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Abstract. Side information is highly useful in the learning of a nonpara-
metric kernel matrix. However, this often leads to an expensive semidefi-
nite program (SDP). In recent years, a number of dedicated solvers have
been proposed. Though much better than off-the-shelf SDP solvers, they
still cannot scale to large data sets. In this paper, we propose a novel
solver based on the alternating direction method of multipliers (ADMM).
The key idea is to use a low-rank decomposition of the kernel matrix
Z = X�Y, with the constraint that X = Y. The resultant optimiza-
tion problem, though non-convex, has favorable convergence properties
and can be efficiently solved without requiring eigen-decomposition in
each iteration. Experimental results on a number of real-world data sets
demonstrate that the proposed method is as accurate as directly solving
the SDP, but can be one to two orders of magnitude faster.

1 Introduction

Kernel methods have been highly successful in classification, regression, cluster-
ing, ranking, and dimensionality reduction. Because of the central role of the
kernel, it is important to identify an appropriate kernel function or matrix for
the task at hand. Over the past decade, there have been a large body of litera-
ture on this kernel learning problem [8,1]. While a parametric form of the kernel
or a combination of multiple kernels are often assumed, nonparametric kernel
learning, which takes no such assumptions, is more flexible and has received
significant interest in recent years [10,7,6,14,11].

To facilitate kernel learning, obviously one has to utilize information from
the data. The most straightforward approach is to use class labels. However,
obtaining label information may sometimes be expensive and time-consuming.
In this paper, we focus on a weaker form of supervisory information, namely,
the so-called must-link and cannot-link pairwise constraints [12]. These pairwise
constraints, or side information, define whether the two patterns involved should
belong to the same class or not. Another useful source of information, which
is commonly used in semi-supervised learning, is the data manifold [2]. This
encourages patterns that are locally nearby on the manifold to have similar
predicted labels.
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To learn a kernel matrix Z, we consider the following SDP problem

min
Z�0

R(Z) + λ�(Z,T), (1)

where Z = [Zij ] ∈ R
n×n is the kernel matrix to be learned (which has to be sym-

metric and positive semidefinite (psd), denoted Z � 0), L is the graph Laplacian
matrix of the data manifold,T = [Tij ] with a similarity/dissimilarity (resp.must-

link/cannot-link) indicator matrix such that Tij =

{
1 (i, j) ∈ S,
−1 (i, j) ∈ D, , and λ

is a regularization parameter. As in [6,9,11], we use a low-rank approximation
on the kernel matrix Z. In other words, Z is approximated as Z � X�X, where
X ∈ R

r×n and rank r � n. Problem (1) can then be rewritten as

min
X,Z

R(Z) + λ�(Z,T) : Z = X�X. (2)

In this paper, we present a novel solver for (2) based on the alternating direction
method of multipliers (ADMM) [3]. Our key observation is that (2) can often

be decoupled as
∑

ij

(
R̃(Zij) + �̃(Zij , Tij)

)
. Thus, solving (2) reduces to the

solving of each individual entry Zij , which is easier and more efficient.
Notations: In the sequel, matrices and vectors are denoted in bold, with

upper-case letters for matrices and lower-case for vectors. The transpose of a
vector/matrix is denoted by the superscript �. Moreover, I is the identity matrix.

2 Alternating Direction Method of Multipliers (ADMM)

ADMM is a simple but powerful algorithm that has been successfully used in
machine learning and data mining. The standard ADMM is for solving convex
problems. Here, we consider the more general bi-convex problem [3]:

min
x,y

F (x,y) : G(x,y) = 0, (3)

where F (·, ·) is bi-convex and G(·, ·) is bi-affine1. As in the method of multi-
pliers, the more general ADMM considers the augmented Lagrangian of (3):

L (x,y,Λ) = F (x,y) +Λ�G(x,y) + ρ
2 ‖G(x,y)‖2, where Λ is the vector of La-

grangian multipliers, and ρ > 0 is a penalty parameter. At the kth iteration, the
values of x,y and Λ (denoted xk,yk and Λk) are updated as

xk+1 = argmin
x

L (x,yk,Λk), yk+1 = argmin
y

L (xk+1,y,Λk),

Λk+1 = Λk + ρG(xk+1,yk+1).

Note that while the method of multipliers minimizes L (x,y,Λk) w.r.t. x and
y jointly, ADMM allows easier decomposition of the optimization problem by
minimizing them in an alternating manner.

1 In other words, for any fixed x,y, F (·,y) and F (x, ·) are convex; while G(·,y) and
G(x, ·) are affine.
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3 Kernel Learning by ADMM

In this section, we introduce an extra variable Y to allow easier decoupling of
the optimization problem. Specifically, (2) can be equivalently formulated as

min
X,Y,Z

R(Z) + λ�(Z,T) : Z = X�Y, X = Y. (4)

Consider R(Z) = tr(ZL). Notice that both tr(ZL) and �(Z,T) are bi-convex,
and that the constraints are bi-affine. The augmented Lagrangian of (4) is

L (X,Y,Z;Λ,Π) = tr(ZL) + λ�(Z,T) +Λ • (Z−X�Y)

+
α

2

∥∥Z−X�Y
∥∥2 +Π • (X−Y) +

β

2
‖X−Y‖2 ,

where Λ,Π are the Lagrange multipliers. ADMM then updates the variables as

Xk+1 = argmin
X

L (X,Yk,Zk;Λk,Πk),Yk+1 = argmin
Y

L (Xk+1,Y,Zk;Λk,Πk),

Zk+1 = argmin
Z

L (Xk+1,Yk+1,Z;Λk,Πk),

Λk+1 = Λk + α(Zk+1 − Sk+1), Πk+1 = Πk + β(Xk+1 −Yk+1), (5)

where Sk ≡ Xk�Yk. By straightforward differentiation, the optimization sub-
problems of Xk+1,Yk+1 and Zk+1 can be solved as

Xk+1 = (Ak)−1ck, (6)

where Ak = βI+ αYkYk�, and ck = Yk(Λk + αZk + βI)� −Πk;

Yk+1 = (Bk)−1dk, (7)

where Bk = βI+ αXk+1Xk+1�, and dk = Xk+1(Λk + αZk + βI) +Πk;

Zk+1
ij =

⎧⎪⎨
⎪⎩

min
z

fij(z) (i, j) ∈ Ω (8a)(
Sk+1 − 1

α
(Λk + L)

)
ij

(i, j) /∈ Ω, (8b)

where Ω = S ∪ D, and

fij(z) = λ�̃(z, Tij) +
α

2

(
z − Sk+1

ij +
Λk
ij + Lij

α

)2

. (9)

Hence, the only remaining issue is how to solve (8a).

3.1 Different Loss Functions

In this section, we show that problem (8a) can be easily solved for a variety of
loss functions.
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�2-Loss �̃(z, Tij) = 1
2
(z−Tij)

2. Problem (8a) can be easily solved by setting
the derivative of the objective in (9) to zero, leading to

z∗ =
1

α+ λ
(αSk+1

ij + λTij − Λk
ij − Lij). (10)

Hinge Loss �̃(z, Tij) = max{1 − zTij , 0}. Problem (8a) can be rewritten

as minz,ε λε + α
2

(
z − Sk+1

ij +
Λk

ij+Lij

α

)2

: Tijz ≥ 1 − ε, ε ≥ 0. Let θ be the

Lagrange multiplier for the constraint Tijz ≥ 1− ε. Using the standard method
of Lagrange multipliers, it can be easily shown that

z∗ =
θTij − Λk

ij − Lij

α
+ Sk+1

ij , (11)

where θ = min

{
max

{
α−Tij(αS

k+1
ij −Λk

ij−Lij)

T 2
ij

, 0

}
, λ

}
.

Squared Hinge Loss �̃(z, Tij) = 1
2
max{1 − zTij , 0}2. Problem (8a) can

be rewritten as minz,ε
λ
2 ε

2 + α
2

(
z − Sk+1

ij +
Λk

ij+Lij

α

)2

: Tijz ≥ 1 − ε. Similar

to the hinge loss, the optimal solution can be obtained as

z∗ =
θTij − Λk

ij − Lij

α
+ Sk+1

ij , (12)

where θ = max

{
α−Tij(αS

k+1
ij −Λk

ij−Lij)
α
λ+T 2

ij
, 0

}
.

�1-Loss �̃(z, Tij) = |z− Tij|. With the �1-loss, fij(z) in (9) can be written as

fij(z) =
λ

α
|z − Tij |+ 1

2

(
z − Sk+1

ij +
Λk
ij + Lij

α

)2

=
λ

α
|ẑ|+ 1

2

(
ẑ + Tij − Sk+1

ij +
Λk
ij + Lij

α

)2

,

where ẑ = z−Tij. Hence, problem (8a) becomes a standard problem with �2-loss
and �1-regularizer, and the optimal ẑ∗ can be obtained as

ẑ∗ = Th λ
α

(
Sk+1
ij − Tij −

Lij + Λk
ij

α

)
,

where Thν(x) =

⎧⎨
⎩

x− ν x > ν
0 −ν ≤ |x| ≤ ν
x+ ν x < −ν,

is the soft-thresholding operator. Con-

sequently,

z∗ = ẑ∗ + Tij = Th λ
α

(
Sk+1
ij − Tij −

Lij + Λk
ij

α

)
+ Tij . (13)
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3.2 Algorithm

To monitor convergence, we require the primal and dual residuals at iteration
k + 1

Δprimal1 =
∥∥Zk+1 − Sk+1

∥∥ , Δprimal2 =
∥∥Xk+1 −Yk+1

∥∥ , Δdual =
∥∥Xk+1 −Xk

∥∥
(14)

to be small [3]. Moreover, to improve convergence, it is common to vary the
penalty parameters in each ADMM iteration. Specifically, following [3], we up-
date them as

α←
{
2α Δprimal1 > 10Δdual

max(α/2, 1.5) Δdual > 10Δprimal1

, (15)

and

β ←
{
2β Δprimal2 > 10Δdual

max(β/2, 1.5) Δdual > 10Δprimal2

. (16)

The whole procedure is shown in Algorithm 1.

Algorithm 1. Kernel learning by ADMM.

1: Input: X0,Y0,Z0, parameters ε and IterMax.

2: Output: Z = Xk�Xk (or Yk�
Yk).

3: k ← 0;
4: repeat
5: update Xk+1,Yk+1 by (6) and (7) respectively;
6: update {Zk+1

ij | (i, j) /∈ Ω} by (8a);

7: update {Zk+1
ij | (i, j) ∈ Ω} by (10), (11), (12) or (13), depending on the loss;

8: update Λk+1,Πk+1 by (5);
9: update α and β using (15) and (16);
10: compute the primal and dual residuals in (14);
11: k ← k + 1;
12: until max(Δprimal1 ,Δprimal2 ,Δdual) < ε or k > IterMax.

3.3 Convergence

With the low-rank decomposition, problem (4) is nonconvex w.r.t. X and Y,
and so we can only consider local convergence [3]. As in [13], we show below a
necessary condition for local convergence.

Lemma 1. Let W ≡ (X,Y,Z), Γ ≡ (Λ,Π), and {Wk,Γ k)} be a sequence

generated by Algorithm 1. Then, L (Wk, ·)−L (Wk+1, ·) ≥ μ
∥∥Wk −Wk+1

∥∥2,
and L (Γ k, ·) −L (Γ k+1, ·) ≥ − 1

μ

∥∥Wk −Wk+1
∥∥2, where μ = min{α, β}, and

L (X, ·) denotes that all the variables in L except X are fixed.

Proposition 1. Let {Xk,Yk,Zk,Λk,Πk} be a sequence generated by Algo-

rithm 1. If {Λk,Πk} is bounded and
∞∑
k=0

(∥∥∥Λk+1 −Λk
∥∥∥2 + ∥∥∥Πk+1 −Πk

∥∥∥2) <

∞, then Xk−Xk+1 → 0, Y k−Yk+1 → 0,Zk−Zk+1 → 0, and any accumulation
point of {Xk,Yk,Zk} satisfies the Karush-Kuhn-Tucker condition of (4).
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4 Experiments

As in [5,10], we study the performance of the proposed approach in the con-
text of data clustering. Specifically, a kernel matrix is learned from the pairwise
constraints (i.e., must-link and cannot-link), which is then used for clustering
by the kernel k-means algorithm. Experiments are performed on a number of

Table 1. Data sets used in the experiment

data set #classes #patterns #features #constraints

glass 6 214 9 256
heart 2 270 13 324
iris 3 150 4 180

protein 6 116 20 140
sonar 2 208 60 250
wine 3 178 12 214

odd-even 2 4000 256 4800

Table 2. Comparison on clustering accuracy (%) on the data sets with the squared
loss (SL), hinge loss (HL), squared hinge loss (SHL), and �1-loss (�1). The best and
comparable results (according to the pairwise t-test with 95% confidence) are high-
lighted.

loss method glass heart iris protein sonar wine odd-even

SL
ADMM 80.9±1.1 93.3±1.9 99.0±1.1 87.7±1.9 95.5±2.5 83.2±1.8 99.37±0.06
BCD 80.8±1.0 93.4±2.5 99.2±0.9 86.0±1.9 95.7±2.5 82.9±1.7 99.57±0.03

S-NPKL 80.3±1.8 91.7±2.5 99.2±1.0 86.7±2.5 95.2±2.6 82.9±1.8 99.35±0.09

HL

ADMM 80.1±1.2 92.4±2.5 99.2±1.0 87.2±1.7 95.9±2.4 83.4±1.6 99.35±0.05
BCD 79.6±1.9 85.9±3.0 98.9±1.0 85.9±2.0 94.2±3.9 83.2±1.8 99.55±0.05

S-NPKL 80.6±1.1 88.1±4.1 99.1±0.8 85.0±2.5 95.5±2.4 83.3±1.6 99.42±0.08
SDPLR 79.6±1.5 90.0±2.8 98.9±0.7 83.1±2.8 94.9±1.2 82.1±2.3 98.35±0.20

SHL
ADMM 80.7±1.6 93.4±2.0 99.0±1.1 86.8±1.8 95.5±2.5 83.1±2.1 99.35±0.10
BCD 81.0±1.6 93.4±2.5 99.2±0.9 86.4±2.3 95.7±2.5 82.9±1.7 99.57±0.03

S-NPKL 80.5±2.0 93.2±2.2 99.2±1.0 82.0±2.2 95.5±2.5 83.0±2.0 99.35±0.09
�1 ADMM 79.1±1.8 88.0±4.5 98.2±1.6 84.4±2.5 94.7±2.4 80.5±2.4 96.62±0.12

Table 3. Comparison on CPU time (second) on the data setswith the squared loss (SL),
hinge loss (HL), squared hinge loss (SHL), and �1-loss (�1). The best and comparable
results (according to the pairwise t-test with 95% confidence) are highlighted.

loss method glass heart iris protein sonar wine odd-even

SL
ADMM 5.5±1.2 10.4±2.7 2.3±1.0 1.6±1.6 6.8±1.8 3.6±2.3 359±12.5
BCD 9.9±4.2 28.9±10.1 0.9±0.1 2.2±1.5 8.3±4.9 4.0±2.1 653±18.4

S-NPKL 46.2±19.3 311.0±149.2 23.4±7.6 60.8±40.2 176.0±58.7 37.0±17.5 3,680±219.8

HL

ADMM 6.9±1.8 12.8±7.8 2.9±1.5 1.8±1.5 7.4±3.0 4.9±2.2 361±10.4
BCD 163.6±49.7 319.7±44.8 34.8±26.8 41.8±16.9 217.8±45.3 81.8±35.5 5,694±184.2

S-NPKL 59.8±13.5 224.0±106.2 41.9±6.5 44.0±8.06 180.7±82.7 49.1±23.1 1,955±352.2
SDPLR 17.4±6.6 40.1±11.2 8.8±2.0 4.7±0.9 21.6±9.8 9.4±5.7 20,065±374.6

SHL
ADMM 5.1±1.4 11.5±5.4 1.9±1.2 1.2±0.6 5.1±1.7 3.9±2.4 357±11.1
BCD 78.3±42.1 231.9±72.8 5.5±2.9 27.2±25.1 56.8±43.8 44.8±21.3 6,030±237.7

S-NPKL 57.76±17.6 157.0±86.0 15.3±3.1 43.6±8.9 131.2±56.3 55.4±29.5 1,736±284.4
�1 ADMM 7.7±1.8 13.6±5.8 3.6±1.8 1.7±0.3 8.4±1.7 5.5±2.2 413±8.2
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benchmark data sets2 (Table 1) that have been commonly used for nonparamet-
ric kernel learning [5,6,14].

The proposed Algorithm 1 (denoted “ADMM”) is compared with the three
solvers: block coordinate descent method (denoted “BCD”) [6], simple nonpara-
metric kernel learning (denoted “S-NPKL”) [14] and low-rank SDP (denoted
“SDPLR”) [4]. Similar to ADMM, all are based on a rank-r approximation of Z.
Moreover, we follow [14,6] and set the rank of the kernel matrix to the largest r
satisfying r(r + 1)/2 ≤ m, where m is the total number of constraints in Ω.

Results on the clustering accuracy and CPU time are shown in Tables 2 and
3, respectively. As can be seen, ADMM is more efficient than the other methods,
while yielding comparable clustering accuracy.

5 Conclusion

In this paper, we proposed an efficient solver for nonparametric low-rank kernel
learning. Using ADMM, it decouples the optimization problem into computation-
ally inexpensive subproblems that involve only individual entries of the kernel
matrix. Moreover, with an explicit low-rank factorization, it no longer needs to
enforce the psd constraint that would lead to expensive eigen-decomposition in
each iteration. Experimental results on a number of real-world data sets demon-
strate that the proposed method is as accurate as directly solving the SDP, but
is much faster than existing solvers.
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