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Abstract— Clustering is an invaluable data analysis tool in
a variety of applications. However, existing algorithms often
assume that the clusters do not have any structural relationship.
Hence, they may not work well in situations where such
structural relationships are present (e.g., it may be given that
the document clusters are residing in a hierarchy). Recently,
the development of the kernel-based structured clustering
algorithm CLUHSIC [9] tries to alleviate this problem. But
since the input kernel matrix is defined purely based on the
feature vectors of the input data, it does not take the output
clustering structure into account. Consequently, a direct align-
ment of the input and output kernel matrices may not assure
good performance. In this paper, we reduce this mismatch
by learning a better input kernel matrix using techniques
from semi-supervised kernel learning. We combine manifold
information and output structure information with pairwise
clustering constraints that are automatically generated during
the clustering process. Experiments on a number of data sets
show that the proposed method outperforms existing structured
clustering algorithms.

I. INTRODUCTION

C
LUSTERING is an invaluable data analysis tool in

a large variety of real-world applications. The most

representative one is the k-means clustering algorithm, which

groups similar patterns into the same class by minimizing the

intra-class variance and maximizing the inter-class variance

simultaneously. However, existing clustering algorithms of-

ten assume that the output is structure-less, which may not

be the case in many real-world applications. For example,

internet document clusters usually reside in a taxonomy, and

images can often be organized in a semantically hierarchical

or sequential structure. The goal of structured clustering,

which is analogous to structured prediction in supervised

learning [11], is to utilize structure information as additional

side information to improve clustering performance.

CLUHSIC (which stands for “Clustering using HSIC”)

[9] is a recent clustering algorithm that can easily utilize

structure information on the cluster outputs in the clustering

process. It maximizes the dependence between cluster labels

and data observations according to the Hilbert Schmidt

Independence Criterion (HSIC) [4]. However, since the input

kernel matrix is defined purely based on the feature vectors of

the input data, it does not take the output clustering structure

into account. Consequently, a direct alignment of the input

and output kernel matrices may not assure good performance.

To address this problem and further improve the clustering

performance of CLUHSIC, we will borrow ideas from semi-

supervised clustering. There are three main approaches.
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The first one uses the so-called must-link and cannot-link

pairwise constraints [12]. These pairwise constraints define

whether the two patterns involved should be grouped into the

same class/cluster or not. Some works on metric learning are

also based on this observation [13]. The second approach

uses information on the data manifold [10], and requires

the locally nearby patterns to have similar cluster labels [1].

To obtain even much better performance, the last approach

uses both pairwise constraints and local structure [5], [8],

and performs constraint-driven metric learning and manifold-

driven constraint propagation. However, all these approaches

are designed for outputs with no structure relationships, and

thus cannot be applied to our structured clustering scenario.

In this paper, we combine pairwise constraints and man-

ifold information with the output structure information to

learn a better input kernel matrix. This can then be input

to some structured clustering algorithm such as CLUH-

SIC. However, the pairwise constraints are partial label

information, and may not be feasible or available in some

clustering applications. To alleviate this problem, we propose

a method that, instead of asking for these constraints from the

user, can automatically generate artificially labeled pairwise

constraints based on the current clustering solution.

The rest of the paper is organized as follows. Section II

gives brief reviews on some related works. Section III

describes the proposed structured clustering algorithm. Ex-

perimental results are presented in Section IV, and the last

section gives some concluding remarks.

II. RELATED WORKS

A. CLUHSIC (Clustering using HSIC)

Given a set of samples {(x1,y1), . . . , (xn,yn)}, the linear

dependence between xi’s and yi’s can be easily estimated

by simple statistics such as linear correlation. However,

nonlinear dependencies are more difficult to measure. A

recently proposed dependence (or, more precisely, inde-

pendence) measure is the Hilbert Schmidt Independence

Criterion (HSIC) [4], which is based on the Hilbert-Schmidt

norm of a cross-covariance operator from the reproducing

kernel Hilbert space (RKHS) of the input to the RKHS of

the output [3]. An empirical estimate of HSIC is

(n− 1)−2tr(KxKy), (1)

where tr(·) denotes the matrix trace, Kx,Ky ∈ R
n×n are

kernel matrices defined on {x1, . . . ,xn} and {y1, . . . ,yn},
respectively. As in [9], we will always assume that Kx is

centered. Recent studies show that HSIC has several advan-

tages over other independence measures. First, its empirical

estimate in (1) is easy to compute. Moreover, it has good
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uniform convergence guarantees and very little bias even in

high dimensions.

CLUHSIC [9] is a clustering algorithm which is based

on maximizing the dependence between the input and the

output as measured by the HSIC. On a set of c clusters,

we first define an output kernel matrix A ∈ R
c×c. Let

Π ∈ {0, 1}n×c be an assignment matrix such that its ith
row specifies the assignment of the ith pattern to one of

the c clusters, i.e., Πij ∈ {0, 1} and Π1 = 1, where 1 is

the vector of ones. The kernel matrix defined on the yi’s

can then be written as Ky = ΠAΠ′. CLUHSIC aims at

finding the cluster assignment such that the resultant Ky is

maximally dependent on the kernel matrix Kx defined on

the xi’s. Using the definition of HSIC in (1), this is then

formulated as the following optimization problem:

maxΠ tr(KxΠAΠ′)

s.t. Π1 = 1,

Πij ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . , c.

B. Maximum Margin Clustering for Structured Outputs

A related discriminative clustering algorithm for structured

outputs is recently proposed in [15]. It is based on the idea of

maximum margin clustering [14] that trains a support vector

machine (SVM) by maximizing the margin and minimiz-

ing the loss over all possible cluster labellings. However,

maximum margin clustering is computationally much hard-

er than maximum margin classification. Existing methods

typically rely on reformulating and relaxing the non-convex

optimization problem as a large semidefinite programs (SDP)

that are computationally expensive. To combat this problem,

Xu et al. [15] proposed a heuristic procedure that avoids

SDP entirely. However, as will be shown in Section IV, its

empirical performance is not quite satisfactory.

C. Pairwise Constraint Propagation (PCP)

Pairwise constraint propagation (PCP) [8] is a kernel

learning algorithm that considers both the pairwise must-link

/ cannot-link constraints and the manifold’s local structure.

A must-link between two patterns i and j specifies that i
and j are very similar, while a cannot-link between i and j
specifies that i and j are very dissimilar. Assuming that the

target kernel has values in the range of 0 and 1. This can

thus be represented by the constraints that

Kij =

{

1 if i, j are must-linked,
0 if i, j are cannot-linked.

Let W be the affinity matrix of a graph representing an

underlying data manifold. PCP learns the target kernel matrix

K that maximally conforms to the manifold structure via

its (normalized) graph Laplacian L = I −D−1/2WD−1/2

(where D, with Dii =
∑n

j=1 Wij , is the diagonal degree

matrix), and is also consistent with the provided must-link

/ cannot-link constraints. Let M be the set of must-link

constraints and C the set of cannot-link constraints. This then

leads to the following semidefinite programming problem:

maxK tr(LK) (2)

s.t. Kii = 1, i = 1, . . . , n,

Kij = 1, (i, j) ∈M,

Kij = 0, (i, j) ∈ C,

K � 0,

where K � 0 denotes that K is positive semi-definite.

III. THE PROPOSED METHOD

In this section, we first discuss the deficiencies of using

CLUHSIC and PCP in Sections III-A and III-B, respec-

tively. To address these deficiencies, an extension of the

PCP that can utilize structure information is then proposed

in Section III-C. However, this requires the presence of

labeled patterns during the clustering process. To cater for

situations where this may not be feasible, we propose a

further extension in Section III-D that can automatically

generate these labeled patterns.

A. Deficiency with CLUHSIC

Recall that CLUHSIC tries to maximally align the input

kernel matrix with the output kernel matrix via the HSIC

criterion. However, the input kernel matrix is defined purely

based on the feature vectors of the input data, and does

not take the output clustering structure into account. Con-

sequently, a direct application of kernel target alignment [2]

or dependence maximization between the input and output

kernel matrices [9] may not assure good performance.

As an example, Figure 1(a) shows a set of images [9] for a

teapot rotated from 1◦ – 160◦. The images are grouped into

five clusters arranged in the form of a chain (which reflects

the angle of rotation). As suggested in [9], an appropriate

5 × 5 kernel matrix defined on these five clusters, which

reflects such a chain structure, is









2 1 0 0 0

1 2 1 0 0

0 1 2 1 0

0 0 1 2 1

0 0 0 1 2









. (3)

In words, each cluster is similar to itself and, to a less extent,

its two neighboring clusters; but not similar to the other

clusters. Figure 1(b) shows the corresponding input kernel

matrix1, which is defined using a Gaussian kernel based on

the pixel values of the image. As can be seen, it does not

show a clear structure as in (3). More precisely, the matrix is

essentially block-diagonal, meaning that patterns in the same

cluster are similar to each other. However, pattern pairs that

are in neighboring clusters do not show a higher similarity

than those in non-neighboring clusters.

Hence, in general, there can be a significant mismatch

between the input kernel matrix and output kernel matrix.

1For clearer visualization, the entries in the kernel matrix have been
arranged in order of the rotation angle of the corresponding image.
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(a) Underlying chain structure of the output clusters
(different clusters are in different colors).

(b) Input kernel matrix.

Fig. 1. Illustrations on the teapot data showing a mismatch in the input
and output kernel matrices.

Consequently, the resultant cluster assignment matrix ob-

tained CLUHSIC may not be accurate. A better way to define

the input kernel matrix is thus needed.

B. Deficiency with PCP

Since PCP is a kernel learning algorithm, it thus offers

the hope of being able to produce a better input kernel

matrix for use in CLUHSIC. However, recall that in PCP,

when two patterns i and j are connected by a must-link,

the corresponding kernel entry Kij is always set to one;

whereas when i and j are connected by a cannot-link, the

corresponding Kij is always zero. Hence, the value of Kij

does not depend on the similarity of the underlying clusters

that i and j belong to. In other words, PCP does not utilize

the structure information among output clusters.

C. PCP using Structure Information

Suppose that we have a small amount of label information

in the clustering process. In other words, we are given a set

of patterns {xi} and the corresponding cluster labels {c(i)}.
Using the output kernel matrix A, we define K∗

ij as

K∗

ij = Ac(i)c(j). (4)

In the special case where there is no structure among the

clusters, A becomes the identity matrix I, and (4) reduces

to the binary setting

K∗

ij =

{

1 i, j belong to the same cluster,
0 otherwise,

as in PCP.

To see how (4) works, consider an example of facial

expression data shown in Figure 2. It consists of three types

of facial expression images from three subjects. The patterns

are hierarchically grouped into nine clusters, first by subject

and then by expression. According to [9], an appropriate

output kernel matrix defined on such a hierarchy is

A =





1 0 0
0 1 0
0 0 1



⊗





2 1 1
1 2 1
1 1 2



 , (5)

where ⊗ is the Kronecker product. In words, for two clusters

a and b,

Aab =







2 a = b,
1 a and b are for the same subject,
0 otherwise.

Hence, using (4), for two images i and j,

K∗

ij =







2 i, j are from the same subject and expression,
1 i, j are from same subject but diff expressions,
0 otherwise.

This is more meaningful and flexible than the simple 0/1

setting in PCP.

Fig. 2. Hierarchical structure of the facial expression data.

With this definition of K∗

ij (scaled to [0,1]), we can extend

the kernel learning formulation in PCP as:

maxK tr(LK) (6)

s.t. Kii = 1, i = 1, . . . , n,

Kij = K∗

ij , i, j ∈ P ,

K � 0,

where P is the set of labeled patterns. Note that this is still

a standard SDP, and thus can be readily solved by off-the-

shelf SDP solvers. The learned kernel matrix K can then be

used as the input kernel matrix in the CLUHSIC algorithm

for structured clustering. The procedure, called PCPSI (PCP

using Structure Information), is shown in Algorithm 1.

Algorithm 1 PCPSI (PCP using Structure Information).

Input: Data set S, output kernel matrix A defined on

clusters, a set of labeled patterns P .

Output: Assignment matrix Π.

1: Construct K∗

ij for each i, j ∈ P using (4).

2: Construct the affinity matrix W.

3: Compute the graph Laplacian L = I−D−1/2WD−1/2.

4: Obtain kernel matrix K from the SDP in (6).

5: Obtain Π from CLUHSIC, by using the obtained K as

input kernel matrix and A as output kernel matrix.
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D. Automatic Generation of Constraints

A major deficiency of PCPSI is that it requires the pres-

ence of some labeled patterns, which may not be feasible in

some clustering applications. To alleviate this problem, we

will generate artificially labeled patterns based on the most

confidently labeled patterns in the current clustering solution.

Recall that Π is the cluster assignment matrix, and Πia

denotes the “chance” of assigning pattern i to cluster a. For

each cluster a, we pick the pattern i whose Πia value is

the largest2 among {Π1a, . . . ,Πna}. This is thus the pattern

whose cluster membership is the most certain from cluster a’s

perspective. At the end, a total of c most confident patterns

are obtained. We use these patterns to create K∗

ij values for

input to PCPSI. For any two of these patterns (e.g., i and j),

the kernel evaluation K∗

ij is computed as

K∗

ij =
c

∑

a=1

c
∑

b=1

ΠiaΠjbAab = Πi:AΠj:
′, (7)

where Πi: is the ith row of Π.

The whole procedure, called SCSC (Self-Constrained

Structured Clustering) is shown in Algorithm 2. Initially,

we start with no labeled data, and obtain the assignment

matrix Π from CLUHSIC (which is purely unsupervised

and does not require labeled data). Since this assignment

matrix may not be very accurate, we use a permutation matrix

π to permute the output clusters so as to achieve a better

alignment with the input kernel matrix. Specifically, let the

original input kernel matrix be K0. We obtain π by solving

the following problem:

max
π

tr
[

π

(

Π′K0Π
)

π
′A

]

, (8)

where π, as a permutation matrix, satisfies π ∈
{0, 1}c×c,π1 = 1, and π

′1 = 1. This can be solved by

iteratively using a standard linear assignment problem (LAP)

solver [6]. Then, we update Π as Π ← Ππ
′. New K∗

ij

entries are generated as described above, and the process

reiterates by using these new constraints as input to PCPSI.

Algorithm 2 SCSC (Self-Constrained Structured Clustering).

Input: Data set S, output kernel matrix A.

Output: Assignment matrix Π.

1: repeat

2: Learn Π using PCPSI (use CLUHSIC instead in the

first iteration).

3: Learn π by solving (8).

4: Update Π← Ππ
′.

5: Generate new K∗

ij’s from (7), and add them to P .

6: until convergence.

The algorithm converges when either the newly generated

K∗

ij entries are the same as the ones in the previous iteration,

or the maximum number of iterations is reached. In the

experiments, the algorithm often converges quickly (in fewer

than 10 iterations).

2In general, more than one patterns may be drawn in each iteration. For
simplicity, we just use one here.

IV. EXPERIMENTS

In this section, we perform experiments on a number of

commonly used benchmark data sets with structured outputs.

These include the teapot (Section IV-B), facial expression

(Section IV-C) and newsgroups (Section IV-D).

A. Experimental Setup

We compare the proposed SCSC algorithm with the fol-

lowing clustering algorithms: (1) CLUHSIC [9]; (2) the dis-

criminative unsupervised training algorithm (denoted XWSS)

in [15]; and (3) k-means clustering. In SCSC, one pattern for

each cluster is used to construct the new constraints in each

iteration, and the maximum number of iterations is set to

to 10. For XWSS, its SDP formulation is computationally

expensive and can only be used on very small data sets.

Hence, in all the experiments on XWSS, the heuristic itera-

tive procedure proposed in [15] is adopted. As for k-means,

the traditional version does not utilize structure information.

Hence, we implement a variant that recursively subdivides

the data according to its hierarchical structure. Take the face

data (Figure 2) as an example. The root has 3 children, so

we first apply k-means to cluster the whole data set into

3 clusters. As each child also has 3 grand-children, so we

further apply k-means to divide each cluster into 3 sub-

clusters.

The optimization of CLUHSIC involves integer program-

ming. However, since the focus of this paper is not on how to

solve this integer program, we will simply follow the iterative

greedy local optimization procedure in [9] and obtain an

approximate solution. The procedure often converges in

fewer than 20 iterations. More sophisticated approaches, such

as nonnegative matrix factorization [7] and low-rank SDP

[16], can also be used. The k-means clustering result is

used to initialize the other methods. To reduce statistical

variability, all the experimental results reported are averaged

over 10 repetitions.

The following performance measures are used:

1) Clustering accuracy (i.e., the percentage of patterns that

are correctly clustered);

2) Tree loss (for tree structures), which is defined as

the height of the first common ancestor of the true

and predicted cluster labels in the hierarchy [11]. It

measures how well the hierarchy of the outputs are

observed and has been commonly used in structured

output prediction. Note that the tree loss is the same

as accuracy when measured at the first level of the

hierarchy. Hence, tree loss values will not be reported

for the first level;

3) Chain loss (for chain structures), which is the distance

from the ground truth position, and has been commonly

used for sequential outputs.

B. Results on the Teapot Data

The teapot data3 has been used in [9]. Here, we use a

subset of 175 images (size 76 × 101) rotated from 1◦ –

3http://www.it.usyd.edu.au/˜lesong/cluhsic_

datasets.html
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160◦ to form a chain. They are grouped into 5 clusters,

each having 35 images (Figure 1(a)). The input kernel

matrix is constructed from the Gaussian kernel k(xi,xj) =
exp(−σ‖xi − xj‖

2), with σ = 1/d where d is the input

dimensionality of the data; while (3) is used as the output

kernel matrix.

1) Structured Clustering: We first illustrate CLUHSIC

and SCSC’s unique structure-preserving property. For visual-

ization, the data points are projected into the space spanned

by its top 3 eigenvectors. Results for a typical run are

shown in Figure 3, and the obtained clusters are shown in

different colors. As can be seen, SCSC can well separate

the patterns, which is followed by CLUHSIC, XWSS and

k-means. However, only CLUHSIC and SCSC preserve the

structure of the clusters. Specifically, in the ground truth

solution (Figure 1(a)), the five clusters are arranged in the

order of red, blue, green, magenta and black. This ordering

is only preserved in the results of CLUHSIC and SCSC.
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(a) CLUHSIC.
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(b) XWSS.
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(c) k-means.
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(d) SCSC.

Fig. 3. Clustering results on the teapot data in a typical run.

Figure 4 shows the kernel matrix obtained by SCSC.

Clearly, this resembles the output kernel matrix in (3), and

shows the underlying chain structure of the clusters.

Fig. 4. Kernel matrix obtained by SCSC on the face data.

2) Clustering Performance: The clustering performance

is shown in Table I. As can be seen, SCSC outperforms

the other methods on both performance metrics and the im-

provements are statistically significant. To aid visualization,

we also show the confusion matrices (averaged over the

10 repetitions) in Figure 5. k-means performs poorly as it

does not consider the cluster structure as a whole but only

in a layer-by-layer manner. CLUHSIC considers the output

structure as a whole, while SCSC can further benefit from

the self-constructed constraints.

TABLE I

CLUSTERING PERFORMANCE ON THE TEAPOT DATA.

accuracy (%) chain loss

CLUHSIC 92.9 ± 0.55 0.071 ± 0.055

XWSS 91.7 ± 1.39 0.093 ± 0.161

k-means 91.7 ± 1.39 0.093 ± 0.161

SCSC 100 ± 0.00 0.000 ± 0.000
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(a) Ground truth.
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(b) CLUHSIC.
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(c) XWSS.
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(e) SCSC.

Fig. 5. Confusion matrices on teapot (averaged over 10 repetitions).

C. Results on the Facial Expression Data

The facial expression data4 has been used in [9]. It consists

of 185 images (size 217 × 308) of three types of facial

expressions from three subjects. The facial expressions of

the same person are first grouped together in the hierarchy

(Figure 2). As in Section IV-B, the Gaussian kernel is used

on the input; while (5) is used as the output kernel matrix.

Figure 6 compares the original input kernel matrix with

the one learned by SCSC. As can be seen, the learned

matrix clearly exhibits the hierarchical structure consistent

with the output kernel matrix in (3). In terms of the clustering

performance, SCSC again outperforms the others on all

metrics (Table II), and the improvements are all statistically

significant.

4http://www.it.usyd.edu.au/˜lesong/cluhsic_

datasets.html
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(a) Original. (b) Learned.

Fig. 6. Input kernel matrices on the facial expression data.

TABLE II

CLUSTERING PERFORMANCE ON THE FACIAL EXPRESSION DATA.

accuracy (%) tree loss
level 1 level 2 level 2

CLUHSIC 89.0 ± 15.5 80.8 ± 15.0 0.302 ± 0.289

XWSS 70.1 ± 16.0 55.0 ± 16.3 0.749 ± 0.311

k-means 70.1 ± 4.40 54.6 ± 4.20 0.753 ± 0.084

SCSC 100 ± 0.00 100 ± 0.00 0.000 ± 0.000

D. Results on the Newsgroups Data

We use a subset of four discussion groups (comp.os.ms-

windows.misc, comp.sys.mac.hardware, talk.politics.guns and

talk.politics.mideast) from the newsgroups data5, and con-

struct the taxonomy shown in Figure 7. For each newsgroup,

we randomly select 50 documents, and thus a total of 200

documents are used in the experiment. Each document is

represented as a ℓ2-normalized TFIDF vector. The linear

kernel is used to form the input kernel matrix. Similar to

the facial expression data, the output kernel matrix for this

hierarchical structure is

[

1 0
0 1

]

⊗

[

2 1
1 2

]

.

Level 2

Level 1

Fig. 7. Hierarchical structure of the newsgroups data. From left to
right, the level 2 nodes are the newsgroups comp.os.ms-windows.misc,
comp.sys.mac.hardware, talk.politics.guns and talk.politics.mideast.

Results are shown in Table III. As can be seen, the

performance of SCSC (in both accuracy and tree loss) is

again significantly better than the other methods.

TABLE III

CLUSTERING PERFORMANCE ON THE NEWSGROUPS DATA.

accuracy (%) tree loss

CLUHSIC 43.2 ± 10.1 0.857 ± 0.155

XWSS 42.3 ± 4.28 0.795 ± 0.140

k-means 42.0 ± 4.27 0.798 ± 0.139

SCSC 60.4 ± 15.4 0.573 ± 0.241

5http://people.csail.mit.edu/˜jrennie/

20Newsgroups/

V. CONCLUSION

In this paper, we proposed a novel method that performs

clustering of structured outputs with the manifold’s local

structure, the output structure information and pairwise con-

straints that are automatically constructed during the process.

By reducing the mismatch between the input kernel matrix

and output kernel matrix, the proposed algorithm achieves

significantly better performance than existing structured clus-

tering algorithms.

REFERENCES

[1] M. Belkin and P. Niyogi. Semi-supervised learning on Riemannian
manifolds. Machine Learning, 56(1-3):209–239, 2004.

[2] N. Cristianini, J. Shawe-Taylor, A. Elisseeff, and J. Kandola. On
kernel-target alignment. In T.G. Dietterich, S. Becker, and Z. Ghahra-
mani, editors, Advances in Neural Information Processing Systems 14,
Cambridge, MA, 2002. MIT Press.

[3] K. Fukumizu, F.R. Bach, and M.I. Jordan. Dimensionality reduction
for supervised learning with reproducing kernel Hilbert spaces. Jour-

nal of Machine Learning Research, 5:73–99, 2004.
[4] A. Gretton, O. Bousquet, A. Smola, and B. Schölkopf. Measuring

statistical dependence with Hilbert-Schmidt norms. In Proceedings of

the International Conference on Algorithmic Learning Theory, pages
63–77, Singapore, October 2005.

[5] S. Hoi, R. Jin, and M. Lyu. Learning non-parametric kernel matrices
from pairwise constraints. In Proceedings of the International Confer-

ence on Machine Learning, pages 361–368, Corvalis, Oregon, USA,
June 2007.

[6] R. Jonker and A. Volgenant. A shortest augmenting path algorithm for
dense and sparse linear assignment problems. Computing, 38:325–340,
1987.

[7] D.D. Lee and H. Seung. Algorithms for non-negative matrix factor-
ization. In T. Leen, T. Dietterich, and V. Tresp, editors, Advances

in Neural Information Processing Systems 13, Cambridge, MA, 2001.
MIT Press.

[8] Z. Li, J. Liu, and X. Tang. Pairwise constraint propagation by semidef-
inite programming for semi-supervised classification. In Proceedings

of the International Conference on Machine Learning, pages 576–583,
Helsinki, Finland, 2008.

[9] L. Song, A. Smola, A. Gretton, and K.M. Borgwardt. A dependence
maximization view of clustering. In Proceedings of the International

Conference on Machine Learning, pages 815–822, Corvallis, Oregon,
USA, June 2007.

[10] R. Souvenir and R. Pless. Manifold clustering. In Proceedings of the

Tenth IEEE International Conference on Computer Vision, volume 1,
pages 648–653, Beijing, China, October 2005.

[11] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large
margin methods for structured and interdependent output variables.
Journal of Machine Learning Research, 6:1453–1484, December 2005.

[12] K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl. Constrained k-
means clustering with background knowledge. In Proceedings of the

Eighteenth International Conference on Machine Learning, pages 577–
584, Williamstown, MA, USA, 2001.

[13] E.P. Xing, A.Y. Ng, M.I. Jordan, and S. Russell. Distance metric
learning, with application to clustering with side-information. In
S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural

Information Processing Systems 15, Cambridge, MA, 2003. MIT Press.
[14] L. Xu, J. Neufeld, B. Larson, and D. Schuurmans. Maximum margin

clustering. In Advances in Neural Information Processing Systems 17,
Cambridge, MA, 2005. MIT Press.

[15] L. Xu, D. Wilkinson, F. Southey, and D. Schuurmans. Discriminative
unsupervised learning of structured predictors. In Proceedings of the

International Conference on Machine Learning, pages 1057–1064,
Pittsburgh, PA, USA, June 2006.

[16] W. Yang, J.T. Kwok, and B. Lu. Spectral and semidefinite relaxations
of the CLUHSIC algorithm. In Proceedings of the SIAM International

Conference on Data Mining, pages 106–117, Columbus, Ohio, USA,
April 2010.

1327




