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Abstract— By utilizing the label dependencies among both the
labeled and unlabeled data, semi-supervised learning often has
better generalization performance than supervised learning. In
this paper, we extend a popular graph-based semi-supervised
learning method, namely, manifold regularization, to structured
outputs. This is performed via the joint kernel directly and
allows a unified manifold regularization framework for both
unstructured and structured data. Experimental results on
various data sets with inter-dependent outputs demonstrate
the usefulness of manifold information in improving prediction
performance.

I. I NTRODUCTION

Kernel methods, such as support vector machines, have
been highly successful in machine learning. Traditionally,
they are mainly focused on vectorial inputs and outputs.
With the tremendous amount of structured data (e.g., se-
quences, trees, and graphs) available nowadays, there are a
lot of recent interests in extending kernel methods for more
complex domains with these structured data. In general, the
structure information may be present in the inputs and/or
outputs. For structured inputs, a wide variety of kernels
have been developed. Examples include the family of string
kernels commonly used in bioinformatics. Here, we will
focus on kernel methods for structured outputs. In contrast
to traditional kernels that are defined on the inputs only, an
essential ingredient in learning with structured outputs is that
the kernel is often defined jointly on both the inputs and
outputs [1]. This so-calledjoint kernelallows the many-sided
dependencies between inputs and outputs to be captured.
Empirically, it has been successfully used for solving many
complex structured prediction problems in domains such as
natural language processing and computational biology.

On the other hand, while many of these structured data
are readily available (such as internet documents residingin
a hierarchy and bioinformatics databases containing DNA
sequences), typically most of them are unlabeled and only
a small amount of the data is labeled. Semi-supervised
learning [2], [3] thus aims at improving the generalization
performance by utilizing both the labeled and unlabeled
data. The label dependencies among patterns are captured
by exploiting the intrinsic geometric structure of the data.
This can be implemented by using the so-called cluster
assumption, which encourages the separating hyperplane to
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pass through low-density regions [4], [5]. Recently, this is
also extended to structured outputs [6]. Another popular
smoothness assumption is the manifold assumption, which
assumes that the data lie on a low-dimensional manifold.
Often, this manifold is approximated by a weighted graph,
leading to a battery of graph-based semi-supervised learning
algorithms [7], [8]. Besides these, techniques based on co-
training [9] and conditional random fields [10], [11] have
also been used for semi-supervised learning on structured
outputs.

In this paper, we will focus on the graph-based approach,
and, in particular, the manifold regularization framework
[7]. By defining a data-dependent reproducing kernel Hilbert
space (RKHS), manifold regularization incorporates an ad-
ditional regularizer to ensure that the learned function is
smooth on the manifold. Moreover, in contrast to many
other graph-based transductive learning methods, this reg-
ularization framework is truly semi-supervised and allows
generalization to out-of-sample patterns.

Recently, an extension of manifold regularization to struc-
tured outputs has been proposed in [12]. However, instead of
learning a smooth discriminant function over the input-output
pairs directly, it learns agoodnessfunction of each explicit
“part” of the joint feature map. Moreover, the discriminant
function is a weighted sum of predictions from the individual
parts. Hence, this can be regarded as a “bag of parts” repre-
sentation. Analogous to the commonly used “bag of words”
representation for text, the structure information among parts
is lost. Similarly, the smoothness of the discriminant function
over the data manifold is only indirectly enforced through
these parts. Besides, it cannot be readily reduced to the
standard manifold regularization method for unstructured
data.

In this paper, we perform manifold regularization on struc-
tured outputs by using the joint kernel directly. The extension
is formulated entirely in terms of the joint kernel and thus,as
in other kernel methods, does not require knowledge of the
explicit (joint) feature map. Moreover, it includes standard
manifold regularization as a special case and hence provides
a unified framework for both unstructured and structured
data.

The rest of this paper is organized as follows. Section II
first gives a brief review on the supervised learning of
structured outputs. Section III then extends manifold regular-
ization for semi-supervised learning on structured outputs via
the joint kernel. This is then followed by some discussions in
Section IV. Experimental results are presented in Section V,
and the last section gives some concluding remarks.

In the sequel,Im denotes them×m identity matrix,1m =



[1, . . . , 1]′ ∈ R
m, and R+ is the set of non-negative real

numbers. Moreover,tr(A) is the trace of matrixA, andA⊗
B is the Kronecker product of the two matrices. Besides,
superscripts (or subscripts)X ,Y and XY will be used to
denote entities corresponding to the input, output and the
joint spaces, respectively.

II. SUPERVISEDLEARNING OF STRUCTUREDOUTPUTS

As mentioned in Section I, for learning with structured
outputs, it is often more convenient to use a joint feature
representationϕ that is defined on both the inputX and
output Y. The discriminant function is then linear in this
joint feature map, as

f(x, y) = w′ϕ(x, y). (1)

Moreover, as in other kernel methods, this joint feature
map is related to ajoint kernel k as k((x, y), (x̄, ȳ)) =
ϕ(x, y)′ϕ(x̄, ȳ).

Given a set of training patterns{(xi, yi)}
ℓ
i=1 whereyi ∈

Y, the desired discriminant functionw′ϕ(x, y) can be ob-
tained by solving

min
1

ℓ

ℓ∑

i=1

ξi + γA‖w‖2 (2)

s.t. w′δϕi(y) ≥ 1 −
ξi

∆(yi, y)
, ∀i,∀y 6= yi, ξi ≥ 0, ∀i,

where ξi’s are slack variables for the errors,δϕi(y) ≡
ϕ(xi, yi) − ϕ(xi, y), ∆(yi, y) is a loss function penalizing
the difference betweenyi and y, and γA is a user-defined
regularization parameter. Note that the slack variables in(2)
are scaled with the inverse loss, which is often calledslack
re-scaling. Another approach, as advocated in [13], is called
margin re-scalingand scales the margin by the loss.

Using the method of Lagrange multipliers, the dual of (2)
can be obtained as:

max
∑

i,y 6=yi

αiy −
1

2

∑

i,y 6=yi

∑

j,ȳ 6=yj

αiyαjȳJiy,jȳ (3)

s.t.
∑

y 6=yi

αiy

∆(yi, y)
≤

1

2ℓγA

, ∀i,

αiy ≥ 0, ∀i,∀y 6= yi,

where

Jiy,jȳ = δϕi(y)′δϕj(ȳ)

= k((xi, yi), (xj , yj)) − k((xi, yi), (xj , ȳ))

−k((xi, y), (xj , yj)) + k((xi, y), (xj , ȳ)).

It can be shown that1
ℓ

∑
i ξi is an upper bound of the

empirical risk at optimality. Moreover, while the optimization
problem may potentially have an exponential number of
constraints, an arbitrarily close approximation to the solution
can be efficiently obtained in polynomial time by the use of
cutting plane methods [1].

III. SEMI-SUPERVISEDLEARNING OF STRUCTURED

OUTPUTS

In semi-supervised learning, we have both labeled patterns
{(xi, yi)}

ℓ
i=1 drawn i.i.d. from the joint distributionPXY and

a set of unlabeled examples{xi}
n
i=ℓ+1 drawn i.i.d. from the

marginal distributionPX . A typical smoothness assumption
used in many semi-supervised learning methods is that two
nearby patterns in a high-density region should share similar
labels [2]. When the data lie on a manifold, it is common to
represent this manifold by a weighted graph defined on all
the labeled and unlabeled data. The graph’s weight matrix
A = [aij ] encodes the similarities between data samples.
Label smoothness over the graph is then enforced by the so-
called manifold regularizer, which controls the gradient of
the target function w.r.t. the marginal distribution of thedata.
Empirically, this manifold regularizer can be approximated
as

n∑

i,j=1

aij(f(xi) − f(xj))
2 = f ′Lf, (4)

wheref = [f(x1), . . . , f(xn)]′ andL is the graph Laplacian
matrix.

A. Primal Formulation

In this section, we extend the manifold regularization
framework to structured outputs via the use of the joint kernel
introduced in Section II. Unlike traditional graph-based semi-
supervised learning methods where the nodes of the graph
are the labeled and unlabeled examples{x ∈ X}, here the
nodes in this “joint manifold” are the tuples{(x, y) : x ∈
X , y ∈ Y}. Consequently, smoothness on the manifold is
also dependent on both the inputx and outputy, and the
similarity between two graph nodes(xi, y

k) and (xj , y
l) is

now a((xi, y
k), (xj , y

l)). Note that the similarities defined
on all the graph nodes can be put into a two-dimensional
matrix A, with entries

Aiykjyl ≡ A(i + (k − 1)|Y|, j + (l − 1)|Y|)

= a((xi, y
k), (xj , y

l)).

As in Section II, the discriminant functionf(x, y) for
structured data is dependent on bothx andy. We require this
f to be smooth on the (joint) manifold w.r.t. the similarity
matrix A. Let D be the diagonal matrix with elements
Diy =

∑n
j=1

∑
ȳ∈Y Aiyjȳ. The manifold regularizer in (4)

can thus be extended to structured outputs as:

1

2

∑

y,ȳ∈Y

n∑

i,j=1

Aiyjȳ(f(xi, y) − f(xj , y))2

=
1

2

∑

y,ȳ∈Y

n∑

i,j=1

Aiyjȳ(w′ϕ(xi, y) − w′ϕ(xj , y))2

= w′ΦLΦ′w, (5)

where Φ = [ϕ(xi, y)]i=1,...,n;y∈Y and L = D − A is
the corresponding (joint) graph Laplacian. Obviously, this
includes the regularizer in (4) as a special case.
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Recall from Section II that for structured prediction, the
loss function has to be incorporated into structural risk
minimization. In this paper, we will focus on the slack
re-scaling formulation. Extension to margin re-scaling is
straight-forward and will not be discussed here. Adding the
manifold regularizer in (5) to the supervised structured pre-
diction problem of (2), we obtain the following optimization
problem which corresponds to the manifold regularization
for structured outputs:

minw,ξ≥0
1

ℓ

ℓ∑

i=1

ξi + γAw′w + γIw
′ΦLΦ′w (6)

s.t. w′(ϕ(xi, yi) − ϕ(xi, y)) ≥ 1 −
ξi

∆(yi, y)
,

i = 1, . . . , ℓ, y 6= yi.

Here, ξ = [ξ1, . . . , ξℓ]
′ and γI > 0 is a tradeoff parameter

for the manifold regularizer. Obviously, in the special case
whereγI = 0, (6) reduces to (2).

By using a similar orthogonality argument as in [7], it is
easy to obtain the following representer theorem:

Lemma 1:For problem (6), its optimalw is of the form
w =

∑n

i=1

∑
y∈Y αiyϕ(xi, y), whereαiy ∈ R.

In matrix form, this can be written as

w = Φα, (7)

whereα = [αiy]i=1,...,n;y∈Y . Substituting this into (6), we
obtain the following optimization problem:

Proposition 1: Problem (6) is equivalent to

minα,ξ≥0
1

ℓ

ℓ∑

i=1

ξi + α′(γAK + γIKLK)α (8)

s.t. α′Kei ⊗ (eyi
− ey) ≥ 1 −

ξi

∆(yi, y)
i = 1, . . . , ℓ, y 6= yi,

whereK = Φ′Φ is the kernel matrix defined using the joint
kernel on the training data,ei ∈ R

n|Y| is a vector of all
zeroes except that theith entry is one, and̄ey ∈ R

|Y| is a
vector of all zeroes except that theyth entry is one.

Proof: On using (7), thew′w andw′ΦLΦ′w terms in
the objective of (6) can be written asα′Kα andα′KLKα,
respectively, As for its constraint, defineJi = ei⊗I|Y|. Then,

w′ϕ(xi, y) = α′Φ′ΦJiey = α′K(ei ⊗ I|Y|)ey = α′K(ei ⊗ ey).

Plugging all these back into (6), we obtain (8).

B. Dual Problem

DenoteĨi = [ey]y 6=yi
, and Ĭℓ = [e1, . . . , eℓ]. The dual of

(8) can be obtained from the following proposition.
Proposition 2: The dual of (8) is

maxβ −
1

4
β′J ′(γAK−1 + γIL)−1Jβ + β′1ℓ(|Y|−1)(9)

s.t.
∑

y 6=yi

βiy

∆(yi, y)
≤

1

ℓ
, i = 1, . . . , ℓ,

βiy ≥ 0, i = 1, . . . , ℓ, y 6= yi,

whereβ = [βiy]i=1,...,ℓ;y 6=yi
, and J = [e1 ⊗ ey1

, . . . , eℓ ⊗
eyℓ

](Ĭℓ⊗1′|Y|−1)−[e1⊗Ĩ1, . . . , eℓ⊗Ĩℓ]. Moreover, the primal
variableα can be recovered from the dual variableβ as

α =
1

2
(γAIn|Y| + γILK)−1Jβ. (10)

Proof: First, we obtain the Lagrangian of (8) as:

L =
1

ℓ

ℓ∑

i=1

ξi + α′(γAK + γIKLK)α

+

ℓ∑

i=1

∑

y 6=yi

βiy

[
1 −

ξi

∆(yi, y)
− α′Kei ⊗ eyi

+α′Kei ⊗ ey

]

−

ℓ∑

i=1

γiξi, (11)

where βiy ∈ R+, γi ∈ R+ (i = 1, . . . , ℓ, y 6= yi) are the
Lagrange multipliers. Setting its derivatives w.r.t.ξi to zero,
we have:

∂L

∂ξi

=
1

ℓ
−

∑

y 6=yi

βiy

∆(yi, y)
− γi = 0, i = 1, . . . , ℓ. (12)

Moreover, using the fact that[ei ⊗ ek1
, . . . , ei ⊗ ekt

] = ei ⊗
[ek1

, . . . , ekt
], then, in (11),

ℓ∑

i=1

∑

y 6=yi

βiyei ⊗ ey = [ei ⊗ ey]i=1,...,ℓ;y 6=yi
β

= [e1 ⊗ Ĩ1, . . . , eℓ ⊗ Ĩℓ]β.

Similarly, the term
∑ℓ

i=1

∑
y 6=yi

βiyei ⊗ eyi
in (11) can be

written as

[e1 ⊗ ey1
, . . . , eℓ ⊗ eyℓ

]




∑
y 6=y1

β1y

...∑
y 6=yℓ

βℓy




= [e1 ⊗ ey1
, . . . , eℓ ⊗ eyℓ

](Ĭℓ ⊗ 1′|Y|−1)β.

Moreover, the term
∑ℓ

i=1

∑
y 6=yi

βiy(α′Kei⊗eyi
−α′Kei⊗

ey) in (11) can be simplified asα′KJβ. Plugging these and
(12) back into (11), we obtain

L = α′(γAK + γIKLK)α − α′KJβ + β′1ℓ(|Y|−1). (13)

Setting its derivative w.r.t.α to zero, we obtainα =
1
2 (γAK + γIKLK)−1KJβ and thus (10). Plugging (10)
back into (13), we obtain (9).

C. Prediction

With the learnedα, one can perform prediction on a (seen
or unseen) example(x, y) as

f(x, y) =

n∑

i=1

∑

ȳ∈Y

αiȳk((x, y), (xi, ȳ)). (14)

This is clearly advantageous to other graph-based transduc-
tive learning algorithms that cannot be used on unseen test
data.
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IV. D ISCUSSIONS

A. Data-Dependent Kernel Deformed by the Joint Manifold

By defining a data-dependent kernel that captures the
underlying geometry of the data manifold, Sindhwaniet
al. [14] showed that the semi-supervised learning problem
with traditional manifold regularization is equivalent toa
supervised learning problem. This is also the case for the
related approach of [12]. Here, we show that a similar kernel,
defined over the joint space ofX andY, can also be obtained
in our semi-supervised structured prediction setting.

Let k((·, ·), (·, ·)) be the joint kernel function, andH the
corresponding reproducing kernel Hilbert space (RKHS) with
inner product〈·, ·〉H. Define a new space of functions̃H with
the same elements asH, but with the modified inner product

〈f, g〉 eH = 〈f, g〉H +
γI

γA

F ′LG, (15)

where F = [f(xi, y)]i=1,...,n;y∈Y , and G =
[g(xi, y)]i=1,...,n;y∈Y .

Lemma 2:H̃ is an RKHS.
Proof: SinceH is an RKHS, there exists a constant

C > 0 that bounds the norm of the evaluation functional,
i.e., |f(x, y)| ≤ C‖f‖H. Thus, by (15), we have|f(x, y)| ≤
C‖f‖ eH , which ensures the boundedness of the evaluation
functional ofH̃. Let λmax(·) be the maximum eigenvalue of
the matrix argument. From (15), we have

‖f‖2
eH
=〈f, f〉H +

γI

γA

F ′LF

≤〈f, f〉H +
γI

γA

λmax(L)‖F‖2 (asmaxx
x′Ax
‖x‖2 = λmax(A))

≤‖f‖2
H +

γI

γA

λmax(L)(n|Y|)C2‖f‖2
H

=

(
1 +

γI

γA

λmax(L)(n|Y|)C2

)
‖f‖2

H.

Moreover, by (15) we have‖f‖H ≤ ‖f‖ eH, then ‖f‖H ≤
‖f‖ eH ≤ C̄‖f‖H. Therefore, the Cauchy sequence in the
modified norm is also Cauchy in the original norm. This
ensures that̃H is also complete and thus̃H is an RKHS.

Denote the kernel of̃H by k̃. The following proposition
shows that the kernel functioñk is deformed from the
original kernelk by the manifold.

Proposition 3: The kernel evaluation of̃k on any (x̄, ȳ)
is given by

k̃((x, y), (x̄, ȳ))=k((x, y), (x̄, ȳ))

−K ′
x̄,ȳ

(
γA

γI

In|Y| + LK

)−1

LKx,y,(16)

whereKx,y = [k((x, y), (xi, ȳ))]i=1,...,n;ȳ∈Y .
Proof: In the following, we usekx,y(·, ·) as a short-

hand for k((x, y), (·, ·)). DecomposeH as H = P ⊕ P⊥,
whereP⊥ is the subspace inH orthogonal to

P = span{kxi,y(·, ·) | i = 1, . . . , n; y ∈ Y}.

Suppose thatf ∈ P⊥. Thenf(xi, y) = 〈f, kxi,y(·, ·)〉H = 0,
for i = 1, . . . , n, y ∈ Y. Hence,F = 0 in (15) and〈f, g〉H̃ =

〈f, g〉H ∀g ∈ H. In particular, letg = k̃x,y(·, ·). We then have

〈f, kx,y(·, ·)〉H = f(x, y) = 〈f, k̃x,y(·, ·)〉H̃ = 〈f, k̃x,y(·, ·)〉H,

∀x ∈ X , y ∈ Y. This implies〈f, k̃x,y(·, ·)−kx,y(·, ·)〉H = 0,
which means̃kx,y(·, ·)−kx,y(·, ·) ∈ P. In other words, there
exist coefficientsβiy′(x, y) such that

k̃x,y(·, ·) = kx,y(·, ·) +

n∑

i=1

∑

y′∈Y

βiy′(x, y)kxi,y′(·, ·). (17)

Let Kxj ,ȳ = [kxj ,ȳ(xi, y)]i=1,...,n;y∈Y , and β(x, y) =
[βiy]i=1,...,n;y∈Y . Then,

kx,y(xj , ȳ) = 〈kxj ,ȳ, k̃x,y〉H̃

= 〈kxj ,ȳ, kx,y +

n∑

i=1

∑

y′∈Y

βiy′(x, y)kxi,y′〉H̃

= 〈kxj ,ȳ, kx,y +

n∑

i=1

∑

y′∈Y

βiy′(x, y)kxi,y′〉H

+
γI

γA

Kxj ,ȳL(Kx,y + Kβ(x, y)).

Evaluating at allxj ∈ {x1, . . . , xn} and ȳ ∈ Y, and on
gathering all the equations together in matrix form, we have

Kβ(x, y) +
γI

γA

KL(Kx,y + Kβ(x, y)) = 0

⇒ β(x, y) = −

(
γA

γI

In|Y| + LK

)−1

LKx,y.

Substituting this back into (17), we can evaluate the kernel
on any(x̄, ȳ) using (16).
As in [12], [14], this modified kernel̃k embodies information
from both the original kernelk and the LaplacianL of the
joint data manifold. Moreover, as expected, kernelk̃ can be
reduced to the deformed kernel in [14].

Recall that the above shows that semi-supervised learning
(using both labeled and unlabeled data) with manifold regu-
larization is equivalent to supervised learning (using only the
labeled data) with a manifold-deformed kernel. Intuitively,
a similar relationship should also hold between the semi-
supervised learning problem in (9) and the supervised learn-
ing problem in (3). This will be proved in the following.

First, we define the matrix

K̃ =

(
K−1 +

γI

γA

L

)−1

(18)

which is in the objective function in (9). Note that each entry
of K̃ embodies information from both the original kernelk
and the graph LaplacianL. Moreover, it is easy to see that
K̃ can be regarded as a valid kernel matrix.

Lemma 3:K̃ is symmetric and positive semidefinite.
The following proposition shows that the semi-supervised
learning problem in (9) can be equivalently seen as a super-
vised learning problem (3) with this̃K.

Proposition 4: Problem (9) is equivalent to problem (3),
with the J matrix in (3) defined using the sub-matrix of̃K
corresponding to the labeled data only.
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Proof: Define

β̆ = [βi1, . . . , βi,yi−1,−
∑

y 6=yi

βiy, βi,yi+1, . . . , βi|Y|]i=1,...,ℓ.

After some lengthy but standard algebra, it can be shown
that theJ in Theorem 4 is equal to

J = (Ĭℓ ⊗ I|Y|) diag(M1, · · · ,Mℓ),

where

Mi =

0

B

B

B

B

B

B

B

B

B

B

B

@

yi-th column deleted
↓

−1

. . .
−1

yi→ 1 · · · 1 1 · · · 1

−1

. . .
−1

1

C

C

C

C

C

C

C

C

C

C

C

A

.

Then, for theβ′J ′K̃Jβ term in the objective of (9), we have
β′J ′K̃Jβ = β̆′[K̃]lbβ̆, where [K̃]lb is the sub-matrix ofK̃
composed of the firstℓ|Y| columns and rows (i.e., the part
corresponding to the labeled data). It can then be seen that
(9) is equivalent to (3) by equatingβiy = 2γAαiy.

Clearly, this kernel matrixK̃ should also be consistent
with the deformed kernel̃k in (16), as is confirmed by the
following proposition.

Proposition 5: On evaluating the deformed joint kernelk̃
on both the labeled and unlabeled data, the resultant kernel
matrix is theK̃ defined in (18).

Proof: By fixing x, y and evaluating̃kx,y(x̄, ȳ) on all
x̄ ∈ {x1, . . . , xn} and ȳ ∈ Y, we have

[k̃x,y(xi, ȳ)]′i=1,...,n;y∈Y

= [kx,y(xi, ȳ)]′i=1,...,n;y∈Y

−K

(
γA

γI

In|Y| + LK

)−1

L[kx,y(xj , ȳ)]′j=1,...,n;y∈Y .

Evaluating onx ∈ {x1, . . . , xn} andy ∈ Y, we can write in
matrix form as

K̃ = K − K

(
γA

γI

In|Y| + LK

)−1

L
γA

γI

In|Y|

= γA(γAK−1 + γIL)−1.

B. Tensor Product Decomposition of the Joint Kernel and
Laplacian

In general, there can be different ways of defining the joint
kernel and the corresponding joint feature mapϕ. A popular
construction is via the tensor productϕ(x, y) = φ(x)⊗λ(y),
where φ and λ are feature maps defined onX and Y,
respectively [1]. It can be shown that the resultant joint
kernel is simply a product of the corresponding input kernel
κ(x, x̄) = φ(x)′φ(x̄) and output kernelΛ(y, ȳ) = λ(y)′λ(ȳ).
Subsequently, the kernel matrix is then

K = KX ⊗ KY ,

where KX ,KY are the input and output kernel matrices,
respectively.

Similarly, the affinity matrix[Aiyjȳ] on the joint manifold
can also be constructed as a tensor product of the affinity
matrices of the input and output spaces. In other words,
Aiyjȳ = AX

ijA
Y
yȳ, where AX

ij and AY
yȳ are the affinities

in the input and output, respectively. By definingDX =
diag(AX 1n) and DY = diag(AY1|Y|), the (joint) graph
Laplacian matrix can be written as

L = DX ⊗ DY − AX ⊗ AY ,

where LX and LY are the input and output Laplacian
matrices, respectively.

C. Output Structure is Absent

In the special case when there is no structure on the
outputs, the tensor-product joint kernel reduces to

k((x, y), (x̄, ȳ)) = κ(x, x̄)δ(y, ȳ) (19)

and K = KX ⊗ I|Y|. Similarly, L = LX ⊗ I|Y|. In this
case, the problem reduces to standard manifold regularization
in the multiclass setting. As is expected, the structured
manifold-deformed kernel in (16) reduces to the unstructured
manifold-deformed kernel in [14]. This is confirmed by the
following proposition.

Proposition 6: If there is no output structure, kernel
(16) reduces to the unstructured manifold-deformed data-
dependent kernel in [14].

Proof: Let κx = [κ(x, x1), . . . , κ(x, xn)]′ and δy =
[δ(y, ȳ)]ȳ∈Y . The RHS of (16) becomes

κ(x, x̄)δ(y, ȳ) − (κ′
z ⊗ δ′ȳ)

(
γA

γI

In + LXKX

)−1

⊗

I|Y|(L
X ⊗ I|Y|)(κx ⊗ δy)

= κ(x, x̄)δ(y, ȳ)

−

(
κ′

z(
γA

γI

In + LXKX )−1LXκx

)
⊗ (δ′ȳI|Y|δy)

=

(
κ(x, x̄) − κ′

z(
γA

γI

In + LXKX )−1LXκx)

)
δ(y, ȳ),

= κ̆(x, x̄)δ(y, ȳ). (20)

Here κ̆(·, ·) is the unstructured manifold-deformed kernel in
[14].

Moreover, as the outputs are now independent of each
other, the regularizer‖f‖2

eH
corresponding the manifold-

deformed RKHSH̃ is just a summation of all the un-
structured manifold-deformed regularizers in the individual
y spaces.

Proposition 7: Let the RKHS corresponding tŏκ(·, ·), the
unstructured manifold-deformed kernel in [14], by̆H. If there
is no output structure,‖f‖2

eH
=

∑
y∈Y ‖f(·, y)‖2

H̆
.
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Proof: On using (14) and (20),

〈f, f〉 eH =

n∑

i,j=1

∑

y,ȳ∈Y

αiyαjȳk̃((xi, y), (xj , ȳ))

=

n∑

i,j=1

∑

y,ȳ∈Y

αiyαjȳκ̆(xi, xj)δ(y, ȳ)

=
∑

y∈Y

n∑

i,j=1

αiyαjyκ̆(xi, xj)

=
∑

y∈Y

‖f(·, y)‖2
H̆

.

By this proposition, it is worth noting that our model (6) will
turn into the multiclass SVM [15] with the data-dependent
kernelκ̆(·, ·) for the input space. Hence, the proposed formu-
lation naturally extends the multiclass manifold-regularized
SVM to the case when the outputs have structure.

V. EXPERIMENTS

In this section, we demonstrate the usefulness of manifold
information on two popular data sets,teapot and news-
groups. The data manifold is approximated by a weighted
graph, which is constructed by using the 8-nearest-neighbors
of each pattern. The weightaij between two neighborsxi

andxj is defined in a similar manner as in [16]:

aij = exp

(
−

d(xi, xj)
2

max{h(xi), h(xj)}

)
,

where d(xi, xj) is the distance betweenxi, xj , and h(xi)
is the 8-nearest-neighbor distance ofxi. Moreover, we fix
γA = 5 × 10−6 andγI = 5 × 10−5 for all data sets.

In the experiments, we use the popularly-used tensor
product kernel and Laplacian as described as Section IV-
B. Moreover, for the data sets in Sections V-A and V-B,
the structure is in the output but not in the input. Hence,
unlike the data sets used in [12], the input cannot be further
decomposed into sub-components. In this case, it is natural
to define each(x, y) (for all possibley’s) as a “part”, the
method in [12] then becomes a special case of our approach.

A. Teapot Data

The teapot data1 contains 400 teapot images (each of size
76×101) rotated from1◦ – 360◦ to form a ring (Figure 1(a)).
In this experiment, we group the images into 10 clusters, each
with 30 images. 100 images are removed from the data set
to ensure that the clusters are well separated. Then, from
each cluster, 20 images are randomly selected to form a
partially labeled training set and the remaining 10 are used
as unseen test data. The number of labeled examples from
each cluster is varied from 1 to 5. We use the Gaussian
kernel on the input. As for the output kernel matrix, we use

the 10 × 10 matrix




2 1 0 0 1
1 2 1 0 0

0
. . .

. . .
. . . 0

0 0 1 2 1
1 0 0 1 2


 as suggested for

1http://www.it.usyd.edu.au/∼lesong/cluhsic datasets.html

ring structures in [17]. The ring loss, which is defined as the
distance between the true and predicted labels along the ring,
is used on training. Moreover, to reduce statistical variability,
the experiment is repeated 200 times.

Results on the remaining unlabeled training data and
unseen test data are shown in Tables I and II, respectively.
Besides using the zero-one loss and ring loss as performance
measures, we also report the commonly used information
retrieval metrics including precisionP , recall R and F1 =
2PR/(P + R). As can be seen, the use of manifold infor-
mation significantly improves the performance (with 95%
confidence according to the paired studentt-test).

B. Newsgroups Data

The second experiment is performed on the popular 20-
newsgroups data2. We select 7 of these newsgroups which
have a clear hierarchical structure (Figure 1(b)). From each
newsgroup, 100 examples are randomly selected to form
a partially labeled training set and another 50 are used as
unseen test data. The number of labeled examples from each
newsgroup is varied as 1,2,4,8 and 16. We use the linear
kernel on the input. As for the output kernel, we use the
following feature map defined in [1]. LetZ be the set of
nodes in the hierarchy, and let the hierarchy structure be
represented by the partial order≺, wherez ≺ z̄ means that
nodez is a parent of nodēz. A featureλz is then defined
with every nodez, as

λz(z̄) =

{
1 z ≺ z̄ or z = z̄,
0 otherwise.

.

The tree loss, which is defined as half of the length of the
shortest (undirected) path connectingz andz̄ in the hierarchy,
is used on training. Again, to reduce statistical variability, the
experiment is repeated 200 times.

Results on the unlabeled training data and unseen test data
are shown in Tables III and IV, respectively. Again, the use
of manifold information significant boosts the performance.

VI. CONCLUSION

In this paper, we extend manifold regularization to struc-
tured outputs via the joint kernel. This allows a uni-
fied framework for both unstructured and structured data.
Desirable properties of traditional manifold regularization,
such as the equivalence between semi-supervised learning
and supervised learning with a data-dependent, manifold-
deformed kernel, are also shown. Experimental results on
real-world data sets with ring-structured and hierarchical
outputs demonstrate that the prediction performance on both
the unlabeled training data and unseen test data can be
significantly improved (across all the metrics) with the use
of manifold information.
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TABLE I

PERFORMANCE ON THE UNLABELED TRAINING DATA OF THE TEAPOT DATASET.

0-1 loss ring loss precision recall F1
#labeled = 5 w/ manifold 0.055 0.041 0.953 0.945 0.949

w/o manifold 0.111 0.092 0.908 0.889 0.898
#labeled = 4 w/ manifold 0.076 0.058 0.935 0.924 0.930

w/o manifold 0.145 0.122 0.881 0.855 0.868
#labeled = 3 w/ manifold 0.113 0.088 0.903 0.887 0.895

w/o manifold 0.200 0.166 0.837 0.800 0.818
#labeled = 2 w/ manifold 0.171 0.135 0.853 0.829 0.841

w/o manifold 0.281 0.229 0.772 0.719 0.744
#labeled = 1 w/ manifold 0.276 0.226 0.760 0.724 0.741

w/o manifold 0.385 0.312 0.684 0.615 0.647

TABLE II

PERFORMANCE ON THE UNSEEN TEST DATA OF THE TEAPOT DATA SET.

0-1 loss ring loss precision recall F1
#labeled = 5 w/ manifold 0.057 0.043 0.950 0.943 0.947

w/o manifold 0.100 0.081 0.916 0.900 0.908
#labeled = 4 w/ manifold 0.075 0.059 0.935 0.925 0.930

w/o manifold 0.127 0.104 0.893 0.873 0.883
#labeled = 3 w/ manifold 0.111 0.088 0.904 0.889 0.897

w/o manifold 0.184 0.147 0.848 0.816 0.831
#labeled = 2 w/ manifold 0.164 0.134 0.858 0.836 0.847

w/o manifold 0.262 0.209 0.784 0.738 0.760
#labeled = 1 w/ manifold 0.266 0.221 0.766 0.734 0.750

w/o manifold 0.370 0.295 0.696 0.630 0.661

TABLE III

PERFORMANCE ON THE UNLABELED TRAINING DATA OF THE NEWSGROUPSDATA SET.

0-1 loss tree loss precision recall F1
#labeled = 16 w/ manifold 0.099 0.128 0.885 0.883 0.884

w/o manifold 0.120 0.145 0.859 0.861 0.860
#labeled = 8 w/ manifold 0.132 0.166 0.845 0.848 0.846

w/o manifold 0.188 0.221 0.786 0.791 0.788
#labeled = 4 w/ manifold 0.186 0.226 0.803 0.781 0.791

w/o manifold 0.278 0.329 0.701 0.693 0.696
#labeled = 2 w/ manifold 0.247 0.307 0.769 0.703 0.733

w/o manifold 0.355 0.430 0.626 0.607 0.616
#labeled = 1 w/ manifold 0.342 0.430 0.704 0.607 0.648

w/o manifold 0.419 0.516 0.563 0.539 0.549
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(a) Teapot data. (b) Newsgroup data.

Fig. 1. Output structures of the data sets.

TABLE IV

PERFORMANCE ON THE UNSEEN TEST DATA OF THE NEWSGROUPS DATA SET.

0-1 loss tree loss precision recall F1
#labeled = 16 w/ manifold 0.110 0.145 0.879 0.873 0.876

w/o manifold 0.132 0.171 0.852 0.850 0.851
#labeled = 8 w/ manifold 0.155 0.197 0.823 0.820 0.822

w/o manifold 0.200 0.250 0.776 0.774 0.774
#labeled = 4 w/ manifold 0.220 0.278 0.762 0.738 0.749

w/o manifold 0.292 0.355 0.681 0.669 0.674
#labeled = 2 w/ manifold 0.288 0.364 0.708 0.657 0.680

w/o manifold 0.364 0.446 0.612 0.589 0.599
#labeled = 1 w/ manifold 0.375 0.477 0.628 0.565 0.593

w/o manifold 0.422 0.528 0.547 0.530 0.537
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