is for testing. Out of the training set, two-
thirds are used for the actual training and one third
is for validation. As some of the data sets contain
missing features, we impute the missing values with

3http://mips.gsf.de/projects/funcat
4http://www.geneontology.org

http://mips.gsf.de/projects/funcat
http://www.geneontology.org
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Table 1. The yeast data sets used in the experiments.

#training #validation #test #classes
data set samples samples samples #attributes FunCat GO

seq 1692 876 1332 478 500 4134
pheno 653 352 581 69 456 3128
struc 1659 859 1306 19629 500 4133
hom 1661 876 1309 47035 500 4127

cellcycle 1625 848 1278 77 500 4126
church 1627 844 1278 27 500 4126
derisi 1605 842 1272 63 500 4120
eisen 1055 528 835 79 462 3758

gasch1 1631 846 1281 173 500 4126
gasch2 1635 849 1288 52 500 4132

spo 1597 837 1263 80 500 4120
expr 1636 849 1288 551 500 4132

the mean of the non-missing values for that feature. A
summary of the data sets is shown in Table 1.

In the following, we will focus on comparing methods
that can produce predictions consistent with the given
label hierarchy:

1. The proposed method: We project the labels to
a 50-dimensional space, and use ridge regression
(with its ridge parameter selected by the valida-
tion data) in the learning step.

2. CLUS-HMC (Vens et al., 2008)5: Extensive ex-
periments in (Blockeel et al., 2006; Vens et al.,
2008) has shown that CLUS-HMC is state-of-the-
art. It has outperformed methods such as CLUS-
SC, which learns a separate tree for each label,
and CLUS-HSC, which learns trees hierarchically.

3. Hierarchical SVM (H-SVM) (Cesa-Bianchi et al.,
2006) on the tree-structured hierarchies (it cannot
be used on DAG-structured hierarchies): This is
a hierarchical version of the SVM, in which the
SVM in each node i is trained only on those ex-
amples that the parent of i also predicts one.

4.2. Performance Measures

For binary classification problems, precision and recall
are defined as

Prec =
TP

TP + FP
, Rec =

TP

TP + FN
,

where TP is the number of true positives, FP is the
number of false positives, and FN is the number of false
negatives. In a multi-label classification problem, let

5http://www.cs.kuleuven.be/∼dtai/clus

TPi/FPi/FNi be the number of true positives / false
positives / false negatives for label i. The precision
and recall are then defined as (Vens et al., 2008):

Prec =

∑
iTPi∑

i TPi +
∑

i FPi
,Rec =

∑
iTPi∑

iTPi +
∑
i FNi

.

Typically, multi-label methods rely on a threshold to
decide how many labels are to be predicted for each
sample. However, the setting of this threshold de-
pends heavily on the application. As in (Vens et al.,
2008), we avoid this controversy by evaluating the
methods using the precision-recall (PR) curve, which
is obtained by varying the threshold of the multi-label
learner over the whole range6. For easy compari-
son among the different models, this whole PR curve
can also be summarized by a single performance score
called Area Under the PR Curve (AUPRC). The larger
the AUPRC, the better the model.

4.3. Results on Tree-Structured Labels

Figure 3 shows the PR curves for the various meth-
ods. Overall, our method is better than HMC-CLUS.
The only exception is at the low-recall regime on the
hom data set, where our precision is slightly lower.
Moreover, in terms of the AUPRC values, CSSA con-
sistently yields higher AUPRC than CLUS-HMC on
all the data sets (Table 2).

The precision and recall values for the H-SVM do not
change much with different settings of the regulariza-
tion parameter, and so we can only show one point for
it in each PR plot. Moreover, its recall value is often
smaller than 0.2. In many applications of hierarchi-
cal multi-label classification, the number of negative

6For example, for the proposed method, we vary its L
parameter from 1 to N .

http://www.cs.kuleuven.be/~dtai/clus
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Figure 3. PR curves for the FunCat data sets.

Table 2. AUPRC values for the FunCat data sets.

data set CSSA CLUS-HMC
seq 0.226 0.218

pheno 0.167 0.166
struc 0.194 0.189
hom 0.257 0.254

cellcycle 0.196 0.180
church 0.179 0.178
derisi 0.194 0.183
eisen 0.220 0.212

gasch1 0.216 0.212
gasch2 0.218 0.203

spo 0.216 0.195
expr 0.228 0.218

instances for each label far exceeds that of positive in-
stances. Moreover, typically, we are more interested in
testing instances with true positive labels. Hence, the
small recall value of H-SVM indicates that it may not
be of much interest in practical applications.

4.4. Results on DAG-Structured Labels

In this section, we report results on the experiments
with DAG-structured labels annotated from GO. Fig-
ure 4 compares the PR curves of the proposed method
with CLUS-HMC. As can be seen, except at very high
recalls, the PR curve of the proposed method is consis-
tently better than that of CLUS-HMC on every data
set. The AUPRC values shown in Table 3 also confirm
the superiority of our method.

5. Conclusion

In this paper, we proposed a novel hierarchical multi-
label classification algorithm which is applicable on
both tree- and DAG-structured hierarchies. There are

Table 3. AUPRC values for the GO data sets.

data set CSSAG CLUS-HMC
seq 0.478 0.469

pheno 0.426 0.425
struc 0.455 0.446
hom 0.493 0.481

cellcycle 0.454 0.443
church 0.442 0.436
derisi 0.442 0.440
eisen 0.479 0.454

gasch1 0.468 0.453
gasch2 0.454 0.449

spo 0.442 0.440
expr 0.473 0.453

two main novelties. First, we adapt and integrate an
efficient greedy algorithm (CSSA), that is originally
used for subtree optimization in signal processing, into
the kernel dependency estimation framework for multi-
label classification on tree-structured hierarchies. Sec-
ond, we further extend CSSA to the CSSAG algorithm,
which can then be used for DAG-structured hierarchies
satisfying either the AND-G or the OR-G property.
The proposed algorithm is computationally efficient,
easy to implement, does not suffer from the problem
of insufficient/skewed training data in classifier train-
ing, and can be readily used on large hierarchies with
thousands of labels (or more). Moreover, it belongs
to the problem transformation approach and so can
be used with any regressor in the underlying learning
process. Theoretical analysis shows that both versions
of the CSSAG algorithm generate optimal solutions
consistent with the given DAG. Experimental results
on a large number of functional genomics data sets
show that the proposed method consistently outper-
forms the state-of-the-art method of CLUS-HMC on
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Figure 4. PR curves for the GO data sets.

both tree- and DAG-structured hierarchies.
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