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Abstract
Distributed optimization algorithms are highly
attractive for solving big data problems. In par-
ticular, many machine learning problems can
be formulated as the global consensus opti-
mization problem, which can then be solved in
a distributed manner by the alternating direc-
tion method of multipliers (ADMM) algorithm.
However, this suffers from the straggler problem
as its updates have to be synchronized. In this
paper, we propose an asynchronous ADMM al-
gorithm by using two conditions to control the
asynchrony: partial barrier and bounded delay.
The proposed algorithm has a simple structure
and good convergence guarantees (its conver-
gence rate can be reduced to that of its syn-
chronous counterpart). Experiments on different
distributed ADMM applications show that asyn-
chrony reduces the time on network waiting, and
achieves faster convergence than its synchronous
counterpart in terms of the wall clock time.

1. Introduction
In this big data era, the data size is growing at an unprece-
dented scale. From videos in Youtube, security footage at
airports to astronomical data collected at the large synoptic
survey telescope, tons of data are being generated everyday
everywhere. In a recent digital universe study by EMC, the
world created about 1.8 zettabytes of data in 2011. Face-
book alone, for example, is estimated to be creating 12 ter-
abytes of data every day. The amount of data across the
globe is also expected to double every two years, and will
reach 35 zettabytes by 2020.

To alleviate this big data problem, the use of stochastic
techniques has recently drawn a lot of interest. Most of
them are based on variants of the stochastic gradient de-
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scent (Shalev-Shwartz et al., 2007). The idea is to replace
the gradient over the whole data set by the gradient at a sin-
gle sample (or over a small mini-batch of samples). Hence,
its per-iteration complexity is much lower, and can scale to
much larger data sets.

While the stochastic approach alleviates the big data prob-
lem by processing only a small sample subset in each itera-
tion, an alternative is to use distributed processing. This
is particularly natural for many big data applications, in
which the data sets are too large to be stored or processed
on one single computer. In distributed optimization al-
gorithms, communication among the computing nodes is
based on either shared memory (Niu et al., 2011) or dis-
tributed memory (Langford et al., 2009; Agarwal & Duchi,
2011; Ho et al., 2013; Li et al., 2013). In this paper, we will
focus on algorithms using distributed memory, as they can
often handle much larger data sets.

Consider minimizing a function f(x) in a distributed com-
puting environment with N nodes. Assume that this func-
tion can be decomposed into N components as

f(x) =

N∑
i=1

fi(x), (1)

where each fi is a local objective involving only the data
subset residing on node i. This type of problems is often
encountered in various areas such as machine learning, sig-
nal processing and wireless communication (Bertsekas &
Tsitsiklis, 1989; Zhu et al., 2010). For example, in regu-
larized risk minimization, x is the model parameter to be
estimated, and fi is the regularized risk functional defined
on the data subset at node i.

The minimization of f(x) can be reformulated as the fol-
lowing global variable consensus optimization problem
(Boyd et al., 2011; Bertsekas & Tsitsiklis, 1989):

min
x1,...,xN ,z

N∑
i=1

fi(xi) : xi = z, i = 1, 2, . . . , N, (2)

where z is the so-called consensus variable, and xi is node
i’s local copy of the parameter to be learned. In a dis-
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tributed computing environment, this problem can be ef-
ficiently solved by the alternating direction method of mul-
tipliers (ADMM) algorithm (Boyd et al., 2011), which has
been popularly used in various areas such as machine learn-
ing, computer vision and data mining. Essentially, one of
the nodes, called the master, is responsible for updating the
consensus variable z, while the remaining nodes are called
workers. Each worker minimizes its local objective fi (in
parallel) based on its data subset; and sends the updated lo-
cal copy xi to the master. The master, in turn, updates z by
driving the xi’s into consensus, and then distributes the up-
dated value back to the workers, and the process re-iterates.

However, updates in this distributed ADMM algorithm
have to be synchronized (Boyd et al., 2011). In other
words, the master needs to wait for all the workers to finish
their xi updates before it can proceed. This is at odds with
the decentralized nature of distributed computing. More-
over, when the workers have different delays (because of
difference in processing speeds, network delays, etc.), one
has to wait for the slowest worker to complete its update be-
fore the next iteration can proceed. This problem of “strag-
gler”1 allows the system to move forward only at the pace
of the slowest worker. Besides, if some processors fail,
which is often not surprising in real-world data centers, a
synchronous algorithm will come to an immediate halt.

In contrast to synchronous algorithms, asynchronicity al-
lows more independence of the nodes, a more flexible de-
sign and is also more robust to individual node failures.
Preliminary success of the asynchronous strategy has been
recently demonstrated in (Langford et al., 2009; Agarwal
& Duchi, 2011; Niu et al., 2011; Ho et al., 2013; Li et al.,
2013), though they are mostly interested in distributed gra-
dient descent methods and variants.

Motivated by these recent advances, we propose in this pa-
per an asynchronous distributed ADMM algorithm for the
global variable consensus optimization problem. There are
two essential ingredients. (i) Instead of requiring full syn-
chronization on all the workers in each ADMM iteration, a
partial synchronization is only needed. (ii) While updates
from the faster workers will be incorporated more often by
the master, we require that updates from the slow workers
cannot be older than a certain maximum delay.

The rest of this paper is organized as follows. Section 2
reviews existing works on synchronous and asynchronous
distributed algorithms that are based on ADMM. Section 3
describes the proposed asynchronous distributed algorithm,
with convergence analysis provided in Section 4. In par-
ticular, it is shown that when the proposed asynchronous

1This problem (sometimes called “the curse of the last re-
ducer” (Suri & Vassilvitskii, 2011)) is also widely known in
MapReduce, which requires a similar full synchronization in its
reduce step.

algorithm reduces to a synchronous one, its convergence
rate also reduces to the standard O( 1

T ) rate for ADMM
(He & Yuan, 2012). Finally, experiments on three differ-
ent ADMM applications are presented in Section 5, and
the last section gives some concluding remarks.

2. Related Work
2.1. Synchronous Distributed Consensus ADMM

We start with the augmented Lagrangian of problem (2):

L({xi}, z, ) =

N∑
i=1

fi(xi) + 〈λi, xi − z〉+
β

2
‖xi − z‖2,

where λi’s are the Lagrangian multipliers, β > 0 is the
penalty parameter, and 〈·, ·〉 denotes the inner product. At
the kth iteration, the values of xi and z (denoted xki and
zk) are updated by minimizing L({xi}, z) w.r.t. xi and
z. Unlike the method of multipliers, these are minimized
in an alternating manner, which allows the problem to be
more easily decomposed. The resulting ADMM update is
(Boyd et al., 2011):

xk+1
i = arg min

x
fi(x) + 〈λki , x〉+

β

2
‖x− zk‖2, (3)

zk+1 = arg min
z

N∑
i=1

−〈λki , z〉+
β

2
‖xk+1

i − z‖2, (4)

λk+1
i = λki + β(xk+1

i − zk+1). (5)

The above update can be easily implemented in a dis-
tributed system with one master and N workers. Each
worker i is responsible for updating its (xi, λi) using (3)
and (5). The updated xk+1

i ’s are then sent to the master,
which is responsible for updating the consensus variable
z and distributing its updated value back to the workers.
Note that as the (xi, λi)’s are local to each worker, their
updates can be performed by all the workers in parallel.
However, they have to be synchronized in that the mas-
ter has to wait for the xi updates from all the N work-
ers. This also necessitates the use of a global clock k.
In the sequel, this distributed consensus ADMM algorithm
will be called synchronous ADMM (sync-ADMM). The
whole update procedures for the master and workers are
shown in Algorithms 1 and 2, respectively. Recently, it
has been shown that this can be well implemented in dis-
tributed computing environments such as MPI or MapRe-
duce (Lubell-Doughtie & Sondag, 2013).

2.2. Decentralized Distributed ADMM

Recently, a number of related ADMM-based distributed al-
gorithms have been proposed. They are decentralized in
that there is no master, and the workers coordinate among
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Algorithm 1 Synchronous ADMM (sync-ADMM): Pro-
cessing by the master.

1: initialize: k = 0.
2: repeat
3: repeat
4: wait;
5: until receive updates from all N workers;
6: update zk+1 by (4);
7: broadcast zk+1 to all the workers;
8: k ← k + 1;
9: until termination;

10: output zk.

Algorithm 2 Synchronous ADMM (sync-ADMM): Pro-
cessing by worker i.

1: initialize: k = 0, λ0
i = 0.

2: repeat
3: update xk+1

i using (3);
4: send λki and xk+1

i to the master;
5: repeat
6: wait;
7: until receive the updated zk+1 from the master;
8: update λk+1

i using (5);
9: until termination.

themselves. For example, Mota et al. (2013) developed
a communication-efficient distributed algorithm extended
from the multi-block ADMM algorithm. A fixed sequence
is used to define the order in which workers are updated.
Wei & Ozdaglar (2012) proposed another decentralized
ADMM algorithm, but again, the worker updates are se-
quential. To alleviate the order problem, Wei & Ozdaglar
(2013) proposed the asynchronous ADMM algorithm, in
which workers are partitioned into groups according to
their interconnection pattern. At each iteration, one of the
groups is randomly activated, and workers therein are al-
lowed to update.

These algorithms are different from the proposed algorithm
in several aspects. First, they are decentralized, while ours
is a centralized algorithm which requires a master. Second,
their asynchrony is in the sense that only a selected worker
(or group of workers) is allowed to update at each itera-
tion. However, this implicitly requires the maintenance of
a global clock, and each group needs to be aware of each
other’s progress. Moreover, decentralized ADMM algo-
rithms are highly dependent on the network topology. In
this paper, we consider the star topology with one cen-
tral node connecting to all the workers. Each decentral-
ized ADMM iteration then has two steps: (i) the workers
optimize their local objectives and send updates to the cen-
tral node; (ii) the central node uses the workers’ updates to
optimize its local objective, and then broadcast the result.

Similar to the sync-ADMM, the central node still needs to
wait for all worker updates.

3. Distributed Asynchronous Consensus
ADMM

In this section, we present the asynchronous distributed
ADMM algorithm for the global variable consensus opti-
mization problem. In the sequel, it will be simply called
asynchronous ADMM (async-ADMM).

3.1. Master and Worker Clocks

As for the sync-ADMM in Section 2.1, the master is re-
sponsible for updating the consensus variable z, while each
worker i is responsible for updating the local primal vari-
able xi and local dual variable λi. However, as the pro-
posed algorithm is fully asynchronous, the master keeps a
clock k, which starts from zero and is incremented by 1 af-
ter each z update. Similarly, every worker also has its own
clock ki, which starts from zero and is incremented by 1
after each λi update. All the clocks k and {ki}Ni=1 are run
independently. Let xkii , λ

ki
i be the values of xi and λi when

worker i’s clock is at ki; and zk be the value of z when the
master’s clock is at k.

3.2. Updating x by the Worker

We first consider a particular worker i (at time ki). Using
the most recent2 z value (denoted z̃i) received by i from the
master, it updates its local copy xi analogous to (3), as

xki+1
i = arg min

x
fi(x) + 〈λkii , x〉+

β

2
‖x− z̃i‖2. (6)

Moreover, as the workers have different speeds, the z̃i’s
are in general different. In other words, as in recent dis-
tributed asynchronous optimization algorithms (Langford
et al., 2009; Agarwal & Duchi, 2011; Ho et al., 2013), some
workers may be using out-of-date versions of the consen-
sus variable. The new xki+1

i , together with λkii , are sent to
the master. Worker i then waits for the next z update from
the master before further processing (see Section 3.4).

3.3. Updating z by the Master

The master waits for the workers’ {(xi, λi)} updates be-
fore it can update z. Recall that for the sync-ADMM, this
can proceed only after the {xi} updates from all N work-
ers have finished. In distributed systems, this mechanism is
called a barrier, and is the simplest synchronization primi-
tive (Albrecht et al., 2006). However, as discussed in Sec-
tion 1, it suffers from the straggler problem and allows the
system to move forward only at the pace of the slowest

2On initialization, the worker does not obtain the z value from
the master, and uses a default z0 value instead.
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worker. To alleviate this problem, we relax it to a partial
barrier (Albrecht et al., 2006). Specifically, the master only
needs to wait for a minimum of S updates, where S (≥ 1)
can be much smaller than N . The synchronous ADMM
can be regarded as using the extreme setting of S = N .
Moreover, recall that some workers are using out-of-date
versions of z. Consequently, their (xi, λi) updates are also
out-of-date, an issue that the master has to cope with.

Besides, the master needs to wait for another precondition
to be satisfied before it can proceed. Note that if we only
rely on a partial barrier with small S, updates from the
slow workers will be incorporated into z much less often
than those from the faster workers. To ensure sufficient
freshness of all the updates, we enforce a bounded delay
condition. Specifically, update from every worker has to
be serviced by the master at least once every τ iterations,
where τ ≥ 1 is a user-defined parameter. In other words,
the (xi, λi) update from every worker i can at most be τ
clock cycles old (according to the master’s clock). In the
implementation, a counter τi is kept by the master for each
worker i. When (xi, λi) from worker i arrives at the mas-
ter, the corresponding τi is reset to 1; otherwise, τi is incre-
mented by 1 as the master’s clock k increments.

Note that a similar idea has been used in the machine learn-
ing community. In (Langford et al., 2009; Agarwal &
Duchi, 2011), a cyclic-delay architecture is used in which
workers communicate with the master or each other with
fixed numbers of delayed cycles. This is also similar to
bounded staleness in (Ho et al., 2013), though in (Ho et al.,
2013) it is the worker that receives a possibly staled version
of the parameter, while here it is the master that receives a
possibly out-of-date (xi, λi) update, which in turn is com-
puted using a possibly out-of-date consensus variable.

When both the partial barrier and bounded delay conditions
are met, the master can proceed with the z update. Let Φk

be the set of workers whose (xi, λi) updates have arrived
at the master at (master’s) iteration k. Analogous to (4), the
master updates z as

zk+1 = arg min
z

N∑
i=1

〈−λ̂i, z〉+
β

2
‖x̂i − z‖2

=
1

N

N∑
i=1

(
x̂i +

1

β
λ̂i

)
, (7)

where x̂i (resp. λ̂i) is the most recent xi (resp. λi) received
from worker i by the master. Note that though as few as
only S fresh updates have arrived, the update in (7) is still
based on all the {(x̂i, λ̂i)}Ni=1. Hence, it is possible that
many of these (x̂i, λ̂i)’s are out-of-date.

Finally, the master’s clock k is incremented by 1, and it
sends the updated zk+1 back to only the workers in Φk.

Algorithm 3 Asynchronous ADMM (async-ADMM): Pro-
cessing by the master.

1: initialize: k = 0, x̂i = 0, λ̂i = 0, i = 1, 2, . . . , N .
2: repeat
3: repeat
4: wait;
5: until receive a minimum of S updates from the

workers and max(τ1, τ2, . . . , τN ) ≤ τ ;
6: for worker i ∈ Φk do
7: τi ← 1;
8: x̂i ← newly received xi from worker i;
9: λ̂i ← newly received λi from worker i;

10: end for
11: for worker i /∈ Φk do
12: τi ← τi + 1;
13: end for
14: update zk+1 by (7);
15: broadcast zk+1 to all the workers in Φk;
16: k ← k + 1;
17: until termination;
18: output zk.

In other words, those workers whose updates are not re-
ceived in this iteration will not be aware of this z update.
A side benefit is that some communication bandwidth can
be saved. The whole procedure for the master is shown in
Algorithm 3.

Remark When S = N or τ = 1, the partial synchro-
nization reduces back to full synchronization. Clearly, the
proposed algorithm also reduces to sync-ADMM.

3.3.1. EXAMPLE

Figure 1 shows an example of how the asynchronous
ADMM algorithm works, with S = 2 and τ = 10. When
the master’s clock is at 14, updates from workers 3 and 4
arrive and the master commits an update to z. When the
clock is at 21, though workers 1 and 5 have both arrived
(and so meets the partial barrier condition), the (x2, λ2)
update of worker 2 has resided in the master for 10 itera-
tions. As τ = 10, workers 1 and 5 have to wait until a new
update from worker 2 arrives.

3.4. Updating λ by the Worker

After receiving the updated z̃i from the master, worker i
resumes its operation and updates its local copy of the dual
variable in a manner analogous to (5):

λki+1
i = λkii + β(xki+1

i − z̃i). (8)

Finally, it increments its local clock ki by 1, and update its
local xi as described in Section 3.2. The whole procedure
for the worker is shown in Algorithm 4.
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Figure 1. An example showing the operation of the partial barrier
and bounded delay.

Algorithm 4 Asynchronous ADMM (async-ADMM): Pro-
cessing by worker i.

1: initialize: λ0
i = 0, ki = 0.

2: repeat
3: update xki+1

i using (6);
4: send λkii and xki+1

i to the master;
5: repeat
6: wait;
7: until receive z̃i from the master;
8: update λki+1

i using (8);
9: ki ← ki + 1;

10: until termination.

3.5. Discussion

In regularized risk minimization, each fi(x) in (1) can be
decomposed as f̃i(x) + g(x), where f̃i is the risk and g is
the regularizer. Thus, (2) can also be written as

min
x1,...,xN ,z

N∑
i=1

f̃i(xi) + g(z) : xi = z, i = 1, . . . , N. (9)

This can still be solved by ADMM (Boyd et al., 2011), and
the processing of g is moved from the xi update (by the
worker) to the z update (by the master). However, the mas-
ter will then run slower and the system’s throughput may
decrease. Hence, in this paper, the formulation in (2) is
preferred.

4. Convergence Analysis
In this section, we provide convergence analysis for the
async-ADMM algorithm. Typically, the sending and re-
ceiving of the worker updates are non-deterministic and
depend on a number of factors, such as network bandwidth
and traffic, processor configuration and work load, etc. To
simplify analysis, we make the following assumption:

Assumption 4.1 At any master iteration k, updates from
the N workers have the same probability of arriving at the
master.

Assume that the master clock k has run for T iterations,
and each worker clock ki for Ti iterations. Let zkii be the z̃i
received by worker i at its kith iteration. Moreover, for
worker i, let x̄i = 1

Ti

∑Ti−1
ki=0 x

ki
i be the average of all

xi’s generated throughout its Ti iterations. Similarly, let
z̄ = 1

T

∑T−1
k=0 z

k be the average of all z’s generated by the
master throughout its T iterations.

Theorem 4.2 Let (x∗, z∗) be the optimal (primal) solution
of (2), and {λ∗i }Ni=1 the corresponding optimal dual solu-
tion. Then,

E

[
N∑
i=1

fi(x̄i)− fi(x∗) + 〈λ∗i , x̄i − z̄〉

]

≤ Nτ

2TS

{
N∑
i=1

β‖z0
i − z∗‖2 +

1

β
‖λ0

i − λ∗i ‖2
}
,(10)

where z0
i and λ0

i are the initial values of zi and λi, respec-
tively, at worker i.

The O(NτTS ) convergence rate can be intuitively explained
as follows.

• When N is large, the data subset assigned to each
worker gets smaller. Thus, each worker update is less
informative, and more iterations are needed for con-
vergence.

• A large S means that information from more workers
are collected in each master update, and so the number
of iterations required for convergence is reduced.

• Recall that every worker will be serviced by the master
at least Tτ times in T master iterations. Hence, a large
τ means that information from the slow workers are
incorporated into the master very infrequently. Thus,
again a larger T is needed for convergence.

When S = 1, one only uses the bounded delay condition
but not the partial barrier. This is similar to other distributed
optimization algorithms such as (Agarwal & Duchi, 2011;
Ho et al., 2013; Li et al., 2013). The following shows that
a much tighter bound (by a factor of N ) can be obtained.

Corollary 4.3 When S = 1,

E

[
N∑
i=1

fi(x̄i)− fi(x∗) + 〈λ∗i , x̄i − z̄〉

]

≤ τ

2T

{
N∑
i=1

β‖z0
i − z∗‖2 +

1

β
‖λ0

i − λ∗i ‖2
}
.(11)



Asynchronous Distributed ADMM for Consensus Optimization

When the workers and network are fast, updates from every
worker can arrive at each iteration. Essentially, we then
have S = N , and the bound in (10) becomes O( τT ). Since
all the τi’s are always 1 in this case, we can simply set
τ = 1. The bound then reduces to O( 1

T ), which is the
same as that of ADMM (He & Yuan, 2012). Similarly, the
proposed algorithm also reduces to sync-ADMM when τ =
1. The master then has to wait for all the workers in each
iteration. The partial barrier condition is always satisfied
for any 1 ≤ S ≤ N . In particular, we can set S = N , and
recover the O( 1

T ) convergence rate.

5. Experiments
In this section, we perform experiments on three differ-
ent ADMM applications: network average consensus (Sec-
tion 5.1), graph-guided fused lasso (Section 5.2), and low-
rank matrix factorization (Section 5.3). To reduce statisti-
cal variability, results are averaged over 5 repetitions.

We use a cluster of 18 computing nodes intercon-
nected with a gigabit Ethernet. Each node has 4 AMD
Opteron 2216 (2.4GHz) processors and 16GB memory.
The master and each worker process take up one core. The
algorithms are implemented in C++, with the Armadillo
v3.920.3 library3 linked to LAPACK/BLAS4 for efficient
computation. Moreover, the Message Passing Interface
(MPI) implementation MPICH v3.0.45 is used for inter-
processor communication. Empirically, assumption 4.1 is
observed to hold for this cluster setup.

5.1. Network Average Consensus

In this experiment, we have N = 16 workers, each with
a vector θi ∈ R100. The elements of θi are drawn i.i.d.
from the normal distribution with zero mean and unit vari-
ance. The task is to find the average of all θi’s. This can
be formulated as the optimization problem: minx f(x) =∑N
i=1 ‖x− θi‖2. Thus, fi(x) in (1) equals ‖x− θi‖2.

5.1.1. CONVERGENCE W.R.T. NUMBER OF ITERATIONS

Figure 2 shows the convergence of the objective value at
different settings. Figure 2(a) shows the case for τ = ∞.
Recall from Section 4 that the convergence rate is O(NτTS ).
Hence, as can be seen, a smaller S takes more iterations
for convergence (the case for S = 1 converges to a local
solution instead of the global one. See the discussion in the
next paragraph). In Figure 2(b), S is fixed at 1. As can be
seen, a larger τ leads to more iterations, which again agrees
with the theoretical convergence rate. Moreover, recall that
async-ADMM is the same as sync-ADMM when S = N

3http://arma.sourceforge.net/
4http://www.netlib.org/
5http://www.mpich.org/
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Figure 2. Convergence of async-ADMM w.r.t. the number of
(master) iterations on the network average consensus problem.
Recall that sync-ADMM corresponds to S = 16 or τ = 1.

or τ = 1. Hence, sync-ADMM has the fastest convergence
in terms of the number of iterations.
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Figure 3. Convergence of async-ADMM w.r.t. the wall clock time
on the network average consensus problem.

Interestingly, the curves in Figure 2(b) exhibit a staircase
structure. Note that in this simple consensus problem, the
computation costs at both the master and workers are very
small.6 Besides, for workers that reside in the same com-
puting node as the master, their communication costs with
the master are also negligible. Hence, these workers can
quickly reach a local consensus among themselves, with-
out waiting for updates from the more distant workers. As
this local consensus is only based on the θi’s of the partic-
ipating workers, it can be very different from the true av-
erage. This accounts for the flat regions of the curve. The
situation remains until the bounded delay condition kicks
in, and updates from some distant workers arrive, leading
to a new consensus (the “cliffs” of the curves), and the pro-
cess repeats. Moreover, the larger the τ , the longer it takes
for the bounded delay condition to kick in, and the longer
is the flat region. When τ =∞, little progress is observed.

5.1.2. CONVERGENCE W.R.T. TIME

On the other hand, the convergence behavior when mea-
sured w.r.t. the wall clock time shows a different picture.

6It is easy to see that both master and worker updates reduce
to the solving of quadratic equations, which have simple closed-
form solutions.
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Recall that each sync-ADMM iteration requires full syn-
chronization, and thus takes longer than an async-ADMM
iteration. Figure 3(a) shows the results for τ = ∞. As
can be seen, async-ADMM with S > 1 converges much
faster than sync-ADMM. Figure 3(b) shows the case for
S = 1. As can be seen, async-ADMM still has slower
convergence than sync-ADMM. The reason, as discussed
in Section 5.1.1, is that async-ADMM wastes a lot of iter-
ations (and thus time) on reaching inaccurate local consen-
sus. Hence, setting S = 1 may not be suitable in applica-
tions where the computation cost is much smaller than the
worker-to-master communication cost.

5.1.3. TEMPORARY WORKER FAILURE

In this section, we simulate the situation where a worker
fails temporarily. Specifically, one of the workers (say, A)
is temporally suspended for 100 milliseconds at its 10th
iteration. While the sync-ADMM has to come to an imme-
diate halt, async-ADMM allows the system to proceed for
τ more master iterations (and hopefully the faulty worker
will be able to recover by then). The convergence behavior
is shown in Figure 4. As can be seen from Figure 4(b), for
async-ADMM with τ = 1, 16, 64, their progress is delayed
(as expected) but their objective values drop again when A
is resumed operation. However, for τ = ∞, the algorithm
only converges to a local solution when the master finishes
its T iterations.

As discussed in Section 3.3, the bounded delay condition
guarantees that every worker will be serviced by the mas-
ter at least Tτ times in T master iterations. With a large τ ,
a high degree of asynchrony can be ensured though at the
expense that information in some of the workers may not
be visited that often. With a sufficiently large T , the ob-
tained solution is still guaranteed to be optimal (Section 4).
However, when the master is only allowed to run for a
fixed number of iterations (as is often the case in practice),
the solution quality may be compromised if some workers
are very slow or have intermittent failure. One approach
to alleviate this problem is by employing data redundancy
schemes (Dean & Ghemawat, 2008), which, however, is
outside the scope of this paper.

5.2. Graph-Guided Fused Lasso

In this section, we perform classification experiments with
a variant of the generalized lasso model (Tibshirani & Tay-
lor, 2011): minx

1
L

∑L
i=1 `i(x) + λ‖Ax‖1, where L is the

number of samples, `i is the logistic loss (which is more
appropriate than the square loss in classification), λ is the
regularization parameter and A is is a penalty matrix speci-
fying the desired structured sparsity pattern of x. With dif-
ferent settings of A, this can be reduced to models such
as the fused lasso, trend filtering, and wavelet smooth-
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Figure 4. Simulation with one worker suffers temporary failure
(with S = 2).
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Figure 5. Comparison of sync-ADMM and async-ADMM on the
graph-guided fused lasso problem. Recall that the combination of
S = 64, τ = 1 corresponds the sync-ADMM.

ing. Here, we will focus on the graph-guided fused lasso
(Kim et al., 2009), whose sparsity pattern is specified by
a graph G(V, E) defined on the d variates of x. By defin-
ing Aij = wij and Aji = −wij for any edge (i, j) ∈ E ,
we have ‖Ax‖1 =

∑
(i,j)∈E wij |xi − xj | which penalizes

the difference between any two neighboring xi, xj in G.
Following (Ouyang et al., 2013), G is obtained by sparse
inverse covariance selection (Banerjee et al., 2008).

We use the digits 4 and 9 from the MNIST-8M7 data set,
resulting in a total of L = 1.6 million 784-dimensional
samples. These are partitioned uniformly and each of the
N workers is assigned L

N samples. The local objective as-
sociated with worker i is thus

fi(x) =
1

L

∑
j∈Ωi

`j(x) +
λ

N
‖Ax‖1,

where Ωi is the sample subset assigned to i. The subprob-
lem in each worker is solved by the inexact ADMM algo-
rithm (Zhang et al., 2011). As shown in (Ouyang et al.,
2013; Suzuki, 2013), this is more efficient in this context
than other state-of-the-art solvers.

Figure 5(a) compares the convergence speeds of sync-

7http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets
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ADMM and async-ADMM on a set of 64 workers. As
can be seen, all four async-ADMM settings are faster than
sync-ADMM in terms of wall clock time. Figure 5(b)
shows the breakdown of total running time into computa-
tion time and network waiting time. As can be seen, while
the different (S, τ ) combinations have similar computation
time, a smaller S and/or larger τ allows for a higher degree
of asynchrony, and thus less time on network waiting.

Next, we vary the number of workers (with S = 2 and τ =
32). Figure 6 shows that async-ADMM is again faster than
sync-ADMM. Note that with more workers in the cluster,
the master needs to spend less time on waiting for at least S
worker updates to arrive. Hence, the network waiting time
is significantly less than that of sync-ADMM.
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Figure 6. Computation/network waiting time for sync-ADMM
and async-ADMM, with different numbers of workers on the
graph-guide fused lasso problem.

5.3. Low-Rank Matrix Factorization

Though the focus of this paper is on convex problems, it
is known that ADMM can also be efficiently used on non-
convex problems in practice (Boyd et al., 2011). In this
section, we demonstrate the effectiveness of the proposed
async-ADMM on one such nonconvex problem, namely,
low-rank matrix factorization (Berry et al., 2007).

Given a matrix M ∈ Rm×n, the task is to decompose
it into LRT , where L ∈ Rm×r and R ∈ Rn×r have
ranks r � min(m,n). Low-rank matrix factorization
can be formulated as the following optimization problem:
minL,R ‖M−LRT ‖2F+λ1‖L‖2F+λ2‖R‖2F , where ‖·‖F is
the Frobenius norm, and λ1, λ2 are regularization parame-
ters. More generally, M may also have missing entries,
which can still be solved by ADMM (Ling et al., 2012).

In this experiment, we set m = 10000, n = 64000 and
r = 100. We first generate the ground-truth L∗ and R∗, by
drawing entries independently from the normal distribution
with zero mean and unit variance, and then M is obtained
as L∗R∗T . For simplicity, there is no missing entry in M ,
and we set λ1 = λ2 = 1. The matrix M is partitioned
evenly across columns and then assigned to the N = 64

workers. The local objective associated with worker i is

fi(L) = ‖Mi − LRTi ‖2F +
λ1

N
‖L‖2F + λ2‖Ri‖2F ,

where Mi and Ri are column subsets of M and R, respec-
tively, assigned to worker i, and L is the consensus vari-
able. The update of each worker is based on the ADMM
solver proposed in (Ling et al., 2012).

Figure 7(a) shows the convergence of the objective with
wall clock time. As can be seen, async-ADMM (with S =
2 and τ = 32) again converges faster than sync-ADMM.
Figure 7(b) shows the breakdown of total running time into
computation time and network waiting time. As can be
seen, the speedup by async-ADMM mainly comes from the
significant reduction in network waiting.
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Figure 7. Comparison of sync-ADMM (with S = 64, τ = 1) and
async-ADMM on the low-rank matrix factorization problem.

6. Conclusion
Existing asynchronous distributed optimization algorithms
are mainly limited to the gradient descent and its variants.
In this paper, we extended asynchronous distributed pro-
cessing to the ADMM algorithm for the global variable
consensus problem. It uses two conditions, partial barrier
and bounded delay, to control the asynchrony. Besides,
the traditional synchronous ADMM algorithm can be re-
garded as a special case. The proposed algorithm is easy
to implement, has theoretical convergence guarantees, and
is also faster than its synchronous counterpart in practice.
As many machine learning problems can be formulated as
a global variable consensus problem, it opens new oppor-
tunities for these models to be learned more efficiently in
distributed computing environments. In the future, we will
also compare with asynchronous distributed gradient-based
algorithms such as (Ho et al., 2013; Li et al., 2013).
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