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Abstract

De.ning a good distance (dissimilarity) measure between patterns is of crucial importance in many classi.cation and
clustering algorithms. While a lot of work has been performed on continuous attributes, nominal attributes are more di0cult to
handle. A popular approach is to use the value di1erence metric (VDM) to de.ne a real-valued distance measure on nominal
values. However, VDM treats the attributes separately and ignores any possible interactions among attributes. In this paper, we
propose the use of adaptive dissimilarity matrices for measuring the dissimilarities between nominal values. These matrices are
learned via optimizing an error function on the training samples. Experimental results show that this approach leads to better
classi.cation performance. Moreover, it also allows easier interpretation of (dis)similarity between di1erent nominal values.
? 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Many pattern recognition algorithms rely on the use of a
pairwise similarity (e.g., inner product) or dissimilarity (e.g.,
distance) measure between patterns. Examples include the
nearest-neighbor classi.ers, radial basis function networks,
k-means clustering and, more recently, kernel methods [1,2].
For patterns with continuous (quantitative) attributes, a va-
riety of distance metrics have been widely studied. For
example, for two patterns xi ; xj ∈Rm, common choices in-
clude the Euclidean distance

√∑m
a=1 (xia − xja)2 and the

Minkowski distance (
∑m
a=1(xia − xja)q)1=q. More generally,

to cater for the di1erent contributions and possible corre-
lations among attributes, one can use a generalized ver-
sion of the Euclidean distance

√
(xi − xj)′A−1(xi − xj),

where A is a positive-de.nite matrix. Various methods have
been proposed to determine A. For example, one can set
A to be the covariance matrix, leading to the so-called
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Mahalanobis distance. Another possibility is to maximize
the ratio between intra-class variance and inter-class vari-
ance, either globally [1] or locally [3]. A survey of these
feature weighting methods can be found in [4].

However, these metrics are only de.ned on continuous
attributes. When the attributes are nominal (categorical), 1

de.nitions of the similarity (dissimilarity) measures become
less trivial [5]. A simple but commonly used measure is the
overlap metric [6]. Under this metric, for two possible val-
ues vi and vj , the distance is de.ned as zero when vi; vj are
identical and one otherwise. For binary attributes, this over-
lap metric reduces to the so-called Hamming distance. A
number of variants, each using a di1erent weighting factor,
have also been proposed (e.g., [7,8]). However, this over-
lap metric and its variants assume that all attribute values

1 An attribute is nominal if it can take one of a .nite number of
possible values and, unlike ordinal attributes, these values bear no
internal structure. An example is the attribute taste, which may
take the value of salty, sweet, sour, bitter or tasteless. When a
nominal attribute can only take one of two possible values, it is
usually called binary or dichotomous.

0031-3203/$30.00 ? 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2003.12.015

mailto:chli@comp.hkbu.edu.hk


2 V. Cheng et al. / Pattern Recognition ( ) –

ARTICLE IN PRESS

are of equal distance from each other, and thus cannot rep-
resent value pairs with di1ering degrees of similarities. As
an example, for the attribute taste, it may be more desir-
able to have the value sour closer to sweet than to bitter.
Hence, a real-valued distance metric is often preferred over
a Boolean one.

Moreover, for nominal attributes with many possible val-
ues, a popular approach is to .rst transform this to a long
list of binary attributes, and then apply the overlap metric
(or one of its variants) to measure the distance. For exam-
ple, in a movie classi.cation system, the cast attribute will
be transformed into a set of binary attributes such as “cast
includes Dustin Ho1man”, “cast includes Bruce Willis”,
“cast includes Leonardo DiCaprio”, etc. The feature dimen-
sionality may thus increase dramatically and the curse of
dimensionality [9] will become an important issue.

A very popular real-valued metric for nominal attributes
is the value di-erence metric (VDM) [6] (and its variants
[10–12]). For two attribute values vi and vj , their distance
is de.ned as

d(vi; vj) = !(vi)
∑
c∈C

(P(c|vi) − P(c|vj))2;

where C is the set of all class labels, P(c|v) is the conditional

probability of class c given v, and !(vi)=
√∑

c∈C P(c|vi)2

is a weighting factor, which attempts to give higher weight
to an attribute value that is useful in class discrimination.
Note that VDM is actually not a metric as the weighting
factor is not symmetric. Moreover, another problem is that
it implicitly assumes attribute independence. A simple ex-
ample demonstrating this problem is the XOR data. VDM
will then yield zero distance among all attribute values,
which is clearly undesirable. Hence, its performance will de-
teriorate when correlations among attributes are signi.cant.
Besides, in practice, the class conditional probabilities are

P(c|vi) =
number of training samples with attribute value vi and belonging to class c

number of training samples with attribute value vi
:

unknown and have to be estimated from the training data, as
This density estimation may be inaccurate, especially when
the available training samples are scanty.

On the other hand, decision tree classi.ers [13] can han-
dle nominal attributes naturally, by side-stepping the issue
of de.ning distances altogether. However, as attributes are
considered only one at a time during node splitting (typi-
cally by using the information gain or gain ratio), decision
trees can again perform poorly in problems with high corre-
lations among attributes. Besides, they are not good at han-
dling continuous attributes. Typically, these attributes have
to be pre-processed by discretizing into a .nite number of
intervals [14], which inevitably incurs a loss of information.

In this paper, we attempt to learn the dissimilarities be-
tween the values of a nominal attribute directly. This is anal-
ogous to the works on distance metric learning for continu-
ous attributes [3,15–17]. The rest of this paper is organized
as follows. Section 2 describes the proposed method by in-
troducing the notion of adaptive dissimilarity matrices. Ex-
perimental results are presented in Section 3, and the last
section gives some concluding remarks.

2. Adaptive dissimilarity matrix

Suppose that we are given a training set S =
{(x1; y1); : : : ; (xn; yn)}, with input xi = (xi1; : : : ; xim) having
m attributes and yi ∈{−1;+1} is the corresponding class
label. We .rst consider the case where all these m attributes
are nominal. Assume that a particular attribute a can take
values in Va = {va1; : : : ; vana}. In the following, we attempt
to de.ne a dissimilarity measure on each of these Va’s. In
general, a dissimilarity measure d on V is a real-valued
function on V×V such that

0 = d(vi; vi)6d(vi; vj) = d(vj; vi)¡∞; ∀vi; vj ∈V: (1)

For attribute a, we will construct an na × na non-negative,
symmetric, real-valued matrix Ma where its (�; �)th entry,
Ma;�� = Ma(va�; va�), represents the dissimilarity between
two values va�; va� ∈Va. Obviously, the diagonal elements
Ma;��’s are zero because of (1). For a total of m attributes,
we thus have a total of m such dissimilarity matrices. As
will be discussed later, these will be learned based on the
empirical data and so they are called adaptive dissimilar-
ity matrices (or ADM’s) in the sequel. Notice that, unlike
the overlap metric, the distance between any two attribute
values is real-valued. Hence, while the overlap metric man-
dates that all attribute values are equally similar (dissimi-
lar) to each other, here, we can have a value pair (vi; vj)

being “more similar” than another pair (vk ; vl). Besides, this
relationship is transitive, i.e., if (vi; vj) is more similar than
(vk ; vl) which in turn is more similar than (vm; vn), then
(vi; vj) will also be more similar than (vm; vn). However, un-
like a metric, a dissimilarity measure may not satisfy the
triangle inequality. For more detailed discussions on simi-
larity/dissimilarity measures, interested readers are referred
to Ref. [5].

As the Ma’s are nonnegative matrices, we will write
them as Ma = Fa 
 Fa for some real-valued matrix 2 Fa,

2 As Ma;�� = 0, we also have Fa;�� = 0 for all �.
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where
 denotes the Hadamard product. 3 For any two xi ; xj ,
the aggregate dissimilarity d2 (which corresponds to the
squared distance when xi ; xj are real-valued) is then de.ned
as

d2(xi ; xj) =
m∑
a=1

d2
a(xi ; xj); (2)

where

d2
a(xi ; xj) = Ma(xia; xja) = F2

a(xia; xja): (3)

Our task is to learn the Fa’s based on the training set S.

2.1. Learning the dissimilarities

The basic idea of our method is to .rst split the training
set into two parts, D1 and D2. We use D1 to build a classi.er,
f(x), and then minimize the classi.er’s error onD2 w.r.t. the
entries in Fa’s. The error function can be any di1erentiable
error function suitable to the problem domain. A common
choice is the squared error

E =
1
2

∑
xi∈D2

(y(xi) − f(xi))2: (4)

As we have a total of
∑m
a=1

1
2 na(na−1) dissimilarity values

to be learned, regularization may be introduced to avoid
over-.tting [1]. For example, E in Eq. (4) can be modi.ed
to

E =
1
2

∑
xi∈D2

(y(xi) − f(xi))2 + �
m∑
a=1

‖Da − Fa‖2; (5)

where �¿ 0 is a regularization constant, Da is an na × na
dissimilarity matrix corresponding to the traditional over-
lap metric (i.e., its diagonal elements are zero, while
its o1-diagonal elements are 1), and ‖ · ‖ denotes some
appropriate matrix norm (such as the Euclidean norm). This
regularizer thus favors Fa’s being close to Da. In general,
minimization of E in (4) or (5) will lead to a nonlinear
optimization problem, and methods such as gradient de-
scent can be employed. Moreover, notice that as all the
Fa’s are learned together, any possible correlation among
the attributes can be taken into account during the learning
process.

This proposed approach can be applied to various clas-
si.ers requiring a dissimilarity measure on the attribute
values. For illustration, here we consider using the squared
error function in Eq. (4) and a radial basis function (RBF)
classi.er of the form

f(x) =
∑
xi∈D1

w(x; xi)y(xi);

where

w(x; xi) = exp
(
− 1

2�2
d2(x; xi)

)
(6)

3 For A = [aij] and B = [bij], their Hadamard product (also
known as the Schur product or elementwise product) is de.ned as
A � B = [aijbij].

and � is the width of the RBF unit. Here, we use di1erent
values of � at di1erent x’s, as

�(x) =
1

n(D1)

∑
xi∈D1

d(x; xi); (7)

where n(D1) is the number of patterns in D1. The class label
of x is then given by

o(x) =

{
1; f(x)¿ 0;

−1; otherwise:

For gradient descent, we have to obtain the derivative of E in
(4) w.r.t. Fa;�� (where � 
= �). This can be easily computed
as

@E
@Fa;��

= −
∑
xi∈D2

(y(xi) − f(xi))
@f(xi)
@Fa;��

= −
∑
xi∈D2

(y(xi)−f(xi))
∑
xj∈D1

y(xj)
@w(xi ; xj)
@Fa;��

; (8)

where

@w(xi ; xj)
@Fa;��

= w(xi ; xj)
@

@Fa;��

(
−d

2(xi ; xj)
2�2(xi)

)

= w(xi ; xj)
(
−d(xi ; xj)
�2(xi)

· @d(xi ; xj)
@Fa;��

+
d2(xi ; xj)
�3(xi)

· @�(xi)
@Fa;��

)
; (9)

on using (6). Now, from Eqs. (2) and (3), we obtain

@d(xi ; xj)
@Fa;��

=
1

2d(xi ; xj)

(
2Fa(xia; xja)

@Fa(xia; xja)
@Fa;��

)

=




1
d(xi ;xj)

Fa;��; (xia = va� and xja = va�) or

(xia = va� and xja = va�);

0; otherwise:
(10)

Finally, from (7), we have

@�(xi)
@Fa;��

=




1
n(D1)

∑
xj∈D1

1
d(xi ; xj)

(xia = va� and

×Fa;��; xja = va�) or

(xia = va� and

xja = va�);

0 otherwise:

(11)
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Substituting Eqs. (9)–(11) into Eq. (8), we can thus obtain
@E=@Fa;�� for gradient descent.

In situations where both nominal and continuous attributes
exist, we simply need to modify the de.nition in (3) to

d2
a(xi ; xj) =

{
(xia − xja)2 attribute a is continuous;

F2
a(xia; xja) attribute a is nominal:

This approach for measuring dissimilarities between dif-
ferent nominal attributes can also be readily applied to other
classi.ers as it allows more accurate representation of the
relationships between the nominal attributes. For example,
in the case of using the radial basis function as kernel in
support vector machine [2], the distance between two fea-
ture vectors with nominal attributes can computed using the
suggested approach instead of using the Hamming distance
which ignores di1erent possible relationships among the dif-
ferent nominal values. The improved distance measures can
lead to more accurate measurement in the radial basis func-
tions which can then be classi.ed using the support vector
machine.

3. Experiments

3.1. Experiments with radial basis function classi3ers

In this section, we perform experiments on .ve data sets
(Table 1) from the UCI machine learning repository [18],
using the RBF classi.er (with 8 basis functions) as described
in Section 2. In each problem, all patterns with missing
attribute values are .rst removed. We then use two-thirds of
the training patterns as D1 and the remaining as D2.

The diagonal elements of each Fa’s are set to zero (and are
not adapted), while the o1-diagonal elements are initialized
around one (and thus resembles the overlap metric). Mini-
mization of the squared error in Eq. (4) will be performed
by using gradient descent, which will stop when changes in
the norms of all Fa’s are small. Typically, we observe that
only a small number of iterations (say, 10–30) are required.
Our results are compared with the decision tree classi.er

Table 1
Data sets used in the experiments

Data set # Nominal # Continuous # Training # Testing
attributes attributes patterns patterns

credit 9 6 194 459
monks-1 6 0 124 432
monks-3 6 0 122 432
mushroom 22 0 282 5362
tic-tac-toe 9 0 190 768

C4.5 [10] and RBF classi.ers using the overlap metric and
the VDM. To reduce statistical variability, results reported
here are based on averages over 10 random partitionings of
D1 and D2.

Table 2 compares the classi.cation performance of
the methods. Our proposed method yields the lowest (or
close to the lowest) error on most data sets. In particular,
notice that both C4.5 and VDM perform poorly on the
monks-1, in which the attributes are strongly correlated
and the class labels often depend on the equality of two
attributes.

Our method also allows easier interpretation of the re-
lationship among di1erent values of an nominal attribute.
As an example, consider the mushroom data set, in which
the task is to separate edible mushrooms from poisonous
ones. Fig. 1 shows the dissimilarity matrix for the attribute
odor. A number of interesting observations can be made.
For example, the odor pungent shows very large dissimi-
larities with the odors none, almond and anise. This corre-
sponds well to our human perception that mushrooms with
odors none, almond and anise are often non-poisonous,
while pungent mushrooms are often poisonous. Similarly,
the odor none is very dissimilar from odors pungent
and creosote, which are often associated with poisonous
mushrooms.

3.2. Experiments with support vector machines

In this section, we perform experiments on using the ADM
on another type of classi.er, namely the support vector ma-
chines (SVMs) [2]. We use the Gaussian kernel

k(xi ; xj) = exp
(
− 1

2v2
d2(xi ; xj)

)
;

where v2 is the variance parameter (which is set to the
variance of the whole data set). In general, learning can
proceed by iterating SVM training and dissimilarity learn-
ing (of the Fa’s). In this experiment, we simply perform
one round of dissimilarity learning using the Gaussian
radial basis functions and then train the SVM. Table 3
compares our classi.cation errors with that from using the
overlap metric. Also shown in the table are kernel target
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Table 2
Classi.cation errors on the data sets (numbers in bold indicate the lowest error obtained over the four methods)

Data set C4.5 RBF
(%)

Overlap metric (%) VDM (%) ADM (%)

credit 18.4 16.7 15.5 14.5
monks-1 23.4 17.1 16.3 0.0
monks-3 7.4 9.3 2.9 3.1
mushroom 0.4 1.0 0.7 0.9
tic-tac-toe 27.1 17.8 23.1 9.1

0
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0.4

0.6

0.8

1

1.2

1.4
IFM for Odour of Mushroom

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

Fig. 1. The dissimilarities matrix for attribute odor in the mushroom data set. Here, the indices correspond to: 1. almond, 2. anise,
3. creosote, 4. fishy, 5. foul, 6. musty, 7. none, 8. pungent, 9. spicy.

Table 3
Comparison between using the overlap metric and ADM in a SVM (numbers in bold indicate the better results)

Data set Overlap metric ADM

Error (%) Alignment Error (%) Alignment

credit 15.0 4.55 14.6 6.43
monks-3 8.5 5.12 2.8 24.36
tic-tac-toe 23.3 3.61 10.2 12.35

alignments over the training sets [19]. The kernel target
alignment measures the similarity between the kernel matrix
and the class labels. Mathematically, for an n × n kernel
matrix K and an n-dimensional vector of class labels y =
(y1; : : : ; yn)′ (n being the number of training patterns), the

kernel target alignment is given by 〈K; yy′〉F =n
√〈K;K〉F ,

where 〈·; ·〉 denotes the Frobenius product. 4 In general, a

4 The Frobenius product between two matrices M = [mij] and
N = [nij] is given by 〈M;N 〉 =

∑
ij mijnij .
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high alignment implies good generalization performance of
the resulting classi.er. As can be seen from Table 3, our
method again leads to smaller classi.cation errors and higher
alignments.

4. Conclusion

In this paper, we address the issue of measuring dissimi-
larity between two attribute values in a pattern recognition
problem. We propose learning these dissimilarities directly
by minimizing an error function on the training samples.
Since the dissimilarities for all nominal attributes are learned
together, any possible correlation among these attributes will
be taken into account during the learning process. Experi-
mental results on a number of synthetic and real-world data
sets show the e1ectiveness of this approach.

Besides improving the classi.cation performance on
nominal data, the proposed approach allows meaningful
interpretations of the relationships among the di1erent val-
ues of a nominal attribute. These relationships inference
process could also be valuable in data exploratory and
data mining applications where interpretations and under-
standing of unknown nominal attributes are of signi.cant
importance.
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