
Efficient Inexact Proximal Gradient Algorithm for Nonconvex Problems

Quanming Yao1 James T. Kwok1 Fei Gao2 Wei Chen2 Tie-Yan Liu2

Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong1

Microsoft Research, Beijing, China2

{qyaoaa,jamesk}@cse.ust.hk, {feiga,wche,tyliu}@microsoft.com

Abstract
The proximal gradient algorithm has been popular-
ly used for convex optimization. Recently, it has
also been extended for nonconvex problems, and
the current state-of-the-art is the nonmonotone ac-
celerated proximal gradient algorithm. However, it
typically requires two exact proximal steps in each
iteration, and can be inefficient when the proximal
step is expensive. In this paper, we propose an effi-
cient proximal gradient algorithm that requires only
one inexact (and thus less expensive) proximal step
in each iteration. Convergence to a critical point is
still guaranteed and has aO(1/k) convergence rate,
which is the best rate for nonconvex problems with
first-order methods. Experiments on a number of
problems demonstrate that the proposed algorithm
has comparable performance as the state-of-the-art,
but is much faster.

1 Introduction
In regularized risk minimization, we consider optimization
problems of the form

min
x
F (x) ≡ f(x) + g(x), (1)

where f is the loss, and g is the regularizer. Typically, f is
smooth and convex (e.g., square and logistic losses), and g
is convex but may not be differentiable (e.g., `1 and nuclear
norm regularizers). The proximal gradient (PG) algorithm
[Parikh and Boyd, 2014], together with its accelerated variant
(APG) [Beck and Teboulle, 2009b; Nesterov, 2013], have
been popularly used for solving this convex problem. Its crux
is the proximal step proxg(·) = arg minx

1
2‖x−·‖

2
2 + ηg(x),

which can often be easily computed in closed-form.
While convex regularizers are easy to use, the resultant

predictors may be biased [Zhang, 2010]. Recently, there is
growing interest in the use of nonconvex regularizers, such
as the log-sum-penalty [Candès et al., 2008] and capped
`1-norm [Zhang, 2010] regularizers. It has been shown
that these often lead to sparser and more accurate models
[Gong et al., 2013; Lu et al., 2014; Zhong and Kwok, 2014;
Yao et al., 2015]. However, the associated proximal steps
become more difficult to compute analytically, and cheap

closed-form solutions exist only for some simple nonconvex
regularizers [Gong et al., 2013]. This is further aggravated by
the fact that the state-of-the-art PG algorithm for nonconvex
optimization, namely the nonmonotone accelerated proximal
gradient (nmAPG) algorithm [Li and Lin, 2015], needs more
than one proximal steps in each iteration.

When the optimization objective is convex, one can reduce
the computational complexity of the proximal step by only
computing it inexactly (i.e., approximately). Significant
speedup has been observed in practice, and the resultant
inexact PG algorithm has the same convergence guarantee
as the exact algorithm under mild conditions [Schmidt et al.,
2011]. However, on nonconvex problems, the use of inexact
proximal steps has not been explored. Moreover, convergence
of nmAPG hinges on the use of exact proximal steps.

In this paper, we propose a new PG algorithm for non-
convex problems. Unlike nmAPG, it performs only one
proximal step in each iteration. Moreover, the proximal step
can be inexact. The algorithm is guaranteed to converge to
a critical point of the nonconvex objective. Experimental
results on nonconvex total variation models and nonconvex
low-rank matrix learning show that the proposed algorithm
is much faster than nmAPG and other state-of-the-art, while
still producing solutions of comparable quality.

The rest of the paper is organized as follows. Section 2
provides a brief review on the PG algorithm and its ac-
celerated variant. The proposed algorithm is described in
Section 3, and its convergence analysis studied in Section 4.
Experimental results are presented in Section 5, and the last
section gives some concluding remarks.

2 Related Work
In this paper, we assume that f in (1) is L-Lipschitz smooth
(i.e., ‖∇f(x) − ∇f(y)‖2 ≤ L‖x − y‖2), and g is proper,
lower semi-continuous. Besides, F = f+g in (1) is bounded
from below, and lim‖x‖2→∞ F (x) = ∞. Moreover, both f
and g can be nonconvex.

First, we consider the case where f and g in (1) are
convex. At iteration k, the accelerated proximal gradient
(APG) algorithm generates xk+1 as

yk = xk + θk(xk − xk−1), (2)
xk+1 = proxηg(yk − η∇f(yk)), (3)

where θk = k−1
k+2 and η is the stepsize [Beck and Teboulle,

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3308

2009b; Nesterov, 2013]. When θk = 0, APG reduces to the
plain PG algorithm.

On nonconvex problems, yk can be a bad extrapolation and
the iterations in (2), (3) may not converge [Beck and Teboulle,
2009a]. Recently, a number of PG extensions have been
proposed to alleviate this problem. The iPiano [Ochs et al.,
2014], NIPS [Ghadimi and Lan, 2015], and UAG [Ghadimi
and Lan, 2015] algorithms allow f to be nonconvex, but still
requires g to be convex. The GD algorithm [Attouch et al.,
2013] also allows g to be nonconvex, but does not support
acceleration.

The current state-of-the-art is the nonmonotone APG (n-
mAPG) algorithm 1 [Li and Lin, 2015], shown in Algorith-
m 1. It allows both f and g to be nonconvex, and also uses
acceleration. To guarantee convergence, nmAPG ensures that
the objective is sufficiently reduced in each iteration:

F (xk+1) ≤ F (xk)− δ

2
‖vk+1 − xk‖22, (4)

where vk+1 = proxηg(xk − η∇f(xk)) and δ > 0 is a
constant. A second proximal step has to be performed (step 8)
if a variant of (4) is not met (step 5).

Algorithm 1 Nonmonotone APG (nmAPG).

Require: choose η ∈ (0, 1/L), a positive constant δ, ∆1 =
F (x1), q1 = 1, and ν ∈ (0, 1);

1: x0 = x1 = xa1 = 0 and t0 = t1 = 1;
2: for k = 1, . . . ,K do
3: yk = xk + tk−1

tk
(xak − xk−1) + tk−1−1

tk
(xk − xk−1);

4: xak+1 = proxηg(yk − η∇f(yk));
5: if F (xak+1) ≤ ∆k − δ

2‖x
a
k+1 − yk‖22 then

6: xk+1 = xak+1;
7: else
8: xpk+1 = proxηg(xk − η∇f(xk));

9: xk+1 =

{
xak+1 F (xak+1) ≤ F (xpk+1)

xpk+1 otherwise
;

10: end if
11: qk+1 = νqk + 1;
12: tk+1 = 1

2

(
(4t2k + 1)1/2 + 1

)
;

13: ∆k+1 = 1
qk+1

(νqk∆k + F (xk+1));
14: end for
15: return xK+1.

3 Efficient APG for Nonconvex Problems
The proposed algorithm is shown in Algorithm 2. Following
[Schmidt et al., 2011], we use a simpler acceleration scheme
in step 3. Efficiency of the algorithm comes from two key
ideas: reducing the number of proximal steps to one in
each iteration (Section 3.1); and the use of inexact proximal
steps (Section 3.2). Besides, we also allow nonmonotone
update on the objective (and so F (yk) may be larger than
F (xk)). This helps to jump from narrow curved valley
and improve convergence [Grippo and Sciandrone, 2002;

1A less efficient monotone APG (mAPG) algorithm is also
proposed in [Li and Lin, 2015].

Wright et al., 2009; Gong et al., 2013]. Note that when
the proximal step is inexact, nmAPG does not guarantee
convergence as its Lemma 2 no longer holds.

Algorithm 2 Noconvex inexact APG (niAPG) algorithm.

Require: choose η ∈ (0, 1
L) and δ ∈ (0, 1

η − L);
1: x0 = x1 = 0;
2: for k = 1, . . . ,K do
3: yk = xk + k−1

k+2 (xk − xk−1);
4: ∆k = maxt=max(1,k−q),...,k F (xt);
5: if F (yk) ≤ ∆k then
6: vk = yk;
7: else
8: vk = xk;
9: end if

10: zk = vk − η∇f(vk);
11: xk+1 = proxηg(zk); // possibly inexact
12: end for
13: return xK+1.

3.1 Using Only One Proximal Step
Recall that on extending APG to nonconvex problems, the
key is to ensure a sufficient decrease of the objective in each
iteration. Let ρ = 1/η. For the standard PG algorithm with
exact proximal steps, the decrease in F can be bounded as
follows.
Proposition 3.1 ([Gong et al., 2013; Attouch et al., 2013]).
F (xk+1) ≤ F (xk)− ρ−L

2 ‖xk+1 − xk‖22.
In nmAPG (Algorithm 1), there is always a sufficient

decrease after performing the (non-accelerated) proximal
descent from xk to xpk+1 (Proposition 3.1), but not necessarily
the case for the accelerated descent from xk to xak+1 (which
is generated by a possibly bad extrapolation yk). Hence,
nmAPG needs to perform extra checking at step 5. If the
condition fails, xpk+1 is used instead of xak+1 in step 9.

As the main problem is on yk, we propose to check F (yk)
(step 5 in Algorithm 2) before the proximal step (step 11),
instead of checking after the proximal steps. Though this
change is simple, the main difficulty is how to guarantee
convergence while simultaneously maintaining acceleration
and using only one proximal step. As will be seen in
Section 4.1, existing proofs do not hold even with exact
proximal steps.

The following shows that a similar sufficient decrease
condition can still be guaranteed after this modification.
Proposition 3.2. With exact proximal steps in Algorithm 2,
F (xk+1) ≤ min (F (yk),∆k)− ρ−L

2 ‖xk+1 − vk‖22.
In step 4, setting q = 0 is the most straightforward. The

F (yk) value is then checked w.r.t. the most recent F (xk).
The use of a larger q is inspired from the Barzilai-Borwein
scheme for unconstrained smooth minimization [Grippo and
Sciandrone, 2002]. This allows yk to occasionally increase
the objective, while ensuring F (yk) to be smaller than the
largest objective value from the last q iterations. In the
experiments, q is set to 5 as in [Wright et al., 2009; Gong
et al., 2013].

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3309

3.2 Inexact Proximal Step

Proposition 3.2 requires exact proximal step, which can
be expensive. Inexact proximal steps are much cheaper,
but the inexactness has to be carefully controlled to ensure
convergence. We will propose two such schemes depending
on whether g is convex. Note that f is not required to be
convex.
Convex g. As g is convex, the optimization problem asso-
ciated with the proximal step is also convex. Let hηg(x) ≡
1
2‖x−zk‖

2
2 +ηg(x) be the objective in the proximal step. For

any zk, the dual of the proximal step at zk can be obtained as

max
w
Dηg(w) ≡ η

(
z>k w − g∗(w)

)
− η2

2
‖w‖22, (5)

where g∗ is the convex conjugate of g. In an inexact proxi-
mal step, the obtained dual variable w̃k only approximately
maximizes (5). The duality gap εk ≡ hηg(xk+1)−Dηg(w̃k),
where xk+1 = zk − ηw̃k, upper-bounds the approximation
error of the inexact proximal step εk ≡ hηg(xk+1) −
hηg

(
proxηg(zk)

)
. To ensure the inexactness εk to be smaller

than a given threshold τk, we can control the duality gap as
εk ≤ τk [Schmidt et al., 2011].

The following shows that xk+1 satisfies a similar sufficient
decrease condition as in Proposition 3.2. Note that this cannot
be derived from [Schmidt et al., 2011], which relies on the
convexity of f .

Proposition 3.3.F (xk+1)≤F (vk)− ρ−L
2 ‖xk+1−vk‖22+ρεk.

Nonconvex g. When g is nonconvex, the GD algorithm [At-
touch et al., 2013] allows inexact proximal steps. However,
it does not support acceleration, and nonmonotone update.
Thus, its convergence proof cannot be used here.

As g is nonconvex, it is difficult to derive the dual of the
corresponding proximal step, and the optimal duality gap may
also be nonzero. Thus, we monitor the progress of F instead.
Inspired by Proposition 3.1, we require xk+1 from an inexact
proximal step to satisfy the following weaker condition:

F (xk+1) ≤ F (vk)− δ

2
‖xk+1 − vk‖22, (6)

where δ ∈ (0, ρ − L). This condition has also been used
in the GD algorithm. However, it requires checking an extra
condition which is impractical.2

We could have also used condition (6) when g is convex.
However, Proposition 3.3 offers more precise control, as
it can recover (6) by setting εk = ρ−L−δ

2ρ ‖xk+1 − vk‖22
(note that δ < ρ − L). Besides, the duality gap εk is
readily produced by primal-dual algorithms, and is often less
expensive to compute than F .

2Specifically, the condition is: ∃ wk+1 ∈ ∂g(xk+1) such that
‖wk+1 + ∇f(vk)‖22 ≤ b‖xk+1 − vk‖22 for some constant b >
0. However, the subdifferential ∂g(xk) is in general difficult to
compute.

4 Convergence Analysis
Definition 4.1 ([Attouch et al., 2013]). The Frechet subdif-
ferential of F at x is

∂̂F (x) =

{
u : lim

y 6=x
inf
y→x

F (y)− F (x)− u>(y − x)

‖y − x‖2
≥ 0

}
.

The limiting subdifferential (or simply subdifferential) of F
at x is ∂F (x) = {u : ∃xk → x, F (xk) → F (x), uk ∈
∂̂F (xk)→u, as k →∞}.
Definition 4.2 ([Attouch et al., 2013]). x is a critical point of
F if 0 ∈ ∇f(x) + ∂g(x).

4.1 Exact Proximal Step
In this section, we will show that Algorithm 2 (where both
f and g can be nonconvex) converges with a O(1/K) rate.
This is the best known rate for nonconvex problems with first-
order methods [Nesterov, 2004]. A similar O(1/K) rate for
‖G(vk)‖22 is recently established for APG with nonconvex
f but only convex g [Ghadimi and Lan, 2015]. Note also
that no convergence rate has been proved for nmAPG [Li
and Lin, 2015] and GD [Attouch et al., 2013] in this case.
Besides, their proof techniques cannot be used here as their
nonmonotone updates are different.

Theorem 4.1. The sequence {xk} generated from Algorith-
m 2 (with exact proximal step) have at least one limit point,
and all limit points are critical points of (1).

Let G(v) = v−proxηg(v−η∇f(v)), the proximal mapping
at v [Parikh and Boyd, 2014]. The following Lemma suggests
that ‖G(v)‖22 can be used to measure how far v is from
optimality [Ghadimi and Lan, 2015].

Lemma 4.2 ([Gong et al., 2013; Attouch et al., 2013]). v is
a critical point of (1) if and only if G(v) = 0.

The following Proposition shows that the proposed Algo-
rithm 2 converges with a O(1/K) rate.

Proposition 4.3. Let φ(k) = arg mint=max(k−q,1),...,k

‖xt+1 − vt‖22. (i) limk→∞ ‖G(vφ(k))‖22 = 0; and
(ii) mink=1,...,K ‖G(vφ(k))‖22 ≤ 2(q+1)c1

(ρ−L)K , where
c1 = maxt=1,...,q+1 F (xt)− inf F .

4.2 Inexact Proximal Step
Convex g. As in [Schmidt et al., 2011], we assume that the
duality gap εk decays as O(1/k1+ς) for some ς > 0. Let
c ≡

∑∞
k=1 εk. Note that c <∞.

Theorem 4.4. The sequence {xk} generated from Algorith-
m 2 have at least one limit point, and all limit points are
critical points of (1).

Proposition 4.5. Let ek ≡ xk+1 − proxηg(xk − η∇f(xk)),
the difference between the inexact and exact proximal step
solutions at iteration k. We have ‖ek‖22 ≤ 2εk.

Note that the proof techniques in [Schmidt et al., 2011]
cannot be used here as f is not required to be convex. As in
Proposition 4.3, we also use ‖G(vφ(k))‖22 to measure how far
vφ(k) is from optimality.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3310

Table 1: Results on the image inpainting experiment (CPU time is in seconds).
λ = 0.01 λ = 0.02 λ = 0.04

RMSE CPU time RMSE CPU time RMSE CPU time

(nonconvex)

GDPAN 0.0326±0.0001 212.1±50.9 0.0301±0.0001 172.6±28.4 0.0337±0.0001 151.6±57.0
nmAPG 0.0323±0.0001 600.5±35.8 0.0299±0.0001 461.7±33.3 0.0335±0.0001 535.6±29.7

niAPG(exact) 0.0323±0.0001 307.4±26.8 0.0299±0.0001 297.2±35.3 0.0335±0.0001 282.7±19.3
niAPG 0.0323±0.0002 91.6±10.8 0.0299±0.0001 77.1±7.4 0.0335±0.0001 56.5±9.4

(convex) ADMM 0.0377±0.0001 55.7±5.1 0.0337±0.0001 54.7±1.4 0.0362±0.0001 33.2±1.5

Table 2: Matrix completion performance on the synthetic data (CPU time in seconds). Here, NMSE is scaled by ×10−2. Group (I) is based
on convex nuclear norm regularization; group (II) on factorization model; and group (III) on nonconvex model (8).

m = 500 (observed: 12.43%) m = 1000 (observed: 6.91%) m = 2000 (observed: 3.80%)
NMSE rank CPU time NMSE rank CPU time NMSE rank CPU time

(I) active 4.10±0.16 42 11.8±1.1 4.08±0.11 55 77.6±8.4 3.92±0.04 71 507.3±25.4
ALT-Impute 3.99±0.15 42 1.9±0.2 3.87±0.09 55 29.4±1.2 3.68±0.03 71 143.1±3.9

(II) AltGrad 2.99±0.45 5 0.2±0.1 2.73±0.21 5 0.4±0.1 2.67±0.27 5 1.2±0.2
R1MP 23.04±1.27 45 0.3±0.1 21.39±0.94 54 0.9±0.1 20.11±0.28 71 2.7±0.2

(III)

IRNN 1.96±0.05 5 19.2±1.2 1.88±0.04 5 215.1±4.3 1.80±0.03 5 3009.5±35.9
FaNCL 1.96±0.05 5 0.4±0.1 1.88±0.04 5 1.4±0.1 1.80±0.03 5 5.6±0.2
nmAPG 1.96±0.05 5 2.3±0.2 1.88±0.03 5 6.9±0.3 1.80±0.03 5 27.1±4.0

niAPG(exact) 1.96±0.04 5 1.8±0.2 1.88±0.03 5 5.3±0.5 1.80±0.04 5 18.4±2.2
niAPG 1.96±0.05 5 0.1±0.1 1.88±0.03 5 0.4±0.1 1.80±0.04 5 1.2±0.2

Proposition 4.6. (i) limk→∞ ‖G(vφ(k))‖22 = 0; and (ii)
mink=1,...,K ‖G(vφ(k))‖22 ≤ 2

K (4c+ (q+1)(c1+ρc)
ρ−L).

When all εk’s are zero, Proposition 4.6 reduces to Propo-
sition 4.3. In general, the bound of mink=1,...,K ‖G(vφ(k))‖22
in Proposition 4.6 is larger due to the inexact proximal step.
Nonconvex g. With inexact proximal steps, nmAPG no
longer guarantees convergence, and its proof cannot be easily
extended. On the other hand, GD allows inexact proximal
steps but uses a different approach to control inexactness.
Moreover, it does not support acceleration.

The following shows that Algorithm 2 generates a bounded
sequence, and Corollary 4.8 shows that the limit points are
critical points.
Theorem 4.7. The sequence {xk} generated from Algorith-
m 2 has at least one limit point.
Corollary 4.8. Let {xkj} be a subsequence of {xk} with
limkj→∞ xkj = x∗. If (i) xk+1 6= vk unless vk =
proxηg(vk − η∇f(vk)), and (ii) limkj→∞ F (xkj) = F (x∗),
then x∗ is a critical point of (1).

Assumption (i), together with Lemma 4.2, ensures that
the sufficient decrease condition in (6) will not be trivially
satisfied by xk+1 = vk, unless vk is a critical point. Assump-
tion (ii) follows from Definition 4.1, as the subdifferential is
defined by a limiting process.
Proposition 4.9. [Attouch et al., 2013] Assumption (ii) is
satisfied when (i) the proximal step is exact; or (ii) g is
continuous or is the indicator function of a compact set.

When the proximal step is exact or when g is convex,
G(·) has been used to measure the distance from optimality.
However, this is inappropriate when g is nonconvex and the
proximal step is inexact, as the inexactness can no longer be
directly controlled. Instead, we will measure optimality via
ak ≡ ‖xk+1 − vk‖22.
Proposition 4.10. (i) limk→∞ ak = 0; and (ii)
mink=1,...,K aφ(k) ≤ 2(q+1)c1

δK .

When the proximal step is exact, xk+1 = proxηg(vk −
η∇f(vk)), and ak = ‖G(vk)‖22. Proposition 4.10 then
reduces to Proposition 4.3 (but with a looser bound).

5 Experiments
In this section, we perform experiments when g is convex
(Section 5.1) and nonconvex (Section 5.2).

5.1 Image Inpainting
The total variation (TV) model [Beck and Teboulle, 2009a]
has been popularly used in image processing. Let y ∈ Rd be
the vectorized input image and x ∈ Rd be the recovered one.
We consider the TV model with nonconvex log-sum-penalty
regularizer [Candès et al., 2008].

min
x

1

2
‖M � (x− y)‖22 +λ

d∑
i=1

κ([Dhx]i) +κ([Dvx]i), (7)

where M ∈ {0, 1}d is a mask such that Mij = 1 indicates
that the corresponding pixel is observed, Dh and Dv are the
horizontal and vertical partial derivative operators, � is the
elementwise multiplication, and κ(α) = log(1 + |α|).

As suggested in [Yao and Kwok, 2016], (7) can be trans-
formed as the minimization of f(x)+λTV(x), where f(x) =
1
2‖M�(x−y)‖22−λ[TV(x)+

∑d
i=1 κ([Dhx]i)+κ([Dvx]i)]

is nonconvex but smooth, and TV(x) = ‖Dhx‖1 + ‖Dvx‖1
is the standard (convex) TV regularizer. Thus, we only need
to handle the proximal step of the TV regularizer, which will
be computed numerically by solving its dual using L-BFGS
[Beck and Teboulle, 2009a].

The following solvers on the transformed problems are
compared: (i) GDPAN [Zhong and Kwok, 2014], which
performs gradient descent with the proximal average; (ii)
nmAPG; (iii) the proposed niAPG, in which inexactness of
the proximal step is controlled by decaying the duality gap
εk at a rate of O(1/k1.5); and (iv) the exact version of

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3311

Table 3: Results on the MovieLens data sets (CPU time in seconds). Here, RMSE is scaled by 10−1. Group (I) is based on convex nuclear
norm regularization; group (II) on factorization model; and group (III) on nonconvex model (8).

MovieLens-1M MovieLens-10M MovieLens-20M
RMSE rank CPU time RMSE rank CPU time RMSE rank CPU time

(I) active 8.20±0.01 68 50.5±1.6 8.14±0.01 101 1520.8±18.2 8.02±0.01 197 7841.9±666.3
ALT-Impute 8.18±0.01 68 34.0±1.1 8.14±0.01 101 821.7±34.5 8.01±0.01 197 3393.2±220.3

(II) AltGrad 8.02±0.03 6 4.0±1.1 7.97±0.04 9 94.5±30.8 7.94±0.04 10 298.3±54.1
R1MP 8.53±0.02 13 1.3±0.2 8.52±0.04 23 58.8±11.0 8.54±0.02 26 139.2±23.7

(III)

FaNCL 7.88±0.01 5 12.5±0.9 7.79±0.01 8 703.5±18.3 7.84±0.03 9 2296.9±176.4
nmAPG 7.87±0.01 5 12.5±0.9 7.80±0.01 8 627.5±16.4 7.85±0.01 9 1577.9±103.2

niAPG(exact) 7.87±0.01 5 11.1±0.8 7.79±0.01 8 403.1±19.6 7.84±0.01 9 1111.9±65.3
niAPG 7.87±0.01 5 2.7±0.3 7.79±0.01 8 90.2±2.6 7.85±0.01 9 257.6±33.4

Table 4: Number of proximal steps on the synthetic and recommender system data sets.
Synthetic MovieLens Netflix Yahoo

m =500 m =1000 m =2000 1M 10M 20M
nmAPG 77 104 145 95 221 236 183 579

niAPG(exact) 64 (↓17%) 85 (↓18%) 115 (↓21%) 82 (↓13%) 143 (↓35%) 165 (↓31%) 133 (↓27%) 425 (↓26%)
niAPG 64 (↓17%) 85 (↓18%) 115 (↓21%) 81 (↓15%) 140 (↓36%) 160 (↓32%) 132 (↓28%) 413 (↓29%)

niAPG(exact), which simulates an exact proximal step with
a small duality gap (10−4). We do not compare with the GD
algorithm [Attouch et al., 2013], as its inexactness condition
is difficult to check and it does not use acceleration.

As a further baseline, we compare with the convex TV
model: minx

1
2‖M � (x − y)‖22 + λ(‖Dvx‖1 + ‖Dhx‖1),

which is solved using ADMM [Boyd et al., 2011]. We do not
compare with CCCP [Yuille and Rangarajan, 2002], which is
slow in practice [Yao and Kwok, 2016].

Experiments are performed on the “Lena” image. We
normalize the pixel values to [0, 1], and then add Gaussian
noise from N (0, 0.05). 50% of the pixels are randomly
sampled as observed. For performance evaluation, we report
the CPU time and root-mean-squared error (RMSE) on the
whole image. The experiment is repeated five times. Results
are shown in Table 1.3 Figure 1 plots convergence of the
objective.4 As can be seen, the nonconvex TV model has
better RMSE than the convex one. Among the nonconvex
models, niAPG is much faster, as it only requires a small
number of cheap inexact proximal steps (Table 5).

(a) λ = 0.02. (b) λ = 0.04.

Figure 1: Objective value vs CPU time (in seconds) on the image
data.

3In all the tables, the boldface indicates the best and comparable
results (according to the pairwise t-test with 95% confidence).

4Because of the lack of space, the plot for λ = 0.01 is not shown.

Table 5: Number of proximal steps on image data. Number in
brackets is the percentage reduction w.r.t. nmAPG.

λ = 0.01 λ = 0.02 λ = 0.04
nmAPG 87 46 43

niAPG(exact) 47 (↓46%) 35 (↓24%) 29 (↓33%)
niAPG 57 (↓35%) 41 (↓11%) 28 (↓35%)

5.2 Matrix Completion
In this section, we consider matrix completion with a noncon-
vex low-rank regularizer. As shown in [Lu et al., 2014; Yao et
al., 2015; Yao and Kwok, 2015], it gives better performance
than nuclear-norm based and factorization approaches. The
optimization problem can be formulated as

min
rank(X)≤r

1

2
‖PΩ(Xij −Oij)‖2F + λ

r∑
i=1

κ (σi(X)) , (8)

where Oijs are the observations, Ωij = 1 if Oi,j is observed,
and 0 otherwise, σi(X) is the ith leading singular value ofX ,
and r is the desired rank. The associated proximal step can
be solved with rank-r SVD [Lu et al., 2014].
Synthetic Data. The observed m×m matrix is generated as
O = UV + G, where the entries of U ∈ Rm×k, V ∈ Rk×m
(with k = 5) are sampled i.i.d. from the normal distribution
N (0, 1), and entries of G sampled fromN (0, 0.1). A total of
‖Ω‖1 = 2mk log(m) random entries in O are observed. Half
of them are used for training, and the rest as validation set.

In the proposed niAPG algorithm, its proximal step is
approximated by using power method [Halko et al., 2011],
and inexactness of the proximal step is monitored by condi-
tion (6). Its variant niAPG(exact) has exact proximal steps
computed by the Lancoz algorithm [Larsen, 1998]. They are
compared with the following solvers on the nonconvex model
(8): (i) Iterative reweighted nuclear norm (IRNN) [Lu et al.,
2014] algorithm; (ii) Fast nonconvex low-rank learning (FaN-
CL) algorithm [Yao et al., 2015], using the power method to
approximate the proximal step; (iii) nmAPG, in which the
proximal step is exactly computed by the Lancoz algorithm.
We also compare with other matrix completion algorithms,
including the well-known (convex) nuclear-norm-regularized

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3312

algorithms: (i) active subspace selection [Hsieh and Olsen,
2014] and (ii) ALT-Impute [Hastie et al., 2015]. We also
compare with state-of-the-art factorization models (where the
rank is tuned by the validation set): (i) R1MP [Wang et
al., 2015]; and (ii) state-of-the-art gradient descent based
AltGrad [Zhao et al., 2015]. We do not compare with the
Frank-Wolfe algorithm [Zhang et al., 2012], which has been
shown to be slower [Hsieh and Olsen, 2014].

Testing is performed on the non-observed entries
(denoted Ω̄). Three measures are used for performance
evaluation: (i) normalized mean squared error (NMSE):√
‖PΩ̄(X − UV)‖2F /

√
‖PΩ̄(UV)‖2F ; (ii) rank of X; and

(iii) training time. Each experiment is repeated five times.
Table 2 shows the performance. Convergence for algo-

rithms solving (8) is shown5 in Figure 2. As has also been
observed in [Lu et al., 2014; Yao et al., 2015], noncon-
vex regularization yields lower NMSE than nuclear-norm-
regularized and factorization models. Again, niAPG is the
fastest. Its speed is comparable with AltGrad, but is more
accurate. Table 4 compares the numbers of proximal steps.
As can be seen, both nmAPG(exact) and nmAPG require
significantly fewer proximal steps.

(a) m = 1000. (b) m = 2000.

Figure 2: Objective value vs CPU time (in seconds) on the synthetic
matrix completion data set.

Recommender Systems. We first consider the MovieLens
data sets (Table 6), which contain ratings of different users on
movies or musics. We follow the setup in [Wang et al., 2015;
Yao et al., 2015; Yao and Kwok, 2015], and use 50% of
the observed ratings for training, 25% for validation and
the rest for testing. For performance evaluation, we use
the root mean squared error on the test set Ω̄: RMSE =√
‖PΩ̄(O −X)‖2F /

√
‖Ω̄‖1, rank of the recovered matrixX ,

and CPU time. The experiment is repeated five times.

Table 6: Recommender system data sets used.
#users #items #ratings

MovieLens
1M 6,040 3,449 999,714

10M 69,878 10,677 10,000,054
20M 138,493 26,744 20,000,263

Netflix 480,189 17,770 100,480,507
Yahoo 1,000,990 624,961 262,810,175

Table 3 shows the recovery performance. IRNN is not
compared as it is too slow. Again, the nonconvex model
consistently outperforms nuclear-norm-regularized and fac-
torization models. R1MP is the fastest, but its recovery per-

5Because of the lack of space, the plot form = 500 is not shown.

formance is poor. Figure 3(a) shows the convergence, and Ta-
ble 4 compares the numbers of proximal steps. niAPG(exact)
is faster than nmAPG due to the use of fewer proximal steps.
niAPG is even faster with the use of inexact proximal steps.

Finally, we perform experiments on the large Netflix and
Yahoo data sets (Table 6). We randomly use 50% of the
observed ratings for training, 25% for validation and the
rest for testing. Each experiment is repeated five times.
We do not compare with nuclear-norm-regularized methods
as they yield higher rank and RMSE than others. Table 7
shows the recovery performance, and Figures 3(b) show the
convergence. Again, niAPG is the fastest and most accurate.

Table 7: Results on the Netfix and Yahoo data sets. Here, RMSE is
scaled by ×10−1.

RMSE rank CPU time (min)

Netflix

AltGrad 8.16±0.02 15 221.7±5.6
FaNCL 7.94±0.01 13 240.8±22.7
nmAPG 7.92±0.01 13 132.8±2.1

niAPG(exact) 7.92±0.01 13 97.7±1.8
niAPG 7.92±0.01 13 25.2±0.6

Yahoo

AltGrad 6.69±0.01 14 112.9±4.2
FaNCL 6.54±0.01 9 487.6±32.0
nmAPG 6.53±0.01 9 184.3±6.3

niAPG(exact) 6.53±0.01 9 140.7±5.8
niAPG 6.53±0.01 9 38.7±2.3

(a) MovieLens-10M. (b) Yahoo.

Figure 3: Testing RMSE vs CPU time (in seconds) on the
recommendation system data sets.

6 Conclusion
In this paper, we proposed an efficient accelerated proximal
gradient algorithm for nonconvex problems. Compared with
the state-of-the-art [Li and Lin, 2015], the proximal step
can be inexact and the number of proximal steps required
is significantly reduced, while still ensuring convergence to
a critical point. Experiments on image denoising and matrix
completion problems show that the proposed algorithm has
comparable (or even better) prediction performance as the
state-of-the-art, but is much faster.

Acknowledgments
This research project is partially funded by Microsoft Re-
search Asia and the Research Grants Council of the Hong
Kong Special Administrative Region (Grant 614513). The
first author would thank helpful discussion and suggestions
from Lu Hou and Yue Wang.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3313

References
[Attouch et al., 2013] H. Attouch, J. Bolte, and B.F. Svaiter.

Convergence of descent methods for semi-algebraic and
tame problems: Proximal algorithms, forward-backward
splitting, and regularized Gauss-Seidel methods. Mathe-
matical Programming, 137(1-2):91–129, 2013.

[Beck and Teboulle, 2009a] A. Beck and M. Teboulle. Fast
gradient-based algorithms for constrained total variation
image denoising and deblurring problems. IEEE Transac-
tions on Image Processing, 18(11):2419–2434, 2009.

[Beck and Teboulle, 2009b] A. Beck and M. Teboulle. A
fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM Journal on Imaging Sciences,
2(1):183–202, 2009.

[Boyd et al., 2011] S. Boyd, N. Parikh, E. Chu, B. Peleato,
and J. Eckstein. Distributed optimization and statistical
learning via the alternating direction method of multiplier-
s. Foundations and Trends in Machine Learning, 3(1):1–
122, 2011.

[Candès et al., 2008] E.J. Candès, M.B. Wakin, and S. Boyd.
Enhancing sparsity by reweighted `1 minimization. Jour-
nal of Fourier Analysis and Applications, 14(5-6):877–
905, 2008.

[Ghadimi and Lan, 2015] S. Ghadimi and G. Lan. Accel-
erated gradient methods for nonconvex nonlinear and
stochastic programming. Mathematical Programming,
156(1-2):1–41, 2015.

[Gong et al., 2013] P. Gong, C. Zhang, Z. Lu, J. Huang, and
J. Ye. A general iterative shrinkage and thresholding algo-
rithm for non-convex regularized optimization problems.
In ICML, pages 37–45, 2013.

[Grippo and Sciandrone, 2002] L. Grippo and M. Scian-
drone. Nonmonotone globalization techniques for the
Barzilai-Borwein gradient method. Computational Opti-
mization and Applications, 23(2):143–169, 2002.

[Halko et al., 2011] N. Halko, P.G. Martinsson, and J.A.
Tropp. Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix decompo-
sitions. SIAM Review, 53(2):217–288, 2011.

[Hastie et al., 2015] T. Hastie, R. Mazumder, J.D. Lee, and
R. Zadeh. Matrix completion and low-rank SVD via fast
alternating least squares. Journal of Machine Learning
Research, 16:3367–3402, 2015.

[Hsieh and Olsen, 2014] C.J. Hsieh and P. Olsen. Nuclear
norm minimization via active subspace selection. In
ICML, pages 575–583, 2014.

[Larsen, 1998] R.M. Larsen. Lanczos bidiagonalization with
partial reorthogonalization. DAIMI PB-357, Department
of Computer Science, Aarhus University, 1998.

[Li and Lin, 2015] H. Li and Z. Lin. Accelerated proximal
gradient methods for nonconvex programming. In NIPS,
pages 379–387, 2015.

[Lu et al., 2014] C. Lu, J. Tang, S Yan, and Z Lin. Gener-
alized nonconvex nonsmooth low-rank minimization. In
CVPR, pages 4130–4137, 2014.

[Nesterov, 2004] Y. Nesterov. Introductory Lectures on
Convex Optimization: A Basic Course. Springer, 2004.

[Nesterov, 2013] Y. Nesterov. Gradient methods for mini-
mizing composite functions. Mathematical Programming,
140(1):125–161, 2013.

[Ochs et al., 2014] P. Ochs, Y. Chen, T. Brox, and T. Pock.
iPiano: Inertial proximal algorithm for nonconvex opti-
mization. SIAM Journal on Imaging Sciences, 7(2):1388–
1419, 2014.

[Parikh and Boyd, 2014] N. Parikh and S. Boyd. Proximal
algorithms. Foundations and Trends in Optimization,
1(3):127–239, 2014.

[Schmidt et al., 2011] M. Schmidt, N.L. Roux, and F. Bach.
Convergence rates of inexact proximal-gradient methods
for convex optimization. In NIPS, pages 1458–1466, 2011.

[Wang et al., 2015] Z. Wang, M.J. Lai, Z. Lu, W. Fan,
H. Davulcu, and J. Ye. Orthogonal rank-one matrix
pursuit for low rank matrix completion. SIAM Journal on
Scientific Computing, 37(1), 2015.

[Wright et al., 2009] S.J. Wright, R.D. Nowak, and M.A.
Figueiredo. Sparse reconstruction by separable ap-
proximation. IEEE Transactions on Signal Processing,
57(7):2479–2493, 2009.

[Yao and Kwok, 2015] Q. Yao and J.T. Kwok. Accelerated
inexact Soft-Impute for fast large-scale matrix completion.
In The 24th International Conference on Artificial Intelli-
gence, pages 4002–4008, 2015.

[Yao and Kwok, 2016] Q. Yao and J.T. Kwok. Efficient
learning with a family of nonconvex regularizers by
redistributing nonconvexity. In ICML, pages 2645–2654,
2016.

[Yao et al., 2015] Q. Yao, J.T. Kwok, and W. Zhong. Fast
low-rank matrix learning with nonconvex regularization.
In ICDM, pages 539–548, 2015.

[Yuille and Rangarajan, 2002] A.L. Yuille and A. Rangara-
jan. The concave-convex procedure (CCCP). In NIPS,
pages 1033–1040, 2002.

[Zhang et al., 2012] X. Zhang, D. Schuurmans, and Y.-L.
Yu. Accelerated training for matrix-norm regularization:
a boosting approach. In NIPS, pages 2906–2914, 2012.

[Zhang, 2010] T. Zhang. Analysis of multi-stage convex
relaxation for sparse regularization. Journal of Machine
Learning Research, 11:1081–1107, 2010.

[Zhao et al., 2015] T. Zhao, Z. Wang, and H. Liu. A
nonconvex optimization framework for low rank matrix
estimation. In NIPS, pages 559–567, 2015.

[Zhong and Kwok, 2014] L.W. Zhong and J.T. Kwok. Gra-
dient descent with proximal average for nonconvex and
composite regularization. In AAAI, pages 2206–2212,
2014.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3314

