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Sliced inverse regression (SIR) is an important method for reducing the dimension-
ality of input variables. Its goal is to estimate the effective dimension reduction direc-
tions. In classification settings, SIR is closely related to Fisher discriminant analysis.
Motivated by reproducing kernel theory, we propose a notion of nonlinear effective di-
mension reduction and develop a nonlinear extension of SIR called kernel SIR (KSIR).
Both SIR and KSIR are based on principal component analysis. Alternatively, based on
principal coordinate analysis, we propose the dual versions of SIR and KSIR, which
we refer to as sliced coordinate analysis (SCA) and kernel sliced coordinate analy-
sis (KSCA), respectively. In the classification setting, we also call them discriminant
coordinate analysis and kernel discriminant coordinate analysis. The computational
complexities of SIR and KSIR rely on the dimensionality of the input vector and the
number of input vectors, respectively, while those of SCA and KSCA both rely on the
number of slices in the output. Thus, SCA and KSCA are very efficient dimension
reduction methods.

Key Words: Nonlinear effective dimension reduction; Sliced inverse regression; Re-
producing kernels.

1. INTRODUCTION

The notion of effective dimension reduction (EDR, Li 1991) plays a central role in
dimension reduction under a regression model. The desire behind this notion is that one
can reduce the dimensionality of input variables without losing any information that is
essential for predicting the corresponding output. Li (1991) developed a notable sliced
inverse regression (SIR) method for estimating the EDR space. Unlike principal component
regression, which first applies principal component analysis (PCA, Jolliffe 2002) on the
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input variables and then models the relationship between the first few principal components
and the output, SIR uses the idea of inverse regression. Roughly speaking, it reduces the
dimensionality of an input vector by regressing the input vector against the corresponding
output to form an EDR space, and then projects an input vector onto this space. Based on
the inverse regression, many other methods have been proposed to estimate the EDR space,
such as sliced average-variance estimate (SAVE, Cook and Weisberg 1991) and principal
Hessian direction (PHD, Li 1992; Cook 1998). Methods based on the EDR space have also
been extended to the classification problem (Cook and Lee 1999; Cook and Yin 2001). In
fact, except for a scaling factor, SIR is equivalent to Fisher discriminant analysis (FDA),
which seeks to find a linear transformation by maximizing the ratio of the between-class
scatter to the within-class scatter (Mardia et al. 1979). For this reason, we will use the terms
SIR and FDA interchangeably in this article to refer to essentially the same method.

SIR estimates the EDR directions by solving a generalized eigenvalue problem (Golub
and Loan 1996) that involves the between-slice covariance matrix and the sample covari-
ance matrix of the input vectors. Thus, its computational complexity depends on the di-
mensionality of the input space. To solve the generalized eigenvalue problem, SIR requires
the sample covariance matrix to be nonsingular. This can become problematic when the
dimensionality is high. On the one hand, the computational cost of SIR becomes high.
On the other hand, the sample covariance matrix is likely to be singular. For example, if
the number of input vectors is less than the dimensionality of the input space, the covari-
ance matrix is singular. As a result, the generalized eigenvalue problem for standard SIR
becomes intractable. However, thanks to the equivalence between SIR and FDA, we can
resort to the existing approaches developed for FDA. For example, the regularization ap-
proach (Hastie et al. 2001) is commonly used. Recently, Howland et al. (2003) applied
the generalized singular value decomposition method (GSVD, Paige and Saunders 1981)
to solve the generalized eigenvalue problem so that the nonsingularity requirement on the
sample covariance matrix is no longer necessary.

In this article, we propose a new approach to EDR under the inverse regression scheme.
Instead of estimating the EDR directions, our basic idea is to directly estimate the coordi-
nates of the projections of the input vectors in the EDR space. Accordingly, we develop
a new method called sliced coordinate analysis (SCA). Specifically, we first calculate the
projection coordinates of the means within each slice on the EDR space by applying prin-
cipal coordinate analysis (PCO, Gower 1966; Mardia et al. 1979) on the distance matrix
between the means. Using these coordinates, we then interpolate the projection of an input
vector onto the EDR space. Since SCA is derived from the notion of EDR, it inherits the
theoretical framework developed for SIR. It is worth noting that SCA is similar to the anal-
ysis of distance proposed by Gower and Krzanowski (1999), whose aim was to estimate the
coordinates of a set of observations when only a distance function between any two such
observations is available. The main computational cost of SCA comes from the eigen-
decomposition of the between-slice distance matrix. Because the size of the between-slice
distance matrix is equal to the number of slices, which is typically far less than the number
of input vectors, our proposed SCA is very efficient, especially in the case that the dataset
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is high-dimensional. Moreover, SCA does not explicitly use the sample covariance matrix.
Therefore, it does not matter whether the sample covariance matrix is singular or not.

Both SIR and SCA rely on the assumption of linearity of the data at hand. A suffi-
cient condition for satisfying this assumption is that the data follow some elliptically sym-
metric distributions, for example, the normal distribution. In recent years, kernel methods
(Schölkopf and Smola 2002; Shawe-Taylor and Cristianini 2004) have been increasingly
popular for data and information processing due to their benefits from conceptual simplic-
ity and theoretical potentiality. Kernel methods work by nonlinearly mapping vectors in the
input space to a higher-dimensional feature space, and then implementing traditional linear
algorithms (Duda et al. 2001) in the feature space. They are attractive since the vectors in
the feature space are more likely to be linearly separable than those in the input space.
Moreover, kernel methods can alleviate the linearity assumption of the original input vec-
tors. Motivated by these, we present a notion of nonlinear effective dimension reduction.
Subsequently, we develop nonlinear extensions of SIR and SCA, which are referred to as
kernel SIR (KSIR) and kernel SCA (KSCA). In order to contrast with FDA and kernel FDA
(KFDA), we also refer to SCA and KSCA as discriminant coordinate analysis (DCA) and
kernel discriminant coordinate analysis (KDCA) in the classification setting.

In the existing literature on the kernel extension of FDA, many different approaches
have been developed. For example, Baudat and Anouar (2000) and others (Mika et al.
2000; Roth and Steinhage 2000) extended FDA to KFDA. Recently, Park and Park (2005)
proposed a GSVD-based KFDA method. Although there exists an equivalence between
FDA and SIR, we present a simple derivation of KSIR using GSVD. From the classification
point of view, KSIR and KSCA are able to extract the most discriminating features in the
feature space. This is equivalent to extracting the most discriminating nonlinear features
in the original input space because KSIR and KSCA use high-order statistics of the input
space. The computational complexity of GSVD-based KSIR is dependent on the sum of
the number of input vectors and the number of slices, while the complexity of KSCA is
dependent on the number of slices only. Thus, if the number of input vectors is too large,
KSIR becomes computationally infeasible but KSCA is still efficient. There also exist other
kernel dimension-reduction methods, such as kernel PCA (KPCA) (Schölkopf et al. 1998).
KPCA is based on an unsupervised scheme, and its computational complexity is dependent
on the number of input vectors. Thus, KPCA becomes computationally expensive as the
number of input vectors increases.

The rest of this article is organized as follows. In Section 2, we present a brief dis-
cussion of EDR and the SIR algorithm. In Section 3, we give the detailed procedure of
implementing the SCA algorithm. In Section 4, we propose the notion of nonlinear EDR
and then derive the kernel SIR and kernel SCA algorithms. In Section 5, we illustrate the
applications of SCA and KSCA to classification based on some real-world datasets. The
last section gives some concluding remarks.
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2. EFFECTIVE DIMENSION REDUCTION AND SLICED
INVERSE REGRESSION

Consider the regression model

y = f (ηηη′
1x, ηηη′

2x, . . . , ηηη′
qx, ε), (2.1)

where x is a p-dimensional input vector, y is a univariate output variable, ηηη’s are unknown
p-dimensional vectors, ε is independent of x but its distribution is unknown, and f is an
arbitrary unknown function. The (•)′ is used to denote vector or matrix transpose. We refer
to any linear combination of ηηη’s as an effective dimension reduction (EDR) direction, and
the linear space spanned by ηηη’s as the EDR space. Based on these, Li (1991) presented the
following theorem.

Theorem 1. Under the regression model (2.1) and the linear design condition, the
centered inverse regression curve E(x|y) − E(x) is contained in the linear space spanned
by 666tηηη j ( j = 1, . . . , q), where 666t is the covariance matrix of x.

Here, the so-called linear design condition says that, for any βββ ∈ Rp, the condi-
tional expectation E(βββ ′x|ηηη′

1x, . . . , ηηη′
qx) is linear in ηηη′

1x, . . . , ηηη′
qx. This condition is sat-

isfied when the distribution of x is elliptically symmetric, for example, the normal distribu-
tion. We now use (ηηη′

1x, . . . , ηηη′
qx)′ as a new feature vector for x. When q is small, we may

achieve the goal of reducing the dimensionality of x from p to q. Given the data points
(xi , yi ) (i = 1, . . . , n), the SIR algorithm seeks to estimate ηηη via the procedure as given
below in Algorithm 1.

Algorithm 1 SIR algorithm
1: procedure SIR({xi , yi }n

i=1, m, x)
2: Divide equally the range of yi ’s into m slices, I1, . . . , Im . Let nc be the cardinality

of Ic.
3: Calculate the sample mean u = 1

n

∑n
i=1 xi , and each sliced mean uc =

1
nc

∑
yi ∈Ic

xi for c = 1, . . . , m.

4: Calculate 6̂66t = 1
n

∑n
i=1(xi − u)(xi − u)′, and 6̂66b = 1

n

∑m
c=1 nc(uc − u)(uc − u)′.

5: Solve the generalized eigenvalue problem as

6̂66bμμμi = λi 6̂66tμμμi , λ1 ≥ λ2 ≥ ∙ ∙ ∙ ≥ λp ≥ 0 (2.2)

and refer to μμμi as the i th SIR direction.
6: Project x along the SIR directions to form a q-dimensional new vector a = (μμμ′

1(x−
u), . . . , μμμ′

q(x − u))′ with q ≤ min{p, m−1}.
7: Return a as the low-dimensional representation of x.
8: end procedure

Although the SIR algorithm was originally designed for the regression problem, the
inverse scheme behind it has also been applied to the classification problem (Cook and
Yin 2001). Alternatively, we consider a classification problem with J classes. In this case,
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y is the class label for x and it only takes one value from {1, 2, . . . , J }. Furthermore, we
let m = J , uc be the mean of the cth class, 6̂66b be the between-class covariance matrix,
and 6̂66w be the within-class covariance matrix. Then FDA solves the following generalized
eigenvalue problem:

6̂66bv = γ 6̂66wv. (2.3)

Since 6̂66t = 6̂66b + 6̂66w, we can rewrite (2.3) as

6̂66bv =
γ

1 + γ
6̂66t v. (2.4)

By Equations (2.2) and (2.4), the SIR variates are the same as the canonical variates except
for a scaling factor. In other words, SIR is equivalent to FDA. It is also well known that
FDA relies on the assumption of normality of the input vectors.

3. SLICED COORDINATE ANALYSIS

Given the regression model (2.1), we let {b1, . . . , bq} be an orthonormal basis of the
space spanned by the 666tηηη j ’s. This implies that b j ’s form a q-dimensional EDR space. We
start with approximating each input vector x by its projection onto this EDR space. That
is,

x ≈
q∑

j=1

a j b j + u, (3.1)

where the weights a j form a vector a = (a1, . . . , aq)′ that describes the contribution of
each vector in the basis for representing x. The weight vector and weight space are just the
feature vector and feature space that we want to obtain. To avoid possible confusion with
the same terms used in the kernel literature (Shawe-Taylor and Cristianini 2004), we still
refer to them as weight vector and weight space here. This procedure can also be called
feature transformation.

SIR is an efficient algorithm for estimating the weight vector. Essentially, SIR first
estimates the bases b j ’s using uc’s and then calculates the weight vector a for input x.
Specifically, from (3.1), we have

a j = b′
j (x − u), j = 1, . . . , q.

For the mean uc of the inputs within the cth slice, it follows from (3.1) that

uc =
q∑

j=1

wcj b j + u, c = 1, . . . , m, (3.2)

where wc = (wc1, . . . , wcq)′ is the weight vector associated with uc. Based on (3.2), SIR
attempts to perform PCA on the covariance matrix for uc’s to estimate b j ’s.

In this section, we introduce an alternative to computing weight vectors through per-
forming PCO on the distance matrix for uc’s. We call this algorithm sliced coordinate
analysis (SCA). Unlike SIR, SCA directly estimates the weight vector wc associated with
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uc and then calculates the weight vector a associated with any input x. Computationally,
it is similar to the analysis of distance proposed by Gower and Krzanowski (1999), whose
aim is to estimate the coordinates of a set of observations when only a distance function
between any two such observations is available. In the following, we first obtain the weight
vectors for the means uc’s (Section 3.1) and then that of any input x (Section 3.2).

3.1 REPRESENTATION OF MEANS IN WEIGHT SPACE

Let U = [u1, . . . , um]′ (m×p) and W = [w1, . . . , wm]′ (m×q). From (3.2), we have

‖uc − uh‖2 = ‖wc − wh‖2, c, h = 1, . . . , m.

As a result, we can obtain an m×q matrix D with d2
ch , the squared distance between wc

and wh , as the (c, h)th entry. It can be seen readily that

d2
ch = w′

cwc + w′
hwh − 2w′

cwh .

This can be expressed in matrix form as

D = z1′
m + 1mz′ − 2WW′, (3.3)

where z is an m×1 vector containing the diagonal elements of WW′ and 1m is the m×1
vector of ones. Here and later, we denote Hw = Im − 1m n′

n with Im being the m×m identity
matrix and n = (n1, . . . , nm)′. Pre- and post-multiplying (3.3) by Hw, we have

−
1

2
HwDHw

′ = −
1

2
Hwz1′

mHw
′ −

1

2
Hw1mz′H′

w + HwWW′H′
w

= HwWW′H′
w = WW′. (3.4)

The first two terms on the right-hand side of the first line are zero because Hw1m = 0 and
1′

mH′
w = 0, and the second line can be obtained since we assume that the origin of the axes

in the weight space is at the weighted centroid of the m weight vectors.
Recall that d2

ch is also the squared distance between uc and uh . Hence we have

d2
ch = u′

cuc + u′
huh − 2u′

cuh . (3.5)

Thus, in matrix form,

−
1

2
HwDH′

w = HwUU′H′
w , 999. (3.6)

Hence, W can be obtained by performing an eigen-decomposition on either − 1
2 HwDH′

w

or HwUU′H′
w, say 999 = Q333Q′ = (Q3331/2)(Q3331/2)′. Recall that the rank of 999 is q ≤ m.

Thus, we can express matrices Q and 333 as Q = [Q1, Q2] and

333 =

(
3331 0
0 0

)

,

where Q1 and Q2 are m×q and m×(m−q) matrices, respectively, and 3331 is a q×q diag-
onal matrix with positive elements. Consequently, we can write 999 = Q13331Q′

1. Moreover,
except for an orthonormal matrix, we have

W = Q13331
1/2. (3.7)

and hence (W′W)−1 = 333−1
1 .
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3.2 INTERPOLATION OF INPUTS IN WEIGHT SPACE

We now consider the problem of calculating the disposition of the associated weight
vector a for an input vector x. Having obtained the weight vectors of the means, the weight
vector a can be added to the diagram by using the technique developed by Gower (1968).
Specifically, let d0 be the m-dimensional vector whose elements are the squared distances
from wc to the origin of the axes in the weight space, and let d be the m-dimensional
vector whose elements are the squared distances from weight vector a to each of the weight
vectors wc’s. Then, from (Gower 1968), the weight vector a is given by

a = −
1

2
(W′W)−1W′Hw(d − d0) = −

1

2
333−1

1 W′Hw(d − d0). (3.8)

Our current problem is to compute d = (d1, . . . , dm)′ and d0 = (d01, . . . , d0m)′. From
(3.1) and (3.2), we have

‖x − uc‖
2 ≈

q∑

j=1

(a j − wcj )
2 = ‖a − wc‖

2 = dc,

which motivates us to approximate dc by ‖x − uc‖2 for c = 1, . . . , m. Thus, d is the m-
dimensional vector whose cth element dc is the squared distance from the input x to the
mean uc. Consequently, we can obtain d0 and d as

d0c = ‖wc‖
2 and dc = ‖x − uc‖

2, c = 1, . . . , m. (3.9)

The SCA algorithm is summarized in Algorithm 2. We can see that the main compu-
tational cost of SCA comes from the eigen-decomposition of 999, which is of size m×m.
Thus, the computational cost is low. Moreover, the computational procedure is stable, even
when 999 is singular. It is worth noting that the issue of determining the number of slices has
been addressed in the context of SIR and PHD (Schott 1994; Cook and Yin 2001). These
discussions are also relevant to SCA. In general, it is reasonable for the user to specify the
number of slices to be between 10 to 20 for a dataset with n = 300 observations. In the
classification scenario, we also refer to SCA as DCA and set the number of slices as the
number of classes. If the number of classes is too small, we can employ multiple submeans
for each class and then apply our algorithm on these submeans separately. In the following
experiments, we concentrate our attention on classification problems where the number of
slices is specified as the number of classes.

SCA is based on the notion of effective dimension reduction and the inverse regression
setting. Similar to the dual relationship between PCA and PCO, there also exists such a
relationship between SIR and SCA. Thus, Theorem 1 also justifies our methods as well
as SIR. Moreover, Vempala and Wang (2002) proved that in the expectation, if having m
classes, the subspace spanned by the top m singular vectors of the observation matrix is
equivalent to the subspace spanned by the m mean vectors.
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Algorithm 2 SCA algorithm
1: procedure SCA({xi , yi }n

i=1, m, x)
2: Divide equally the range of yi ’s into m slices, I1, . . . , Im . Let nc be the cardinality

of Ic.
3: Calculate each sliced mean uc = 1

nc

∑
yi ∈Ic

xi for c = 1, . . . , m, and 999 =
HwUU′H′

w.
4: Perform eigen-decomposition on 999 as 999 = Q13331Q′

1 and let W = Q1333
1/2
1 .

5: Calculate d0 and d from (3.9), and then a from (3.8) for given x.
6: Return a as the low-dimensional representation of x.
7: end procedure

4. NONLINEAR EFFECTIVE DIMENSION REDUCTION

Kernel methods (Shawe-Taylor and Cristianini 2004) work in a feature space F , which
is related to the original input space I ⊂ Rp by a mapping,

ϕϕϕ : I → F .

That is, ϕϕϕ is a vector-valued function which gives a vector ϕϕϕ(s), called a feature vector,
corresponding to an input s ∈ I. In many kernel methods, we are usually given only a
Mercer kernel or reproducing kernel K : I × I → R such that K (s, t) = ϕϕϕ(s)′ϕϕϕ(t)
for s, t ∈ I. The mapping ϕϕϕ(∙) itself is typically not given explicitly. Rather, there exist
only inner products between feature vectors in F . In order to implement a kernel method
without referring to ϕϕϕ(∙) explicitly, one resorts to the so-called kernel trick.

Let L2(I) be the square integrable Hilbert space of functions whose elements are func-
tions defined on I. It is a well-known result that if K is a reproducing kernel for the Hilbert
space L2(I), then {K (∙, t)} spans L2(I). Here K (∙, t) represents a function that is defined
on I with values at s ∈ I equal to K (s, t). There are some common kernel functions:

(a) Linear kernel: K
(
s, t) = s′t,

(b) Gaussian kernel: K
(
s, t) = exp(−

∑p
j=1(s j−t j )

2/β j
)

with β j > 0,

(c) Laplacian kernel: K
(
s, t) = exp(−

∑p
j=1 |s j−t j |/β j

)
with β j > 0,

(d) Polynomial kernel: K (s, t) = (s′t + 1)k of degree k.

Motivated by the idea behind kernel methods, we consider the following regression
model instead of that given in (2.1):

y = f (η̃ηη′
1x̃, η̃ηη′

2x̃, . . . , η̃ηη′
q x̃, ε), (4.1)

where x̃ is the shorthand for ϕϕϕ(x) and η̃ηη’s are vectors of the same dimension as x̃. In the
following, we use the tilde notation ˜ to denote configurations in the feature space. Thus, for
our input data X = {x1, x2, . . . , xn} ⊂ I, the corresponding feature vectors in the feature
space are denoted as X̃ =

{
x̃1, x̃2, . . . , x̃n

}
⊂ F . Since there exists a nonlinear mapping
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between x and x̃, we call any linear combination of η̃ηη’s a nonlinear effective dimension re-
duction (EDR) direction, and the space spanned by η̃ηη’s a nonlinear EDR space. For model
(4.1), the linear design condition is currently required to hold on x̃. Thus, it is not necessary
to satisfy the condition for x. We now perform SIR and SCA over {(x̃1, y1), . . . , (x̃n, yn)}
giving rise to their nonlinear extensions. We refer to these extensions as kernel SIR (KSIR)
and kernel SCA (KSCA), respectively.

4.1 KERNEL SLICED INVERSE REGRESSION

KSIR seeks to solve the following generalized eigenvalue problem:

C̃bμ̃μμ = λ̃C̃t μ̃μμ, (4.2)

where C̃t and C̃b are the total covariance matrix and the between-slice covariance matrix
in F , respectively, that is,

C̃t =
1

n

n∑

i=1

(x̃i − ũ)(x̃i − ũ)′,

C̃b =
1

n

m∑

c=1

nc(ũc − ũ)(ũc − ũ)′,

with ũ = 1
n

∑n
i=1 x̃i and ũc = 1

nc

∑
yi ∈Ic

x̃i . Let X̃ = [x̃1, . . . , x̃n]′ and Ũ = [ũ1, . . . , ũm]′.

Then we have the kernel matrix K = X̃X̃′. To solve (4.2), we now resort to the kernel trick
to find an equivalent problem that works on K without involving X̃. Notice that since there
exists an equivalence relationship between SIR and FDA, we can immediately make use
of existing methods in the KFDA literature to derive a KSIR method. However, the KFDA
method in (Mika et al. 2000) was developed for two-class problems only. The more gen-
eral method, called generalized discriminant analysis (GDA) (Baudat and Anouar 2000),
requires that the kernel matrix be nonsingular. Unfortunately, centering in the feature space
will violate this requirement. Park and Park (2005) argued that this breaks down the the-
oretical justification for devising GDA and thus proposed the generalized SVD (GSVD)
method (Paige and Saunders 1981) to avoid this requirement for nonsingularity. In this
paper, along the same line as in Park and Park (2005), we present a simple formulation of
KSIR.

Let G be an n×m indicator matrix with gic = 1 if input xi is in slice c and gic = 0 oth-
erwise. Denote N = diag(n1, n2, . . . , nm), n = (n1, n2, . . . , nm)′,

√
N = diag(

√
n1,

√
n2,

. . . ,
√

nm),
√

n = (
√

n1,
√

n2, . . . ,
√

nm)′ and Hn = In− 1
n 1n1′

n . It thus follows that
1′

nG = 1′
mN = n′, G1m = 1n , 1′

mn = n, G′G = N, N−1n = 1m and

Ũ = N−1G′X̃. (4.3)

We rewrite C̃t and C̃b as

C̃t =
1

n
X̃′HnHnX̃ =

1

n
X̃′HnX̃
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and

C̃b =
1

n
Ũ′
[√

N−
1

n
n
√

n
′
] [√

N−
1

n

√
nn′
]

Ũ

=
1

n
X̃′GN−1

[√
N−

1

n
n
√

n
′
] [√

N−
1

n

√
nn′
]

N−1G′X̃

=
1

n
X̃′HnGN−1G′HnX̃.

Here we use the fact that GN−1
[√

N− 1
n n

√
n′
]

= G
√

N
−1

− 1
n 1n

√
n′, HnG

√
N

−1
=

G
√

N
−1

− 1
n 1n

√
n′ and

√
N

−1√
N

−1
= N−1. Now, we can reformulate the problem (4.2)

as
X̃′HnGN−1G′HnX̃μ̃μμ = λ̃X̃′HnHnX̃μ̃μμ. (4.4)

On the other hand, since the eigenvectors are in the space spanned by x̃1, . . . , x̃n (refer to
(Mika et al. 2000; Park and Park 2005) for more detailed explanation), we express μ̃μμ as

μ̃μμ =
n∑

i=1

βi (x̃i − ũ) = X̃′Hnβββ, (4.5)

where βββ = (β1, . . . , βn)′ is an n×1 coefficient vector. Hence, (4.4) is equivalent to

X̃′HnGN−1G′HnX̃X̃′Hnβββ = λ̃X̃′HnHnX̃X̃′Hnβββ.

Premultiplying the equation by HnX̃, we have a new generalized eigenvalue problem

HnKHnGN−1G′HnKHnβββ = λ̃HnKHnHnKHnβββ, (4.6)

which involves the kernel matrix K rather than X̃. Moreover, given a new input vector x,
we can compute the projection of its feature vector x̃ onto μ̃μμ through

(x̃ − ũ)′μ̃μμ =
(

x̃ −
1

n
X̃′1n

)′
X̃′Hnβββ =

(
kx −

1

n
K1n

)′
Hnβββ, (4.7)

where kx =
(
K (x, x1), . . . , K (x, xn)

)′. This shows that the kernel trick can be used for
KSIR. Our current concern is to solve the problem (4.6). Although K is assumed to be
nonsingular, HnKHnHnKHn is positive semidefinite but not positive definite because the
centering matrix Hn is singular. In fact, the rank of HnKHnHnKHn is not larger than
n−1 because the rank of Hn is n−1. In this case, the method devised in (Baudat and
Anouar 2000) cannot be used for the problem (4.6). Alternatively, we resort to GSVD to
solve this problem, with the detailed procedure given in Algorithm 3. Detailed derivation
for the implementation of GSVD can be found in (Howland et al. 2003). Since the rank
of GN−1G′ is m−1, the rank of HnKHnGN−1G′HnKHn is not larger than m−1. This
implies that we can at most obtain the q = m−1 EDR directions, giving q βββ’s. For our
problem given in (4.6), running GSVD requires the complete orthogonal decomposition

of matrix Z = [HnKHnG
√

N
−1

, HnKHn]′, which is of size (n+m)×n. Thus, when n is
large, the computational cost is expected to be expensive.
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Algorithm 3 GSVD-based KSIR algorithm
1: procedure KSIR({xi , yi }n

i=1, m, x, “kernel function”)
2: Divide equally the range of yi ’s into m slices, I1, . . . , Im , and assign the indicator

matrix G (n×m). Let nc be the cardinality of Ic and N = diag(n1, . . . , nm).
3: Calculate K = [K (xi , x j )]n

i, j=1 and kx =
(
K (x, x1), . . . , K (x, xn)

)′.

4: Calculate Z = [HnKHnG
√

N
−1

, HnKHn]′ ((n+m)×n).
5: Compute the orthogonal-triangular decomposition of Z, which is

P′ZQ =

( t n−t

t R 0
n+m−t 0 0

)

with R = [ri j ] and |r11| ≥ |r22| ≥ |rtt | > 0.

6: Perform SVD of P(1 : m, 1 : t) as P(1 : m, 1 : t) = ESV′.

7: Compute B = Q

(
R−1V 0

0 In−t

)

and set F = B(:, 1 : m−1).

8: Return ã = F′Hn
(
kx− 1

n K1n
)

as the low-dimensional representation of x.
9: end procedure

4.2 KERNEL SLICED COORDINATE ANALYSIS

In Section 3, SCA was developed over the input space. Similar to KSIR, we propose
KSCA in this subsection. As in other kernel methods, the idea is to first map the input
space into a feature space and then apply SCA in this feature space.

Let W̃ be the weight matrix associated with Ũ = [ũ1, . . . , ũm]′ and assume that the
column of W̃ is centered. It is straightforward to extend (3.8) in Section 3 to the feature
space. That is, we can calculate the associated weight vector ã of x by

ã = −
1

2
(W̃′W̃)−1W̃′Hw(d̃ − d̃0). (4.8)

Here d̃ − d̃0 = (d̃1 − d̃01, . . . , d̃m − d̃0m)′, where d̃c is approximated by the squared
distance between x̃ and ũc, and d̃0c is the squared distance between the origin of the axes
in the weight space and w̃c, for c = 1, . . . , m.

In order to calculate ã, we seek to calculate W̃, d̃, and d̃0. First, similar to (3.4) and
(3.6), we have

W̃W̃′ = HwŨŨ′H′
w.

It follows from (4.3) that

ŨŨ′ = N−1G′X̃X̃′GN−1 = N−1G′KGN−1,

which leads to
W̃W̃′ = HwN−1G′KGN−1H′

w.
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Second, with the kernel trick, for c = 1, . . . , m, we have

d̃c = ‖x̃ − ũc‖
2 = x̃′x̃ − 2x̃′ũc + ũ′

cũc

= x̃′x̃ −
2

nc

∑

yi ∈Ic

x̃′x̃i +
1

n2
c

∑

yi ,y j ∈Ic

x̃ j
′x̃i

= K (x, x) −
2

nc

∑

yi ∈Ic

K (x, x j ) +
1

n2
c

∑

yi ,y j ∈Ic

K (xi , x j ),

and hence,
d̃c − d̃0c = d̃c − w̃′

cw̃c, c = 1, . . . , m. (4.9)

We now summarize the KSCA procedure in Algorithm 4. We can see that W̃, d̃,
and d̃0 are computed by using K instead of X̃. Moreover, in order to obtain W̃, we are
only required to perform SVD on the m×m matrix HwN−1G′KGN−1H′

w. The computa-
tional complexity is O(m3). However, the complexity of KSIR (or KFDA) is larger than
O(n2(m +2n/3)) because it needs to perform QR decomposition on the (n+m)×n matrix
Z.

Algorithm 4 KSCA algorithm
1: procedure KSCA({xi , yi }n

i=1, m, x, “kernel function”)
2: Divide equally the range of yi ’s into m slices, I1, . . . , Im , and assign the indicator

matrix G (n×m). Let nc be the cardinality of Ic and N = diag(n1, . . . , nm).
3: Calculate K = [K (xi , x j )]n

i, j=1, kx =
(
K (x, x1), . . . , K (x, xn)

)′ and 9̃99 =

HwN−1G′KGN−1H′
w.

4: Perform eigen-decomposition on 9̃99 as 9̃99 = Q̃13̃331Q̃′
1 and let W̃ = Q̃13̃33

1/2
1 .

5: Compute d̃ − d̃0 from (4.9), and then ã from (4.8) for given x.
6: Return ã as the low-dimensional representation of x.
7: end procedure

It is worth noting that there exists a one-to-one relationship between an observation in
the original input space Rp and a weight vector in the weight space Rq . Accordingly, the
weight vector ai (or ãi ) may then be used as a new feature for xi . More specifically, we
form a new set of training data {ai , yi }n

i=1 or {ãi , yi }n
i=1. In the regression setting, the new

training set is subsequently used to train any suitable regression model. In the classification
setting, one commonly uses a nearest mean classifier to assign a label to x, namely,

y = arg min
j

{‖a − ωωω j‖, j = 1, . . . , m}

where ωωω j is the j th column of A′GN−1 with A = [a1, . . . , an]′. Alternatively, we may
also use {ai , yi }n

i=1 or {ãi , yi }n
i=1 to train other kernel-based classifiers such as a support

vector machine (SVM). Figure 1 illustrates the whole procedure for classification purpose.
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Figure 1. Schematic diagram of using weight vectors in classification.

5. EXPERIMENTS

In this section, we illustrate the applications of SCA and KSCA for classification, and
compare them with PCA and KPCA as well as SIR and KSIR. For the kernel methods, we

adopt the Gaussian RBF kernel K (xi , x j ) = exp
(

−
‖xi −x j ‖2

β2

)
and the Laplacian kernel

K (xi , x j ) = exp
(
−
∑p

l=1
|xil−x jl |

β

)
, where β is taken as the product of a positive coefficient

ε and the average distance between slice means in the training data. We find that if the value
of ε is taken from the interval [0.5, 1.5], there is little influence on the algorithms. In the
following experiments, we set β = 0.9 and m, the number of slices, as the number of
classes. Table 1 gives a summary of the datasets that will be used.

5.1 APPLICATION TO FACE RECOGNITION

Using the publicly available AT&T and Yale face image datasets, we compared SCA
(KSCA) with PCA (KPCA) and FDA (KFDA). We first used these methods for feature
transformation to generate a set of low-dimensional weight vectors. After that, the weight
vectors, acting as new feature vectors, were given to both a nearest mean (NM) classifier

Table 1. Summary of the Datasets: n—the size of the training set; k—the size of the test set; p—the dimension
of the input vector; m—the number of slices (or classes); q—the dimensionality after reduction.

Datasets n k p m q

AT&T 200 200 112×92 40 39
Yale face 90 75 128×128 15 14
2K-image 1328 569 144 14 13
USPS 4649 4649 256 10 9
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and an SVM for training and testing. The AT&T dataset contains 400 images of 40 sub-
jects, with variations mainly due to the scale and pose of the subjects. Each image consists
of 112×92 pixels, that is, p = 112×92. The Yale dataset contains 165 images of 15 sub-
jects, with variations mainly due to facial expression and lighting. Each image consists of
128×128 pixels, that is, p = 128×128. Each subject is considered as a class (or slice).
Now we let the number of classes equal to the number of slices, that is, m = 40 for the
AT&T dataset and m = 15 for the Yale dataset. Notice that the SIR and PCA methods
were not directly performed, because p is too high. Instead, we regard PCA and FDA as
special cases of KPCA and KFDA, respectively, with the linear kernel. In this case, PCA
and FDA are called Eigenface (Turk and Pentland 1991) and Fisherface (Belhumeur et al.
1997), respectively, in the face recognition literature.

We randomly split the images for each subject into two subsets, one for training and
the other for testing. The classification accuracies, based on NM and SVM, were estimated
from 50 random splits. For the AT&T dataset, 200 of the 400 images were used for training
and the remaining 200 for testing. For the Yale dataset, 90 of the 165 images were used
for training and the remaining 75 for testing. The split was randomly repeated 50 times
and the classification accuracies were then averaged. All the experiments were performed
in Matlab on a Pentium 4 PC with 2.66GHz CPU and 1.50GB of RAM. We used the
SVMlight (http://www.kernel-machines.org/ ) package with one-per-class (OPC) ensemble
strategy for SVM and set the parameter C = 1000.

The computational complexities of both (K)PCA and (K)FDA are O(n3), that is,
O(2003) for AT&T and O(903) for Yale. On the other hand, the complexity of (K)SCA
is O(m3), that is, O(403) for AT&T and O(153) for Yale. Therefore, (K)SCA is more
efficient than (K)PCA and (K)SIR. Tables 2 and 3 show the CPU time of different dimen-
sion reduction (DR) methods for the AT&T and Yale datasets. Since these methods all
take the same amount of time to compute the kernel matrix, we do not include the time of
computing the kernel matrix in our results. After obtaining the new features with (K)PCA,
(K)FDA, and (K)SCA, we used NM and SVM for the classification target. When a DR
method with the linear kernel was used, we performed a Gaussian-kernel SVM. Other-
wise, we performed a linear-kernel SVM because the Gaussian kernel was already used in
KPCA, KFDA, and KSCA. At the same time, we implemented a Gaussian-kernel SVM on
the original face datasets for baseline comparison. Tables 2, 3, and 4 list the classification
accuracies and the corresponding standard deviations. From the results, the KFDA clas-
sifier often achieves the lowest recognition error rate. However, it takes a long time. The
KSCA classifier ranks second in terms of the error rate, but it requires much less process-
ing time. KSCA and KFDA use the class label information during training, whereas KPCA
does not. This is the main reason why KSCA and KFDA outperform KPCA.

5.2 APPLICATION TO IMAGE CLASSIFICATION

We applied our methods to two relatively large image datasets: 2K-image dataset and
USPS dataset. The 2K-image dataset was collected from the Corel Image CDs. This dataset
contains 2K, or exactly 1,897, representative images from 14 categories (m=14): architec-



SLICED COORDINATE ANALYSIS 239

Table 2. Recognition results for the AT&T database using nearest mean classifier.

Linear kernel Gaussian kernel

Method Accuracy (%) CPU time (s) Accuracy (%) CPU time (s)

KSCA 90.90 (±2.36) 0.0107 92.96 (±2.00) 0.0140
KFDA 88.64 (±2.80) 0.1324 93.38 (±2.69) 0.1502
KPCA 89.39 (±2.61) 0.1088 85.65 (±2.68) 0.4676

Table 3. Recognition results for the Yale database using nearest mean classifier.

Linear kernel Gaussian kernel

Method Accuracy (%) CPU time (s) Accuracy (%) CPU time (s)

KSCA 82.91 (±3.25) 0.0032 85.56 (±3.80) 0.0040
KFDA 94.75 (±2.45) 0.0168 95.79 (±3.65) 0.0206
KPCA 78.13 (±3.44) 0.0158 78.49 (±3.75) 0.0187

Table 4. Classification accuracies for both the AT&T and Yale data sets. “RBF” (“LIN”) means that the Gaussian
(linear) kernel is used in DR or SVM.

DR method + Classifier AT&T Yale

Original Data + RBF-SVM 96.27 (±1.78) 94.49 (±2.42)

LIN-KPCA + RBF-SVM 96.07 (±1.71) 81.42 (±3.90)
LIN-KFDA + RBF-SVM 88.03 (±2.78) 95.29 (±2.50)
LIN-KSCA + RBF-SVM 96.50 (±1.38) 86.31 (±3.11)

RBF-KPCA + LIN-SVM 93.27 (±1.84) 83.87 (±4.15)
RBF-KFDA + LIN-SVM 93.45 (±2.08) 96.27 (±2.70)
RBF-KSCA + LIN-SVM 95.25 (±)1.54 87.24 (±3.55)

ture, bears, clouds, elephants, fabrics, fireworks, flowers, food, landscape, people, textures,
tigers, tools, and waves. Each image is represented by a vector of 144 dimensions including
color, texture, and shape features (Tong and Chang 2001). The experimental results were
evaluated over 30 random splits of the dataset, with 70% for training and 30% for testing.
The USPS dataset contains 9,298 handwritten digits from 0 to 9. Each digit consists of
16×16 pixels. We treat each digit as a class. In this case, m = 10 and p = 256. The ex-
perimental results were also evaluated over 30 random splits of the dataset, with 50% for
training and 50% for testing.

We first performed PCA, FDA (SIR) and DCA (SCA) to reduce the dimensionality
of the image from 144 (256) to 13 (9) due to q = m−1. Second, we applied the NM
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Table 5. Experimental results for the 2K image dataset. “LAP-SVM” means that the Laplacian kernel is used in
SVM.

Accuracy (%)
Method CPU time (s) NM LAP-SVM

PCA 0.6813 57.78 (±0.43) 63.87 (±0.30)
FDA 4.0062 71.80 (±0.81) 72.82 (±0.35)
DCA 0.0344 62.89 (±0.42) 67.32 (±0.32)

Table 6. Experimental results for the USPS dataset. “RBF-SVM” means that the RBF kernel is used in SVM.

Accuracy (%)
Method CPU time (s) NM RBF-SVM

PCA 8.2901 78.50 (±0.43) 91.41 (±0.30)
FDA 22.5109 89.90 (±0.81) 92.02 (±0.35)
DCA 0.2276 84.08 (±0.42) 92.64 (±0.32)

Table 7. Experimental results for the 2K image dataset using the kernel methods.

Accuracy (%)
Method CPU time (s) NM LIN-SVM

KPCA 87.8531 60.06 (±1.62) 71.06 (±1.77)
KFDA 41.4323 84.55 (±0.99) 86.02 (±1.08)
KDCA 1.3141 70.56 (±1.68) 77.48 (±1.52)

and SVM classifiers to the reduced images. In SVM, we used the Laplacian kernel for the
2K image data and the Gaussian kernel for the USPS data. Tables 5 and 6 show the CPU
time of running these methods for dimension reduction, and the classification accuracies
for NM and SVM. The computational time that DCA needs is the lowest. For the 2K
image data, we used GSVD to solve the generalized eigenvalue problem (2.2) because the
sample covariance matrix 6̂66t is singular. We can see from Table 7 that the FDA-based
SVM classifier achieves the highest classification accuracy, while the performance of the
SCA-based SVM is comparatively better. We also applied KPCA, KFDA, and KDCA to
USPS with the Laplacian kernel for the 2K image data and the RBF kernel for the USPS
data. For the USPS dataset, since n is too large, we instead ran these methods in Matlab
on an 8 × Sun Microsystems Ultra-SPARC III 900MHz CPU, each with 8MB E-Cache
and 8GB RAM. It took 6.1982×103 and 1.0632×104 seconds to run KFDA and KPCA,
respectively, one time. However, it only took about four seconds to implement KDCA one
time.
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6. CONCLUSION

In this article, we proposed the sliced coordinate analysis method and its kernel version
to reduce the dimension of the input vector in regression and classification problems. For
many image and video applications, FDA and kernel FDA are computationally infeasible
if the size of the image set is large and/or the resolution of the image is high. However,
our proposed SCA and KSCA methods can still proceed because the number of classes
is typically much smaller than the size of the image set or the resolution of the image.
For unsupervised learning problems, we can first cluster the data into several classes so
that our methods can still work well. Therefore, we expect our methods to have many
applications in machine learning and pattern recognition, especially for kernel methods
applied to datasets of large sizes.
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