
Efficient Learning with a Family of Nonconvex Regularizers
by Redistributing Nonconvexity

Quanming Yao QYAOAA@CSE.UST.HK
James T. Kwok JAMESK@CSE.UST.HK

Department of Computer Science and Engineering, Hong Kong University of Science and Technology, Hong Kong

Abstract
The use of convex regularizers allow for easy
optimization, though they often produce biased
estimation and inferior prediction performance.
Recently, nonconvex regularizers have attracted
a lot of attention and outperformed convex ones.
However, the resultant optimization problem is
much harder. In this paper, for a large class
of nonconvex regularizers, we propose to move
the nonconvexity from the regularizer to the loss.
The nonconvex regularizer is then transformed
to a familiar convex regularizer, while the
resultant loss function can still be guaranteed
to be smooth. Learning with the convexified
regularizer can be performed by existing efficient
algorithms originally designed for convex regu-
larizers (such as the standard proximal algorithm
and Frank-Wolfe algorithm). Moreover, it can
be shown that critical points of the transformed
problem are also critical points of the original
problem. Extensive experiments on a number of
nonconvex regularization problems show that the
proposed procedure is much faster than the state-
of-the-art nonconvex solvers.

1. Introduction
In many machine learning models, the associated optimiza-
tion problems are of the form

min
x∈Rd

F (x) ≡ f(x) + g(x), (1)

where x is the model parameter, f is the loss and g
is the regularizer. Obviously, the choice of regularizers
is important and application-specific. For example,
sparsity-inducing regularizers are commonly used on high-
dimensional data (Jacob et al., 2009); while low-rank

Proceedings of the 33 rd International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

regularizers are used in the learning of matrices (Candès
& Recht, 2009) and tensors (Liu et al., 2013).

Traditionally, both the loss and regularizer are convex,
leading to the popularity of convex optimization tools in
machine learning (Boyd & Vandenberghe, 2004). Promi-
nent examples include the proximal algorithm (Parikh &
Boyd, 2013) and, more recently, the Frank-Wolfe (FW)
algorithm (Jaggi, 2013). Many of them are efficient,
scalable, and have sound convergence properties.

However, the use of convex regularizers often produces
biased estimation, and produces solutions that are not as
sparse and accurate as desired (Zhang, 2010b). To alleviate
this problem, a number of nonconvex regularizers have
been recently proposed (Geman & Yang, 1995; Fan &
Li, 2001; Candès et al., 2008; Zhang, 2010a; Trzasko &
Manduca, 2009). They are all (i) nonsmooth at zero,
which encourages a sparse solution; and (ii) concave,
which places a smaller penalty than the `1 regularizer on
features with large magnitudes. Empirically, they usually
outperform convex regularizers.

However, the resulting nonconvex problem is much harder
to optimize. The concave-convex procedure (Yuille &
Rangarajan, 2002) is a general technique for nonconvex
optimization. However, at each iteration, the subproblem
can be as expensive as the original problem, and are thus
slow in practice (Gong et al., 2013; Zhong & Kwok, 2014).
Recently, proximal algorithms have also been extended for
nonconvex regularization (Gong et al., 2013; Li & Lin,
2015). However, efficient computation of the underlying
proximal operator is only possible for simple nonconvex
regularizers. When the regularizer is complicated, such as
the nonconvex versions of the fused lasso or overlapping
group lasso regularizers, the proximal step has to be solved
numerically and is again expensive. Another approach is
by using the proximal average (Zhong & Kwok, 2014),
which computes and averages the proximal step of each
underlying regularizer separately. However, because of its
approximate proximal step, convergence is usually slower
than typical applications of the proximal algorithm.

Efficient Learning with a Family of Nonconvex Regularizers by Redistributing Nonconvexity

In this paper, we propose to handle nonconvex regularizers
by reusing the abundant repository of efficient convex
algorithms originally designed for convex regularizers.
The key is to shift the nonconvexity associated with the
nonconvex regularizer to the loss function, and transform
the nonconvex regularizer to a familiar convex regularizer.
It will be shown that every critical point of the transformed
problem is also a critical point of the original problem.

To illustrate the practical usefulness of this convexification
scheme, we show how it can be used with the proximal
algorithm for nonconvex structured sparse learning, and
with the FW algorithm for matrix learning with nonconvex
low-rank regularizers. As the FW algorithm has only been
used on convex problems, we also propose a new FW
variant that has guaranteed convergence to a critical point
of the nonconvex problem.

Notation: We denote vectors and matrices by lowercase
and uppercase boldface letters, respectively. For a vector
x ∈ Rd, ‖x‖p = (

∑d
i=1 |xi|p)

1
p is its `p-norm. For

a matrix X ∈ Rm×n (where m ≤ n without loss of
generality), its nuclear norm is ‖X‖∗ =

∑m
i=1 σi(X),

where σi(X)’s are the singular values of X , and its

Frobenius norm is ‖X‖F =
√∑m

i=1

∑n
j=1X

2
ij . For two

matrices X and Y , 〈X,Y 〉 =
∑
i,j XijYij . For a smooth

function f , ∇f(x) is its gradient at x. For a convex but
nonsmooth f , ∂f(x) = {u : f(y) ≥ f(x) + 〈u, y − x〉} is
its subdifferential at x, and g ∈ ∂f(x) is a subgradient.

2. Shifting Nonconvexity from Regularizer to
Loss

In recent years, a number of nonconvex regularizers have
been proposed. Examples include the Geman penalty (GP)
(Geman & Yang, 1995), log-sum penalty (LSP) (Candès
et al., 2008), minimax concave penalty (MCP) (Zhang,
2010a), Laplace penalty (Trzasko & Manduca, 2009),
and smoothly clipped absolute deviation (SCAD) penalty
(Fan & Li, 2001). In general, learning with nonconvex
regularizers is much more difficult than learning with
convex regularizers. In this section, we show how to move
the nonconvex component from the nonconvex regularizers
to the loss function. Existing algorithms can then be reused
to learn with the convexified regularizers.

First, we make the following standard assumptions on (1).

A1. F is bounded from below;

A2. f is L-Lipschitz smooth (i.e., ‖∇f(x) − ∇f(y)‖2 ≤
L‖x− y‖2), but possibly nonconvex.

Let κ be a function that is concave, non-decreasing, ρ-
Lipschitz smooth, and κ(0) = 0. Depending on the

application, we consider g of the following forms.

C1. g(x) =
∑K
i=1 µigi(x), where µi ≥ 0,

gi(x) = κ(‖Aix‖p), (2)

and Ai is a matrix. All the popular nonconvex
regularizers in Table 1 satisfy this assumption. When
κ is the identity function, g(x) reduces to the convex
regularizer

∑K
i=1 µi‖Aix‖p. By using different Ai’s,

this becomes various structured sparsity regularizers
such as group lasso (Jacob et al., 2009), fused lasso
(Tibshirani et al., 2005), and graphical lasso (Jacob
et al., 2009).

C2. g(x) =
∑d
i=1 κ(|xi|). When κ is the identity

function, g becomes the lasso regularizer.

C3. g(X) =
∑m
i=1 κ(σi(X)), where X is a matrix. When

κ is the identity function, g becomes the nuclear norm
regularizer.

2.1. Key Idea

First, consider the form of g in C1. Rewrite each
nonconvex gi in (2) as

gi(x) = ḡi(x) + κ0‖Aix‖p, (3)

where κ0 = κ′(0), and ḡi(x) = κ(‖Aix‖p) − κ0‖Aix‖p.
Obviously, κ0‖Aix‖p is convex but nonsmooth. The
following shows that ḡi, though nonconvex, is concave and
Lipschitz smooth.

Proposition 2.1. For p ∈ (1,+∞), κ(‖z‖p) − κ0‖z‖p is
concave and L̄i-Lipschitz smooth.

Corollary 2.2. For p ∈ (1,+∞), (i) ḡi is concave and
L̄i-Lipschitz smooth; (ii) g can be decomposed as g(x) =

ḡ(x) + ğ(x), where ḡ(x) ≡
∑K
i=1 µiḡi(x) is concave

and Lipschitz smooth, while ğ(x) ≡ κ0

∑K
i=1 µi‖Aix‖p

is convex but possibly nonsmooth.

Problem (1) can then be rewritten as1

min
x
f̄(x) + ğ(x), (4)

where f̄(x) ≡ f(x) + ḡ(x). Note that f̄ (viewed as an
augmented loss) is L̄-Lipschitz smooth, where L̄ = L +∑K
i=1 µiL̄i; while ğ (viewed as a convexified regularizer)

is convex but possibly nonsmooth. In other words,
nonconvexity is shifted from the regularizer g to the loss
f , while ensuring that the augmented loss is smooth. As
will be demonstrated in the following sections, this allows

1In the sequel, a function with a bar on top (e.g., f̄) denotes
that it is smooth; whereas a function with breve (e.g., ğ) denotes
that it may be nonsmooth.

Efficient Learning with a Family of Nonconvex Regularizers by Redistributing Nonconvexity

Table 1. Example nonconvex regularizers. Here, µ > 0, and θ > 1 for SCAD, and θ > 0 for others.
κ(α) κ′(α) κ0 ρ

GP (Geman & Yang, 1995) µα
θ+α

µθ
(θ+α)2

µ
θ

2µ
θ2

LSP (Candès et al., 2008) µ log(1 + α
θ) µ

θ+α
µ
θ

µ
θ2

MCP (Zhang, 2010a)

{
µα− α2

2θ α ≤ µθ
1
2θµ

2 α > µθ

{
µ− α

θ α ≤ µθ
0 α > µθ

µ 1
θ

Laplace (Trzasko & Manduca,
2009)

µ(1− exp(−αθ)) µ
θ exp

(
−αθ
)

µ
θ

µ
θ2

SCAD (Fan & Li, 2001)

µα α ≤ µ
−α2+2θµα−µ2

2(θ−1) µ < α ≤ θµ
µ2(1+θ)

2 α > θµ

µ α ≤ µ
−α+θµ
θ−1 µ < α ≤ θµ

0 α > θµ

µ 1
θ−1

the reuse of existing optimization algorithms originally
designed for convex regularizers on these problems with
nonconvex regularizers.

Similar results can be obtained for the g’s in C2 and C3.
Proposition 2.3. For case C2, g can be decomposed as
ḡ(x) + ğ(x), where ḡ(x) ≡

∑d
i=1 κ(|xi|) − κ0‖x‖1 is

concave and Lipschitz smooth, while ğ(x) ≡ κ0‖x‖1 is
convex and nonsmooth.
Proposition 2.4. For case C3, g can be decomposed as
ḡ(X) + ğ(X), where ḡ(X) ≡

∑m
i=1 κ(σi(X))− κ0‖X‖∗

is concave and Lipschitz smooth, while ğ(X) ≡ κ0‖X‖∗ is
convex and nonsmooth.

The following shows that the critical points of (4) are
also critical points of (1). This justifies learning via the
reformulation in (4).
Proposition 2.5. If x∗ is a critical point of (4), it is also a
critical point of (1).

Recall that ḡ is concave and ğ is convex. Hence, the
nonconvex regularizer g is decomposed as a difference
of convex functions (DC) (Hiriart-Urruty, 1985). Lu
(2012) and Gong et al. (2013) also relied on DC
decompositions of the regularizer. However, they do
not utilize this in the computational procedures, and can
only handle simple nonconvex regularizers. On the other
hand, we use the DC decomposition to simplify the
regularizers. As will be seen, while the DC decomposition
of a nonconvex function is not unique, the particular one
proposed here is crucial for efficient optimization. In the
following, we provide concrete examples to show how the
proposed convexification scheme can be used with various
optimization algorithms originally designed for convex
regularizers.

2.2. Usage with Proximal Algorithms

In this section, we provide example applications on using
the proximal algorithm for structured sparse learning.

We will focus on several group lasso variants, though
the proposed procedure can also be used in other
applications involving proximal algorithms, such as fused
lasso (Tibshirani et al., 2005) and graphical lasso (Jacob
et al., 2009).

The proximal algorithm (Parikh & Boyd, 2013) has been
commonly used for learning with convex regularizers.
With a nonconvex regularizer, the underlying proximal step
becomes much more challenging. It can still be solved
with the concave-convex procedure or its variant sequential
convex programming (SCP) (Lu, 2012). However, they are
slow in general (Gong et al., 2013; Li & Lin, 2015), as will
also be empirically demonstrated in Section 3.

2.2.1. NONCONVEX SPARSE GROUP LASSO

The feature vector x is divided into groups, and Gj contains
dimensions in x that group j contains. Let

[
xGj
]
i

= xi if
i ∈ Gj , and 0 otherwise. The (convex) sparse group lasso
is formulated as (Jacob et al., 2009):

min
x

N∑
i=1

`(yi, a
>
i x) + λ‖x‖1 +

K∑
j=1

µj‖xGj‖2,

where {(a1, y1), . . . , (aN , yN)} are the training samples, `
is a smooth loss, andK is the number of (non-overlapping)
groups.

For the nonconvex extension, the regularizer becomes
g(x) = λ

∑d
i=1 κ(|xi|) +

∑K
j=1 µjκ

(
‖xGj‖2

)
. Using

Corollary 2.2 and Proposition 2.3, the convexified reg-
ularizer is then ğ(x) = κ0(λ‖x‖1 +

∑K
j=1 µj‖xGj‖2).

This can be easily handled by the proximal gradient
algorithm in (Yuan et al., 2011). In particular, the proximal
operator of ğ can be efficiently obtained by computing
proxµj‖·‖2

(
proxλ‖·‖1

(
xGj
))

for each group separately.

As mentioned in Section 2.1, the DC decomposition is not
unique. For example, we may decompose the nonconvex
gi(x) = κ(‖xGi‖2) as ği(x) + ḡi(x), where ḡi(x) =

Efficient Learning with a Family of Nonconvex Regularizers by Redistributing Nonconvexity

−ρ2‖xGi‖
2
2 is concave and ği(x) = κ (‖xGi‖2) + ρ

2‖xGi‖
2
2

is convex but nonsmooth. However, such a ği(x) cannot be
easily handled by existing proximal algorithms.

2.2.2. NONCONVEX TREE-STRUCTURED GROUP
LASSO

In the (convex) tree-structured group lasso (Liu & Ye,
2010; Jenatton et al., 2011), dimensions in x are organized
as nodes in a tree, and each group corresponds to a subtree.2

The regularizer is of the form
∑K
j=1 µj‖xGj‖2.

For the nonconvex extension, g(x) becomes∑K
j=1 µjκ

(
‖xGj‖2

)
, and the convexified regularizer is

ğ(x) ≡ κ0

∑K
j=1 µj‖xGj‖2. As shown in (Liu & Ye,

2010), its proximal step can be computed efficiently by
processing all the groups once in some appropriate order.

2.3. Usage with the Frank-Wolfe Algorithm

The Frank-Wolfe (FW) algorithm (Jaggi, 2013), has
recently been popularly used for many convex optimization
problems in machine learning. In this section, we consider
as an example the learning of low-rank matrices. Its
optimization problem is of the form

min
X∈Rm×n

f(X) + µ

m∑
i=1

κ(σi(X)), (5)

where f is the loss. For example, in matrix completion
(Candès & Recht, 2009),

f(X) =
1

2
‖PΩ(X −O)‖2F , (6)

where O is the observed incomplete matrix, Ω ∈
{0, 1}m×n contains indices to the observed entries in O,
and [PΩ(A)]ij = Aij if Ωij = 1; and 0 otherwise. When κ
is the identity function, (5) reduces to the standard nuclear
norm regularizer.

Using Proposition 2.4, it can be easily seen that after
convexification, problem (5) can be rewritten as

min
X∈Rm×n

f̄(X) + µκ0‖X‖∗, (7)

where f̄(X) = f(X) + ḡ(X), and ḡ(X) =
µ
∑m
i=1 (κ(σi(X))− κ0σi(X)). At the tth iteration

of the FW algorithm, the key linear subproblem is
minS:‖S‖∗≤1〈S,∇f̄(Xt)〉, where Xt is the current iterate.
Its optimal solution can be easily obtained from the rank-
one SVD of ∇f̄(Xt) (Jaggi, 2013).

In contrast, the FW algorithm cannot be used di-
rectly on (5), as its linear subproblem then becomes

2Because of the lack of space, interested readers are referred
to (Liu & Ye, 2010) for details.

minS:
∑m

i=1 κ(σi(S))≤1 〈S,∇f(Xt)〉, which is difficult. Us-
ing other DC decompositions, such as ḡ(X) = −ρ2‖X‖

2
F

and ğ(X) =
∑m
i=1 κ(σi(X)) + ρ

2‖X‖
2
F , will not make

the optimization easier. The linear subproblem in FW then
becomes minS:ğ(S)≤1〈S,∇f̄(Xt)〉, which is still difficult.

Though it is computationally feasible to use FW to solve
(7), note that this transformed problem is nonconvex
(because of f̄), and convergence of the FW algorithm has
only been shown for convex problems.

In the following, we propose a FW variant (Algorithm 1)
for nonconvex problems of the form (5). A low-rank
factorization UtBtV >t of Xt is maintained throughout the
iterations. As in (Zhang et al., 2012), we adopt a local
optimization scheme to speed up convergence. However,
as f̄ is nonconvex and the gradient of ḡ depends on the
singular values of X , the method in (Zhang et al., 2012)
cannot be directly used. Instead, recall that the singular
values are orthogonally invariant. Given U and V (the
orthogonal left and right subspaces ofX), we have ḡ(X) =
ḡ(UBV >) = ḡ(B) and ‖X‖∗ = ‖UBV >‖∗ = ‖B‖∗.
Thus, (7) can be rewritten as

minU,B,V f(UBV >) + ḡ(B) + µκ0‖B‖∗ (8)
s.t. U>U = I, V >V = I,

where I is the identity matrix. This can be efficiently
solved using the matrix optimization techniques on
Grassmann manifold (Ngo & Saad, 2012).

Algorithm 1 Frank-Wolfe algorithm for solving (7). Here,
QR denotes the QR factorization.

1: U0 = [], V0 = [];
2: for t = 1 . . . T do
3: [ut, st, vt] = rank1SVD(∇f̄(Xt));
4: Ūt = QR([Ut−1,

√
stut]);

5: V̄t = QR([Vt−1,
√
stvt]);

6: obtain [Ut, Bt, Vt] from (8), using Ūt, V̄t as warm-
start; // (Xt = UtBtV

>
t)

7: [Û ,Σt, V̂] = SVD(Bt);
8: Ut = UtÛ , Vt = VtV̂ ; // (Xt = UtΣtV

>
t)

9: end for
output Xt = UtV

>
t .

Existing analysis for the FW algorithm are only for convex
problems. The following theorem shows convergence of
Algorithm 1 to a critical point of (5).

Theorem 2.6. Assume that Xt 6= 0 for t ≥ 1. The {Xt}
sequence generated by Algorithm 1 converges to a critical
point of (5).

Further speedup is possible in the special case of matrix
completion problems (where f is given by (6)). Note from
steps 7 and 8 of Algorithm 1 that Xt is implicitly stored as

Efficient Learning with a Family of Nonconvex Regularizers by Redistributing Nonconvexity

a low-rank factorization UtΣV >t . Using (6), we can obtain
∇f̄(Xt) as (Watson, 1992)

∇f̄(Xt) = PΩ

(
UtΣtV

>
t −O

)
+ UtΣ̂V

>
t , (9)

where Σ̂ = [Σ̂ii] is a diagonal matrix with Σ̂ii =
µ (κ′([Σt]ii)− κ0). Note that Ω is sparse and the rank
of Xt cannot be larger than t at the tth iteration. Thus,
(9) admits a “sparse plus low-rank” structure, which can
be used to significantly speed up the SVD computation
(Mazumder et al., 2010).

2.4. Other Uses of the Proposed Scheme

The proposed scheme can also be used to simplify
and speed up other nonconvex optimization problems in
machine learning. Here, we consider as an example a
recent nonconvex generalization of lasso (Gong & Ye,
2015), in which the standard `1 regularizer is extended to
the nonconvex version g(x) =

∑d
i=1 κ(|xi|). Plugging this

into (1), we arrive at the problem

min
x
f(x) + µ

d∑
i=1

κ(|xi|). (10)

Gong & Ye (2015) proposed a sophisticated algorithm
(HONOR) which involves a combination of quasi-Newton
and gradient descent steps. Though the algorithm is
similar to OWL-QN (Andrew & Gao, 2007) and its variant
mOWL-QN (Gong, 2015), the convergence analysis in
(Gong, 2015) cannot be directly applied as the regularizer
is nonconvex. Instead, a non-trivial extension was
developed in (Gong & Ye, 2015).

Here, by convexifying the nonconvex regularizer, (10) can
be rewritten as

min
x
f̄(x) + µκ0‖x‖1, (11)

where f̄(x) = f(x) + ḡ(x) and ḡ(x) = µ
∑d
i=1(κ(|xi|)−

κ0|xi|). It is easy to see that the convergence analysis
for mOWL-QN (specifically, Propositions 4 and 5 in
(Gong, 2015)) can be immediately applied, and guarantees
convergence of mOWL-QN to a critical point of (11).
By Proposition 2.5, this is also a critical point of (10).
Moreover, as is demonstrated in previous sections, using
other DC decompositions of g will not lead to the `1-
regularizer in (11), and mOWL-QN can no longer be
applied.

Problem (10) can be solved by either (i) directly using
HONOR, or (ii) using mOWL-QN on the transformed
problem (11). We believe that the latter approach is
computationally more efficient. Note that both HONOR
and mOWL-QN rely heavily on second-order information.
In (11), the Hessian depends only on f̄ , as the Hessian

due to ‖x‖1 is zero (Andrew & Gao, 2007). However,
in (10), the Hessian depends on both terms in the
objective, as the second-order derivative of κ is not
zero in general. HONOR constructs the approximate
Hessian using only information from f , and thus ignores
the curvature information due to

∑d
i=1 κ(|xi|). Hence,

optimizing (11) with mOWL-QN is potentially faster, as
all the second-order information is utilized. This will be
verified empirically in Section 3.4.

3. Experiments
In this section, we perform experiments on using the pro-
posed procedure with (i) proximal algorithms (Sections 3.1
and 3.2); (ii) Frank-Wolfe algorithm (Section 3.3); and (iii)
comparision with HONOR (Section 3.4).

3.1. Nonconvex Sparse Group Lasso

In this section, we perform experiments on the nonconvex
sparse group lasso model (Section 2.2.1)

min
x

1

2
‖y−A>x‖22+λ

d∑
i=1

κ(|xi|)+µ
K∑
j=1

κ(‖xGj‖2), (12)

where κ(·) is the LSP regularizer in Table 1 (with θ = 0.5).
The synthetic data set is generated as follows. The ground-
truth parameter vector x̄ ∈ R10000 is divided into 100 non-
overlapping groups: {1, . . . , 100}, {101, . . . , 200}, . . . ,
{9901, . . . , 10000}. We randomly set 75% of the groups
to zero. In each nonzero group, we randomly set 25% of its
features to zero, and generate the nonzero features from
the standard normal distribution N (0, 1). Using 20000
samples, entries of the input matrix A ∈ R10000×20000

are generated from N (0, 1). The ground-truth output is
ȳ = A>x̄, and training set output is y = ȳ + ε, where ε
is random noise following N (0, 0.05).

The proposed algorithm will be called N2C (Nonconvex-
to-Convex). The proximal step of the convexified
regularizer is obtained as in (Yuan et al., 2011), and the
nonmonotonous accelerated proximal gradient algorithm
(Li & Lin, 2015) is used for optimization. It will be
compared with the following state-of-the-art algorithms:

1. SCP: Sequential convex programming (Lu, 2012), in
which the LSP regularizer is decomposed as in Table 1
of (Gong et al., 2013).

2. GIST (Gong et al., 2013): Since the nonconvex
regularizer is not separable, the associated proximal
operator has no closed-form solution. Instead, we use
SCP (with warm-start) to solve it numerically.

3. GD-PAN (Zhong & Kwok, 2014): It performs
gradient descent with proximal average (Bauschke

Efficient Learning with a Family of Nonconvex Regularizers by Redistributing Nonconvexity

Table 2. Results on nonconvex sparse group lasso. RMSE and MABS are scaled by 10−3, and the CPU time is in seconds. The best and
comparable results (according to the pairwise t-test with 95% confidence) are highlighted.

non-accelerated accelerated convex
SCP GIST GD-PAN nmAPG N2C FISTA

RMSE 50.6±2.0 50.6±2.0 52.3±2.0 50.6±2.0 50.6±2.0 53.8±1.7
MABS 5.7±0.2 5.7±0.2 7.1±0.4 5.7±0.2 5.7±0.2 10.6±0.3

CPU time (sec) 0.84±0.14 0.92±0.12 0.94±0.22 0.65±0.06 0.48±0.05 0.79±0.14

Table 3. Results on tree-structured group lasso. The best and comparable results (according to the pairwise t-test with 95% confidence)
are highlighted.

SCP GIST GD-PAN nmAPG N2C FISTA
testing accuracy (%) 99.6±0.9 99.6±0.9 99.6±0.9 99.6±0.9 99.6±0.9 97.2±1.8

sparsity (%) 5.5±0.4 5.7±0.4 6.9±0.4 5.4±0.3 5.1±0.2 9.2±0.2
CPU time (sec) 7.1±1.6 50.0±8.1 14.2±2.6 3.8±0.4 1.9±0.3 1.0±0.4

et al., 2008) of the nonconvex regularizers. Closed-
form solutions for the proximal operator of each
regularizer are obtained separately, and then averaged.

4. nmAPG (Li & Lin, 2015): This is the nonmontonous
accelerated proximal algorithm. As for GIST, its
proximal step does not have a closed-form solution
and has to be solved numerically by SCP.

5. As a baseline, we also compare with the FISTA (Beck,
2009) algorithm, which solves the convex sparse
group lasso model by removing κ from (12).

We do not compare with the concave-convex procedure
(Yuille & Rangarajan, 2002), which has been shown to
be slow (Gong et al., 2013; Zhong & Kwok, 2014). All
algorithms are implemented in Matlab. The stopping
criterion is reached when the relative change in objective
is smaller than 10−8. Experiments are performed on a PC
with Intel i7 CPU and 32GB memory.

50% of the data are used for training, another 25%
for validation and the rest for testing. We use a fixed
stepsize of η = σmax(A>A), while λ, µ in (12) are tuned
by the validation set. For performance evaluation, we
use the (i) testing root-mean-squared error (RMSE) on
the predictions; (ii) mean absolute error of the obtained
parameter x̂ with ground-truth x, MABS = ‖x̂ −
x‖1/10000; and (iii) CPU time. Each experiment is
repeated 5 times, and the average performance reported.

Results are shown in Table 2, As can be seen, all the
nonconvex models obtain better RMSE and MABS than
FISTA, and N2C is the fastest. Note that GD-PAN is
solving an approximate problem in each iteration, and its
error is slightly worse than those of the other nonconvex
algorithms on this data set. Figure 1 shows convergence of
the objective with time for a typical run. Clearly, N2C is the
fastest, as it is based on the accelerated proximal algorithm

with an inexpensive proximal step. GD-PAN, on the other
hand, converges to an inferior solution.

Figure 1. Convergence of objective vs CPU time on nonconvex
sparse group lasso. FISTA is not shown as its (convex) objective
is different from the others.

3.2. Nonconvex Tree-Structured Group Lasso

In this section, we perform experiments on the nonconvex
tree-structured group lasso model (Section 2.2.2). We
use the face data set JAFFE3, which contains 213 images
with seven facial expressions: anger, disgust, fear, happy,
neutral, sadness and surprise. Following (Liu & Ye, 2010),
we resize each 256× 256 image to 64× 64. We also reuse
their tree structure, which is based on pixel neighborhoods.

Since our goal is only to demonstrate usefulness of the
proposed convexification scheme, we focus on the binary
classification problem “anger vs not-anger”. The logistic
loss is used, which is more appropriate for classification.
The optimization problem is

min
x

N∑
i=1

wi log
(
1+exp

(
−yi · a>i x

))
+

K∑
i=1

µiκ (‖xGi‖2) ,

where κ(·) is the LSP regularizer (with θ = 0.5),

3http://www.kasrl.org/jaffe.html

Efficient Learning with a Family of Nonconvex Regularizers by Redistributing Nonconvexity

Table 4. Results on the MovieLens data sets (CPU time is in seconds). The best RMSE’s (according to the pairwise t-test with 95%
confidence) are highlighted.

MovieLens-100K MovieLens-1M MovieLens-10M
RMSE rank time RMSE rank time RMSE rank time

N2C-FW 0.855±0.004 2 < 1 0.785±0.001 5 9.3±0.1 0.778±0.001 9 313.0±6.6
FaNCL 0.857±0.003 2 < 1 0.786±0.001 5 16.6±0.6 0.779±0.001 9 615.7±13.2
LMaFit 0.867±0.004 2 < 1 0.812±0.002 5 14.7±0.7 0.797±0.001 9 491.9±36.3
active 0.875±0.002 52 1.8±0.1 0.811±0.001 106 46.3±1.1 0.808±0.001 137 1049.8±43.2

{(a1, y1), . . . , (aN , yN)} are the training samples, andwi’s
are weights (set to be the reciprocal of the size of sample
i’s class) used to alleviate class imbalance. 60% of the data
are used for training, 20% for validation and the rest for
testing.

For the proposed N2C algorithm, the proximal step of
the convexified regularizer is obtained as in (Liu & Ye,
2010). As in Section 3.1, it is compared with SCP, GIST,
GD-PAN, nmAPG, and FISTA. The stepsize η is obtained
by line search. For performance evaluation, we use (i)
the testing accuracy; (ii) solution sparsity; and (iii) CPU
time. Each experiment is repeated five times, and the
performance averaged.

Results are shown in Table 3. As can be seen, all
nonconvex models have similar testing accuracies, and
they again outperform the convex model. Solutions from
the nonconvex models are also sparser, with the GD-
PAN solution being slightly denser due to its underlying
approximation during optimization. The N2C solution is
the sparsest. Moreover, N2C is the fastest, as can be seen
from the convergence plot in Figure 2.

Figure 2. Convergence of objective vs CPU time on nonconvex
tree-structured group lasso.

3.3. Nonconvex Low-Rank Matrix Completion

In this section, we perform experiments on matrix
completion with the loss function in (6). The LSP
regularizer is used, with θ =

√
µ as in (Yao et al., 2015).

We use the MovieLens data sets4 (Table 5), which have
4http://grouplens.org/datasets/movielens/

been commonly used for evaluating matrix completion
(Hsieh & Olsen, 2014; Yao et al., 2015). They contain
ratings {1, 2, . . . , 5} assigned by various users on movies.

Table 5. MovieLens data sets used in the experiment.
#users #items #ratings

100K 943 1,682 100,000
1M 6,040 3,449 999,714
10M 69,878 10,677 10,000,054

The proposed procedure (Algorithm 1), denoted N2C-FW,
is compared with another nonconvex matrix regularization
algorithm FaNCL recently proposed in (Yao et al., 2015).
It is an efficient proximal algorithm using approximate
SVD and automatic thresholding of singular values.
The following two popular approaches are also used as
baselines:

1. LMaFit (Wen et al., 2012): It factorizesX as a product
of low-rank matrices U ∈ Rm×k and V ∈ Rn×k.
The nonconvex objective 1

2‖PΩ(UV >−O)‖2F is then
minimized by alternating minimization on U and V
using gradient descent.

2. Active subspace selection (denoted “active”) (Hsieh
& Olsen, 2014): This solves the (convex) nuclear
norm regularized problem (with κ being the identity
function in (5)) by using the active row/column
subspaces to reduce the optimization problem size.

Following (Yao et al., 2015), we use 50% of the ratings
for training, 25% for validation and the rest for testing.
The stopping criterion is reached when the relative change
in objective is smaller than 10−4. For performance
evaluation, we use (i) the testing RMSE; and (ii) recovered
rank.

Results are shown in Table 4. As can be seen, the convex
model needs a much higher rank than the nonconvex ones,
which agrees with the previous observations in (Mazumder
et al., 2010; Yao et al., 2015). Figure 3 shows convergence
of the objective with CPU time. As the recovered matrix
rank is very low (2 to 9 in Table 4), N2C-FW is much faster
than the others as it starts from a rank-one matrix and only

Efficient Learning with a Family of Nonconvex Regularizers by Redistributing Nonconvexity

(a) MovieLens-100K. (b) MovieLens-1M. (c) MovieLens-10M.

Figure 3. Convergence of objective vs CPU time on nonconvex low-rank matrix completion. The other two baselines, LMaFit and active
subspace selection, use different objectives and are thus not shown.

(a) kdd2010a. (b) kdd2010b. (c) url.

Figure 4. Convergence of objective vs CPU time for HONOR and mOWL-QN.

increases its rank by one in each iteration. Though FaNCL
uses singular value thresholding to truncate the SVD, it
does not control the rank as directly as N2C-FW and so
is still slower.

3.4. Comparison with HONOR

In this section, we perform experiments on the model in
(10), using the logistic loss and LSP regularizer. Following
(Gong & Ye, 2015), we fix µ = 1 in (10), and θ in
the LSP regularizer to 0.01µ. Experiments are performed
on three large data sets, “kdd2010a”, “kdd2010b” and
“url”5 (Table 6). Both “kdd2010a” and “kdd2010b” are
educational data sets, and the task is to predict students’
successful attempts to answer concepts related to algebra.
The “url” data set contains a collection of websites, and the
task is to predict whether a particular website is malicious.

Table 6. Data sets used in the comparison with HONOR.
kdd2010a kdd2010b url

#samples 510,302 748,401 2,396,130
#features 20,216,830 29,890,095 3,231,961

5https://www.csie.ntu.edu.tw/˜cjlin/
libsvmtools/datasets/binary.html

We compare running HONOR (Gong & Ye, 2015) directly
on (10) with running mOWL-QN (Gong, 2015)) on the
transformed problem (11). In HONOR, the threshold of the
hybrid step is set to 10−10, which yields the best empirical
performance in (Gong & Ye, 2015).

Figure 4 shows convergence of the objective with CPU time
(note that the objectives of (10) and (11) are equivalent). As
can be seen, mOWL-QN converges faster than HONOR,
which validates our claim that the curvature information of
the nonconvex regularizer helps.

4. Conclusion
In this paper, we proposed a novel approach to learning
with nonconvex regularizers. By moving the nonconvexity
associated with the nonconvex regularizer to the loss,
the nonconvex regularizer is convexified to become a
familiar convex regularizer while the augmented loss is
still Lipschitz smooth. This allows one to reuse efficient
algorithms originally designed for convex regularizers on
the transformed problem. In particular, we illustrate how
this can be used with the proximal algorithm and Frank-
Wolfe algorithm. Experiments on a number of nonconvex
regularization problems show that the proposed procedure
is much faster than the state-of-the-art.

Efficient Learning with a Family of Nonconvex Regularizers by Redistributing Nonconvexity

Acknowledgments
This research was supported in part by the Research Grants
Council of the Hong Kong Special Administrative Region
(Grant 614513).

References
Andrew, G. and Gao, J. Scalable training of `1-

regularized log-linear models. In Proceedings of the 24th
International Conference on Machine learning, pp. 33–
40, 2007.

Bauschke, Heinz H, Goebel, Rafal, Lucet, Yves, and Wang,
Xianfu. The proximal average: basic theory. SIAM
Journal on Optimization, 19(2):766–785, 2008.

Beck, A.and Teboulle, M. A fast iterative shrinkage-
thresholding algorithm for linear inverse problems.
SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

Boyd, S. and Vandenberghe, L. Convex Optimization.
Cambridge University Press, 2004.

Candès, E.J. and Recht, B. Exact matrix completion via
convex optimization. Foundations of Computational
Mathematics, 9(6):717–772, 2009.

Candès, E.J., Wakin, M.B., and Boyd, S.P. Enhancing
sparsity by reweighted `1 minimization. Journal of
Fourier Analysis and Applications, 14(5-6):877–905,
2008.

Fan, J. and Li, R. Variable selection via nonconcave
penalized likelihood and its oracle properties. Journal
of the American Statistical Association, 96(456):1348–
1360, 2001.

Geman, D. and Yang, C. Nonlinear image recovery with
half-quadratic regularization. IEEE Transactions on
Image Processing, 4(7):932–946, 1995.

Gong, P.and Ye, J. A modified orthant-wise limited mem-
ory quasi-Newton method with convergence analysis. In
Proceedings of the 32nd International Conference on
Machine Learning, pp. 276–284, 2015.

Gong, P. and Ye, J. HONOR: Hybrid Optimization for
NOn-convex Regularized problems. In Advances in
Neural Information Processing Systems, pp. 415–423,
2015.

Gong, P., Zhang, C., Lu, Z., Huang, J., and Ye, J. A
general iterative shrinkage and thresholding algorithm
for non-convex regularized optimization problems. In
Proceedings of the International Conference on Machine
Learning, pp. 37–45, 2013.

Hiriart-Urruty, J.B. Generalized differentiability, duality
and optimization for problems dealing with differences
of convex functions. 1985.

Hsieh, C.-J. and Olsen, P. Nuclear norm minimization
via active subspace selection. In Proceedings of the
31st International Conference on Machine Learning, pp.
575–583, 2014.

Jacob, L., Obozinski, G., and Vert, J.-P. Group lasso
with overlap and graph lasso. In Proceedings of the
26th International Conference on Machine Learning, pp.
433–440, 2009.

Jaggi, M. Revisiting Frank-Wolfe: Projection-free sparse
convex optimization. In Proceedings of the 30th
International Conference on Machine Learning, pp.
427–435, 2013.

Jenatton, R., Mairal, J., Obozinski, G., and Bach,
F. Proximal methods for hierarchical sparse coding.
Journal of Machine Learning Research, 12:2297–2334,
2011.

Li, H. and Lin, Z. Accelerated proximal gradient methods
for nonconvex programming. In Advances in Neural
Information Processing Systems, pp. 379–387, 2015.

Liu, J. and Ye, J. Moreau-Yosida regularization for
grouped tree structure learning. In Advances in Neural
Information Processing Systems, pp. 1459–1467, 2010.

Liu, J., Musialski, P., Wonka, P., and Ye, J. Tensor
completion for estimating missing values in visual data.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 35(1):208–220, 2013.

Loh, P.-L. and Wainwright, M.J. Regularized M-estimators
with nonconvexity: Statistical and algorithmic theory
for local optima. In Advances in Neural Information
Processing Systems, pp. 476–484, 2013.

Lu, Z. Sequential convex programming methods for a
class of structured nonlinear programming. Preprint
arXiv:1210.3039, 2012.

Mazumder, R., Hastie, T., and Tibshirani, R. Spectral
regularization algorithms for learning large incomplete
matrices. Journal of Machine Learning Research, 11:
2287–2322, 2010.

Ngo, T. and Saad, Y. Scaled gradients on Grassmann
manifolds for matrix completion. In Advances in Neural
Information Processing Systems, pp. 1412–1420, 2012.

Parikh, N. and Boyd, S.P. Proximal algorithms.
Foundations and Trends in Optimization, 1(3):123–231,
2013.

Efficient Learning with a Family of Nonconvex Regularizers by Redistributing Nonconvexity

Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., and
Knight, K. Sparsity and smoothness via the fused lasso.
Journal of the Royal Statistical Society: Series B, 67(1):
91–108, 2005.

Trzasko, J. and Manduca, A. Highly undersampled mag-
netic resonance image reconstruction via homotopic-
minimization. IEEE Transactions on Medical Imaging,
28(1):106–121, 2009.

Watson, G.A. Characterization of the subdifferential of
some matrix norms. Linear Algebra and its Applications,
170:33–45, 1992.

Wen, Z., Yin, W., and Zhang, Y. Solving a low-rank
factorization model for matrix completion by a nonlinear
successive over-relaxation algorithm. Mathematical
Programming Computation, 4(4):333–361, 2012.

Yao, Q., Kwok, J.T., and Zhong, W. Fast low-rank matrix
learning with nonconvex regularization. In Proceedings
of IEEE International Conference on Data Mining, pp.
539–548, 2015.

Yuan, L., Liu, J., and Ye, J. Efficient methods for
overlapping group lasso. In Advances in Neural
Information Processing Systems, pp. 352–360, 2011.

Yuille, A.L. and Rangarajan, A. The concave-convex
procedure (CCCP). In Advances in Neural Information
Processing Systems, pp. 1033–1040, 2002.

Zhang, C.H. Nearly unbiased variable selection under
minimax concave penalty. Annals of Statistics, 38(2):
894–942, 2010a.

Zhang, T. Analysis of multi-stage convex relaxation for
sparse regularization. Journal of Machine Learning
Research, 11:1081–1107, 2010b.

Zhang, X., Schuurmans, D., and Yu, Y.-L. Accelerated
training for matrix-norm regularization: A boosting
approach. In Advances in Neural Information Processing
Systems, pp. 2906–2914, 2012.

Zhong, W. and Kwok, J.T. Gradient descent with proximal
average for nonconvex and composite regularization. In
Proceedings of the 28th AAAI Conference on Artificial
Intelligence, pp. 2206–2212, 2014.

