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Abstract— Microarray data typically have thousands of
genes, and thus feature extraction is a critical problem for
accurate cancer classification. In this paper, a feature extraction
method based on the discrete wavelet transform (DWT) is
proposed. The approximation coefficients of DWT, together
with some useful features from the high-frequency coefficients
selected by the maximum modulus method, are used as features.
The combined coefficients are then forwarded to a SVM clas-
sifier. Experiments are performed on two standard benchmark
data sets: ALL/AML Leukemia and Colon tumor. Experimental
results show that the proposed method can achieve state-of-the-
art performance on cancer classification.

I. INTRODUCTION

Cancer is usually caused by abnormal cells that grow and
spread unconventionally. Because of its terrible influence to
humans, it has become one of the top life threats. In recent
years, the study of DNA microarray has become a very
important technology for cancer classification. In a microar-
ray experiment, the genes are monitored many times under
different conditions and for different tissue types. However,
since the data usually include a few samples but thousands,
or even tens of thousands, of genes, it poses significant
difficulty to traditional classifiers. Hence, gene selection is an
important issue in cancer classification with microarray data.
A good gene selection method should eliminate irrelevant,
redundant, or noisy genes for classification, while at the same
time keeps highly discriminative genes [1].

In general, there are three approaches to gene (feature)
extraction: filter, wrapper and embedded approaches. In the
filter approach, genes are selected according to the intrinsic
characteristics. The filter approach works as a preprocessing
step without the incorporation of any learning algorithm.
Examples include the nearest shrunken centroid method,
TNoM-score based method, and the T-statistics method [2].
In the wrapper approach, a learning algorithm is used to
score the feature subsets based on the resultant predictive
power, and an optimal feature subset is searched for a
specific classifier [3]. Examples include Recursive Feature
Elimination, and genetic algorithm-based algorithms.

On the other hand, multi-resolution wavelet transform can
process both stationary and non-stationary signals and has
good multi-resolution capabilities. Because of these advan-
tages, it has been effectively used in many bioinformatics
applications such as DNA sequence analysis [4], [5] and
genomic data analysis [6], [7]. In [8], the authors proposed a
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gene selection method using mutual information and wavelet
transforms. They use the wavelet transform to represent the
microarray data. Each feature (wavelet coefficient) of the
wavelet transform is related to several genes of the original
gene microarray data. Then, a mutual information-based
feature selection method is adopted to select the strongest
features from among the wavelet coefficients. In [9], the au-
thors pointed out that wavelet transforms may also be useful
in the realm of gene expression. The expression signal given
by the genes in clustered order can be wavelet transformed,
which then compresses the signal from many genes into a
few components, possibly aiding in the development of new
tumor classifiers.

In this paper, a new gene selection method using the
discrete wavelet transform (DWT) is proposed for cancer
classification using microarray data. The rest of this pa-
per is organized as follows. Section II briefly introduces
the one-dimensional DWT. In Section III, the DWT-based
feature selection method is proposed. Experimental results
are presented in Section IV, and the last section gives some
concluding remarks.

II. 1D-DWT

The wavelet transform [10], [11] represents any arbitrary
function as a superposition of wavelets, which are functions
generated from a mother wavelet by dilations and transla-
tions. It has been used as a significant mathematical tool for
decomposing a function in terms of its time and frequency
components. It outperforms the classical Fourier transform
on the condition that the localization must be both in time and
the frequency domain for non-stationary signals. The DWT
is efficiently computed using Mallat’s pyramid algorithm.

One property of the DWT is the decorrelating property
of the wavelet coefficients. Given a function {y(t) : t =
0, 1, . . . , N − 1} (with N being a power of 2), the first level
of coefficients from the one-dimensional DWT of y(t), for
t = 0, 1, . . . , N

2 − 1, can be expressed as:

st,1 =
M∑

m=0

lmy(m + 2t) ⇒ s1 = Ly(t), (1)

dt,1 =
M∑

m=0

hmy(2t + 1 − m) ⇒ d1 = Hy(t), (2)

where st,1’s are elements of the scaling coefficients S1,
and dt,1’s are elements of the detail coefficients at the first
level d1. The operators L and H are low-pass and high-pass
decomposition filter representations derived from lm and hm

when these two coefficient vectors are combined using the
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down-sampling and convolution. The s1 includes the low-
frequency part and d1 includes the high-frequency part of
y(t). The low-frequency part can be decomposed further in
the same way. Figure 1 shows the four filters associated with
a particular wavelet basis, the Daubechies basis.
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(a) Decomposition low-pass filter.
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(b) Decomposition high-pass filter.
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(c) Reconstruction low-pass filter.
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(d) Reconstruction high-pass filter.

Fig. 1. The four filters associated with the Daubechies wavelet basis. Note
that the Daubechies basis is an example of the orthogonal wavelet basis,
which has the property that the high-pass and low-pass filters are alternated
flip of each other.

The whole process of obtaining the wavelet transform of
y(t) using the pyramid algorithm is shown in Figure 2. The
data y(t) are defined to be the zeroth scale coefficients, i.e.,
S0 = y(t). Then S0 is decomposed into two subsequences:
s1 and d1 by (1) and (2), the length of each being N/2.
The same operations are then repeated to the vector s1. As
shown in Figure 2, s2 and d2 are obtained, the length of each
is N/4. This process is iterated J times to obtain the wavelet
detail and scaling coefficients

ω = (sJ , dJ , dJ−1, . . . , d1)
= (LJy,HLJy,HLJ−1y, . . . ,Hy).

y(t)=s s s
0 1 2

d
1

d
2

low low low

highhighhigh

Fig. 2. The 1D wavelet decomposition process.

III. FEATURE EXTRACTION

In this Section, we describe the proposed DWT-based
feature extraction method. We denote the number of samples
in the gene expression data set by N . Each sample contains
expression values of M genes (features). As is common in
gene expression analysis, M is usually much larger than N .

The idea behind the feature extraction process is that the
approximation coefficients usually contain the most impor-
tant information, and hence they will constitute part of the
extracted features. However, obviously, there are also some
important information in the high-frequency part. Hence, the
maximum modulus method is used to select some high-
frequency coefficients.

The proposed feature extraction method consists of the
following steps:

1) For each sample, the N gene expression data is decom-
posed using the 1D-DWT. Let the number of decompo-
sition levels be J . The decomposed coefficients can be
expressed as ω = (sJ , dJ , dJ−1, . . . , d1). An example
of the approximation coefficients and high-frequency
coefficients are shown in Figures 3 and 4.

2) The approximation coefficients in sJ are included as
part of the final feature set.

3) We now use the maximum modulus method to select
some high-frequency coefficients.

a) First, the high frequency coefficients are thresh-
olded.

thdi,j =
{

0 |di,j | < TH,
1 otherwise,

for i = 1, . . . , N, j = 1, . . . , L, where N is the
number of samples, L is the length of the high-
frequency part. An example of the thresholding
operation is shown in Figure 5.

b) Then the weights of each coefficient are obtained:

weightj =
N∑

i=1

thdi,j .

c) Finally, the weightj values are ranked, and loca-
tions corresponding to the top n maximum values
are found. The coefficients of these locations are
used as the high frequency features.

4) The approximation part obtained in step 2 and the high-
frequency part obtained in step 3 are combined together
to form a new gene subset, which thus has a much
lower dimensionality than the original one.
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Fig. 3. An example of the approximation coefficients.
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Fig. 4. An example of the high-frequency coefficients.
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Fig. 5. An example of the thresholding of the high-frequency coefficients.

IV. EXPERIMENTS

A. Setup

In this Section, experiments are performed on the two
benchmark data sets:

1) ALL/AML Leukemia data set: It contains a total of
72 samples of two types of leukemia: 47 of acute
myeloid leukemia (AML) and 25 of acute lymphoblas-
tic leukemia (AML). Each sample contains expression
values of 7,129 genes (features). This data set is first
studied in [12].

2) Colon cancer data set: It consists of a total of 62
samples, 22 of them are from normal colon tissues
while the remaining 40 are from tumor tissues. Each
sample contains expression values of 2,000 genes. This
data set is first studied in [13].

Both data sets can be downloaded from
http://www.tsi.enst.fr/∼gfort/GLM/Programs.html.

After feature extraction, we use the support vector ma-
chines (SVM) [14] for classification. The SVM has been
successfully used in various applications, such as computer
vision [15] and bioinformatics [16]. There are a number of
kernel functions that can be used with the SVM. In most
of our experiments, the default kernel used is the Gaussian

kernel:

k(x,y) = exp
(
−‖x − y‖2

2σ2

)
, (3)

where σ2 is a user-defined variance parameter. The ef-
fect of using other kernel functions will be studied
in Section IV-D. The SVM package, downloaded from
http://svm.sourceforge.net/docs/3.00/api/, is used here.

To be in line with the reported works (e.g., [17]) on these
two benchmark data sets, the classification accuracies will be
computed using the leave-one-out cross-validation procedure.

B. Use of Different Wavelet Basis and Decomposition Levels

We first compare the performance of different wavelet
bases. In general, there are two main types of bases: orthogo-
nal and biorthogonal. Common orthogonal bases include the
Daubechies (db), Coiflets (coif), Symlets (sym), and discrete
Meyer (dmey). The Daubechies wavelets are the most pop-
ular non-redundant orthogonal wavelet basis. The Symlets
orthogonal wavelet basis is a quasi-symmetric extension of
the Daubechies wavelets. The Coiflets orthogonal wavelet
basis is another extension, with vanishing moment conditions
for both the wavelets and scaling functions. It is also more
symmetrical than the classical Daubechies. The biorthogonal
(bior) wavelets are orthogonal in a more general sense. They
are sometimes more desirable than orthogonal ones because
they can preserve linear phase, have finite impulse response,
and the mother wavelets can have arbitrarily high regularity
[18]. Implementations based on the Matlab Wavelet Toolbox
will be used here.

These wavelet filters also come with different lengths. In
the sequel, the length of the wavelet filter is indicated after
the name of the basis. For example, “db1” stands for the
Daubechies wavelet filter with length 1. Note also that the
low pass and high pass filters for biorthogonal wavelets do
not have the same length, and their lengths are separated
by a dot. For example, “bior2.6” stands for the biorthogonal
wavelet filter where the low pass filter has length 2, while
the high pass filter has length 6.

In this experiment, we compare the performance of dif-
ferent filters with different lengths, using 3 or 4 levels of
decomposition. Preliminary studies suggest that the use of
more decomposition levels does not improve classification
results. Because of the large number of possible combina-
tions, we only show the results for (TH=70, n = 100) on
the ALL/AML data; and (TH=10, n = 250) on the Colon
data. The effect of using different (TH,n) combinations will
be studied in Section IV-C. The σ parameter in the Gaussian
kernel is fixed at σ = 2−8. Results are shown in Table I.

C. Use of Different Parameters

In this experiment, we study the effect of the parameters
TH and n. Again, because of the large number of possible
combinations, we only show the results for the use of
the biorthogonal wavelet filter (bior2.6) with 3 levels of
decomposition on the ALL/AML data; and the Daubechies
wavelet filter (db8) with 4 levels of decomposition on the

5030



TABLE I

RESULTS ON USING DIFFERENT WAVELET BASIS AND DECOMPOSITION

LEVELS.

date set wavelet filter #levels accuracy (%)
ALL/AML Daubechies db1 3 93.06

4 93.06
db8 3 95.83

4 94.44
Coiflets coif1 3 95.83

4 95.83
coif3 3 95.83

4 94.44
Symlets sym2 3 91.67

4 91.67
sym15 3 94.44

4 93.06
discrete Meyer dmey 3 95.83

4 95.83
biorthogonal bior1.1 3 93.06

4 93.06
bior2.6 3 100.00

4 97.22
Colon tumor Daubechies db1 3 85.48

4 79.03
db8 3 82.26

4 93.55
Coiflets coif1 3 85.48

4 83.87
coif3 3 83.87

4 85.48
Symlets sym2 3 85.48

4 79.03
sym15 3 85.48

4 87.10
discrete Meyer dmey 3 83.87

4 80.65
biorthogonal bior1.1 3 85.48

4 79.03
bior2.6 3 87.10

4 80.65

Colon data. The σ parameter in the Gaussian kernel is fixed
at σ = 2−8.

Results are shown in Table II. As can be seen, the use of
a larger threshold (TH) seems to be beneficial. However, the
extraction of a large number of features (n) leads to inferior
performance in most cases. This agree with our intuition that
feature selection is mandatory for these small training sets.

D. Use of Different Kernels in the SVM

In this experiment, we also show the performance with
two other popularly-used kernel functions:

1) Linear kernel: k(x,y) = xT y;
2) Polynomial kernel: k(x,y) = (xT y)d, where d is the

polynomial degree.

Results are shown in Tables III and IV respectively. As a
summary, the highest accuracies attained by the three kernel
functions are compared in Table V. As can be seen, all three
kernels attain the best possible accuracy of 100% on the
Leukemia data, and they again attain the same performance
of 93.55% on the Colon data set. This insensitivity to
the choice of kernels shows that the features extracted by
the proposed method contain all the information useful for
classification.

TABLE II

RESULTS ON USING DIFFERENT TH AND n PARAMETERS.

data set TH n accuracy (%)
ALL/AML 36 100 97.72

200 95.83
45 100 97.72

200 95.83
70 100 100.00

200 98.61
Colon tumor 5 200 83.87

250 83.87
8 200 87.10

250 83.87
10 200 91.94

250 93.55

E. Comparison with the Other Methods

Table VI shows the performance of the other methods
on the two data sets as reported in the literature. All
these methods use leave-one-out cross-validation and so their
classification accuracies can be directly compared. As can
be seen, the proposed method, together with JCFO (Joint
Classifier and Feature Optimization) [17] with the linear
kernel, attain the best classification accuracy (of 100%) on
the ALL/AML data set. On the colon data set, the proposed
method also outperforms all other methods except for the
JCFO with linear kernel. However, it should be noted that
the proposed method is based on wavelet transforms and so
the computation is very fast. On the other hand, JCFO relies
on the Expectation-Maximization (EM) algorithm [19] and
is much slower.

V. CONCLUSIONS

In this paper, we proposed a wavelet-based feature ex-
traction method for microarray data. The approximation
coefficients obtained from the discrete wavelet transform
(DWT), together with useful features from the high frequency
coefficients as selected by the maximum modulus method,
are used as input features to a SVM classifier. Experimen-
tal results on standard benchmark data sets show that the
proposed method outperforms the other methods in terms of
classification accuracy.

In general, wavelet transforms have been increasingly pop-
ular in the field of bioinformatics because of its capability in
multi-resolution analysis and spatial-frequency localization.
In the future, we will investigate the combination of wavelet
decompositions with other feature extraction methods. A
systematic method for the setting of the parameters will be
investigated in the future. Moreover, experiments on some
other bioinformatics data sets will also be performed.
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TABLE VI

CLASSIFICATION ACCURACIES (%) OBTAINED BY THE VARIOUS METHODS AS REPORTED IN THE LITERATURE.

methods ALL/AML Colon tumor
Adaboost (decision stumps) [20] 95.8 72.6

SVM (quadratic kernel) [20] 94.4 74.2
SVM (linear kernel) [20] 93.0 77.4
RVM (linear kernel) [17] 94.4 80.6

RVM (no kernel: on feature space) [17] 97.2 88.7
logistic regression (no kernel: on feature space) [17] 97.2 71.0

sparse probit regression (quadratic kernel) [17] 95.8 84.6
sparse probit regression (linear kernel) [17] 97.2 91.9

sparse probit regression (no kernel: on feature space) [17] 97.2 85.5
JCFO (quadratic kernel) [17] 98.6 88.7

JCFO (linear kernel) [17] 100.0 96.8
proposed method 100.0 93.6
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TABLE III

PERFORMANCE OF THE LINEAR KERNEL.

data set #levels wavelet filter accuracy (%)
ALL/AML 3 Daubechies db1 97.22
(TH=70, db8 94.44
n = 100) Coiflets coif1 95.83

coif3 97.22
Symlets sym2 91.67

sym15 94.44
discrete Meyer dmey 94.44
biorthogonal bior1.1 93.06

bior2.6 100.00
4 Daubechies db1 93.06

db8 94.44
Coiflets coif1 95.83

coif3 94.44
Symlets sym2 91.67

sym15 93.06
discrete Meyer dmey 95.83
biorthogonal bior1.1 93.06

bior2.6 97.22
Colon tumor 3 Daubechies db1 85.48

(TH=10, db8 80.65
n=250) Coiflets coif1 83.87

coif3 82.26
Symlets sym2 82.26

sym15 85.48
discrete Meyer dmey 83.87
biorthogonal bior1.1 85.48

bior2.6 88.71
4 Daubechies db1 85.48

db8 93.55
Coiflets coif1 87.10

coif3 85.48
Symlets sym2 85.48

sym15 88.71
discrete Meyer dmey 85.48
biorthogonal bior1.1 85.48

bior2.6 83.87

TABLE IV

PERFORMANCE OF THE POLYNOMIAL KERNEL (DEGREE=2).

data set #levels wavelet filter accuracy (%)
ALL/AML 3 Daubechies db1 93.06
(TH=70, db8 95.83
n = 100) Coiflets coif1 97.22

coif3 95.83
Symlets sym2 90.28

sym15 95.83
discrete Meyer dmey 95.83
biorthogonal bior1.1 93.06

bior2.6 100.00
4 Daubechies db1 93.06

db8 95.83
Coiflets coif1 95.83

coif3 94.44
Symlets sym2 91.67

sym15 93.06
discrete Meyer dmey 95.83
biorthogonal bior1.1 93.06

bior2.6 95.83
Colon tumor 3 Daubechies db1 80.65

(TH=10, db8 82.26
n = 250) Coiflets coif1 85.48

coif3 85.48
Symlets sym2 82.26

sym15 83.87
discrete Meyer dmey 85.48
biorthogonal bior1.1 80.65

bior2.6 87.01
4 Daubechies db1 77.42

db8 93.55
Coiflets coif1 80.65

coif3 80.65
Symlets sym2 79.03

sym15 88.71
discrete Meyer dmey 80.65
biorthogonal bior1.1 77.42

bior2.6 79.03

TABLE V

HIGHEST ACCURACIES ATTAINED BY THE DIFFERENT KERNELS.

data set kernel highest accuracy (%)
ALL/AML linear 100.00

polynomial 100.00
Gaussian 100.00

Colon tumor linear 93.55
polynomial 93.55
Gaussian 93.55
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