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Abstract

Face recognition is a challenging task in computer vision and pattern recognition. It is well-known that obtaining a low-dimensional feature
representation with enhanced discriminatory power is of paramount importance to face recognition. Moreover, recent research has shown that
the face images reside on a possibly nonlinear manifold. Thus, how to effectively exploit the hidden structure is a key problem that significantly
affects the recognition results. In this paper, we propose a new unsupervised nonlinear feature extraction method called spectral feature analysis
(SFA). The main advantages of SFA over traditional feature extraction methods are: (1) SFA does not suffer from the small-sample-size problem;
(2) SFA can extract discriminatory information from the data, and we show that linear discriminant analysis can be subsumed under the SFA
framework; (3) SFA can effectively discover the nonlinear structure hidden in the data. These appealing properties make SFA very suitable for
face recognition tasks. Experimental results on three benchmark face databases illustrate the superiority of SFA over traditional methods.
� 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

In the past few decades, face recognition has been an
active research topic and a variety of methods have been pro-
posed. From the face representation viewpoint, these methods
can be classified into two categories: geometric feature-based
approach [1–3] and template-based approach [4–6]. The for-
mer approach analyzes explicit local features (such as the eyes,
mouth and nose) and their geometric relationships. Represen-
tative works include the Hidden Markov Model (HMM) [2]
and the elastic bunch graph matching algorithm [3]. However,
perfect extraction of the local features is difficult to implement
[1]. On the other hand, template-based methods determine the
face identity by measuring the correlation between the face and
some reference templates. Here, a face image of size n × m is
often represented by a vector in Rnm, which can be very high-
dimensional for typical values of n and m. Many dimension re-
duction or feature extraction techniques have been proposed in
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this context [4–6], and the most prominent examples are prin-
cipal component analysis (PCA) [4] and linear discriminant
analysis (LDA) [5].

PCA is a popular unsupervised method which aims at ex-
tracting a subspace in which the variance of the projected data
is maximized (or, equivalently, the reconstruction error is min-
imized). However, in face recognition, it has been observed
that intra-person variations (i.e., variations of the same per-
son’s face due to illumination, expression, viewing direction,
etc.) are often larger than inter-person variations (i.e., varia-
tions due to changes in the person’s identity) [7]. In using PCA
for face recognition (the so-called eigenface method [4]), some
unwanted intra-person variations might still be retained in the
PCA projections (see, e.g., Ref. [8]), and thus PCA is subopti-
mal for classification.

LDA is a supervised method which searches for a dis-
criminative subspace where patterns belonging to the same
class are as tight as possible while patterns belonging to the
other classes are more separated. Because of the use of class
information, LDA-based algorithms often perform better than
PCA-based algorithms [5]. However, LDA suffers from the
small-sample-size problem. This is particularly problematic in
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face recognition applications [5,9], where there are typically
very few training samples per class compared to the high dimen-
sionality of the face images, and it in turn makes the between-
class scatter matrix singular. Moreover, LDA is also more sen-
sitive to the particular choice of the training set, which makes
LDA sometimes perform even poorer than PCA [10].

In recent years, it has been revealed that face images often
reside on a nonlinear manifold [11–13]. However, both PCA
and LDA work efficiently only in the Euclidean space and are
not good at discovering the nonlinear structure hidden in the
face image manifold. Recently, locality preserving projection
(LPP) [6] is proposed which can preserve the local structure
of the face images. However, LPP is still a linear method, and
thus hard to handle the nonlinear structure existing in the face
images. Moreover, LPP still encounters the small-sample-size
problem [6]. Although we can employ the technique in Ref.
[5] to first reduce the face dimensionality by using PCA, some
useful information may also be lost in the process [9].

Our work here is motivated by the recent works on spec-
tral clustering [14–16], which is a class of clustering meth-
ods based on the spectral graph theory [17]. These clustering
methods usually take two steps. First, the patterns are embed-
ded in a lower-dimensional space such that the clusters are
more “obvious” or separate. Then, a classical clustering algo-
rithm (such as the K-means clustering algorithm) is performed
in the embedded space [16]. Spectral clustering can yield im-
pressively good results when traditional clustering approaches
fail, and it has been shown to be very powerful in fields such
as computer vision [14] and VLSI design [18].

Inspired by the success of spectral clustering, we present
in this paper a related unsupervised feature extraction method
called spectral feature analysis (SFA). The embedded data re-
sulting from the first step of spectral clustering will be referred
to as spectral features. Since spectral clustering can only com-
pute spectral features for the training set, a natural question
is how to obtain spectral features for the unseen (i.e., testing)
data. To address this problem, we first propose a weighted ex-
tension of the standard kernel principal component analysis
(KPCA) [19] called weighted kernel principal component anal-
ysis (WKPCA).1 Then, we show that spectral clustering is a
special case of WKPCA and, consequently, spectral features of
the test set can be obtained by WKPCA.

Our method is particularly suitable for face recognition be-
cause of the following properties:

(1) SFA does not suffer from the small-sample-size problem.
In both LDA and LPP, the resultant computational prob-
lems involve generalized eigenvalue problems, which in
turn require matrix inversions. The sizes of the matrices in-
volved (namely, Sw in Ref. [5], and XDXT in Ref. [6]) are
dependent on the dimensionality of the image, which are
often very large compared to the number of training im-
ages. These matrices may thus be singular and the small-

1 Note that WKPCA is the kernel version of WPCA [20], however, the
weights in our method are derived from spectral clustering, not derived from
robust analysis as in Ref. [20].

Table 1
Notations

X Data matrix ([x1, x2, . . . , xM ])
� Data matrix in the feature space ([�(x1),�(x2), . . . ,�(xM)])
W Weight matrix
D Degree matrix
S Data covariance matrix
C Data covariance matrix in the feature space
m Data mean vector
� Data mean vector in the feature space
(�k

, uk) kth eigenvalue–eigenvector pair of S
(�k

, vk) kth eigenvalue–eigenvector pair of C
A Similarity or affinity matrix
K Kernel matrix
�k kth eigenvector of A

sample-size problem occurs. On the other hand, although
the resultant computational problem in SFA is still a gen-
eralized eigenvalue problem, the size of the matrix that has
to be inverted is only dependent on the number of training
patterns. Hence, the small-sample-size problem will not
occur.

(2) As spectral clustering can effectively group patterns into
clusters, SFA can also effectively extract discriminative
information from the data. Furthermore, we will prove that
LDA can be subsumed under the SFA framework.

(3) SFA can effectively discover the intrinsic nonlinear mani-
fold structure hidden in the data. Indeed, we will prove that
kernel LPP is SFA. In other words, our method can exploit
and preserve the data’s nonlinear manifold structure.

The rest of this paper is organized as follows. Section 2 first
introduces some related works. Section 3 describes weighted
PCA (WPCA), WKPCA and SFA in detail, which is then fol-
lowed by some analysis and discussions in Section 4. Experi-
mental results are presented in Section 5, and the last section
gives some concluding remarks.

In the sequel, bold capital letters are for matrices while bold
lower cases are for vectors. Subscript i represents the ith com-
ponent of a vector, and subscript ij represents the (i, j )th entry
of a matrix. AT denotes the transpose of A. We use the tilde
˜(·) to denote the weighted version of (·). For example, when

S is the data covariance matrix, then S̃ is the weighted data
covariance matrix. More notations are listed in Table 1.

2. Related works

2.1. Spectral clustering and spectral classification

In this section, we first give a brief review on spectral clus-
tering. There are several variants of spectral clustering (e.g.,
Refs. [14,15,21,22]). In the sequel, our focus will be on the nor-
malized cuts method [14], which is one of the most effective
spectral clustering methods. The same parlance can be referred
to Ref. [16].

Given the data set {x1, x2, . . . , xM}, with each xi ∈ Rd . It
can be represented by a weighted undirected graph G=(V,E),
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where V (the set of vertices) contains all the xi’s and E (the set
of edges) contains the pairwise similarities among xi’s. We first
consider the simpler problem in which we want to separate the
data into two (hard) clusters. This clustering problem is then
equivalent to a graph partitioning problem, where one partitions
V into two subsets, V1 and V2, such that V1 ∩ V2 = �
and V1 ∪ V2 = V. Many criteria can be used to measure the
quality of the partitioning result. In particular, the normalized
cuts criterion is defined as [14]

Ncut(V1,V2) = cut(V1,V2)

assoc(V1,V)
+ cut(V1,V2)

assoc(V2,V)
, (1)

where cut(V1,V2)=∑u∈V1,v∈V2
a(u, v) and assoc(Vi ,V)=∑

u∈Vi ,t∈Va(u, t), with a(u, v) being the weight of the edge
connecting vertices u and v. In general, instead of having only
a bipartition, one can have a K-way cut [23], which partitions
V into K subsets {Vi}Ki=1 such that Vi ∩ Vj = � for i �= j

and ∪K
i=1Vi =V. The desired partitioning can be represented

by a M × K matrix Q = [Qi�], where Qi� = 1 if i ∈ V�

and 0 otherwise. The normalized cuts criterion in Eq. (1) then
becomes

Ncut(V1,V2, . . . ,VK) =
K∑

i=1

cut(Vi ,V\Vi )

assoc(Vi ,V)
, (2)

where cut(Vi ,V\Vi ) measures the number of links escaping
from Vi , and assoc(Vi ,V) is the total number of connections
from nodes in Vi to the other nodes in the graph.

Yu et al. [23] showed that minimization of Eq. (2) can be
relaxed to the following optimization problem:

max
Z

�(Z) = 1

K
trace(ZTAZ)

s.t. ZTDZ = IK , (3)

where Z = Q(QTDQ)−1/2, D = diag(d11, d22, . . . , dMM) is the
M ×M degree matrix with dii =∑u∈Va(i, u), A is the M ×M

affinity matrix with Aij =a(i, j), and IK is the K ×K identity
matrix. Using the Rayleigh-Ritz theorem [24], the optimal Z
can be obtained from the generalized eigensystem

AZ = �DZ. (4)

Each row of Z gives the embedding coordinates of the
corresponding pattern, which can then be input to standard
clustering methods. Besides using the rows of Z for (spec-
tral) clustering, one can also input the extracted features to a
standard classifier, leading to spectral classification [25].

However, as Z in Eq. (4) only involves the training set, a
natural problem is how to perform feature extraction on the test
data. To alleviate this problem, Ref. [25] assumes a transductive
learning setting, where both the training and test data have
to be available before feature extraction. Eigendecomposition
is then performed on the matrices constructed from both the
training and test sets. However, this transductive learning setting
is obviously not always possible.

2.2. (Kernel) principal component analysis

The use of superfluous features often leads to inferior
performance in pattern recognition. A general practical ob-
servation is that it is worth decreasing the dimensionality of
the feature space while ensuring that the overall structure of
the data points remains intact. A simple way to do this is by
means of a transformation that linearly maps the initial feature
space to a new one with fewer dimensions. A very popular
technique is (PCA) [26], which chooses the basis vectors of
the transformed space as those directions of the original space
along which the data show a large variance. Denote the data
matrix by X = [x1, x2, . . . , xM ] ∈ Rd×M . It is well-known
that these basis vectors are given by the leading eigenvectors
(i.e., eigenvectors with the largest eigenvalues) of the sample
covariance matrix

S = 1

M

M∑
i=1

(xi − m)(xi − m)T, (5)

where m = (1/M)
∑M

i=1xi is the mean vector.
When linear transformations like PCA are not powerful

enough, we can turn to nonlinear feature extraction methods.
By performing PCA in some kernel-induced feature space,
KPCA extracts features that are nonlinearly related to the input
variables [19]. Denote the kernel function by k, the correspond-
ing kernel-induced feature space by F (whose dimensionality
may be infinite), and the corresponding nonlinear mapping by
� : Rd �→ F. Assuming that the mapped data have been cen-
tered in the feature space, i.e.,

∑M
i=1�(xi ) = 0, the covariance

matrix is simply C = (1/M)
∑M

i=1�(xi )�(xi )
T. Eigendecom-

position of C gives �v=Cv=(1/M)
∑M

i=1(�(xi )
Tv)�(xi ), and

so v ∈ span{�(x1), �(x2), . . . , �(xM)}. Let v =∑M
i=1�i�(xi )

for some �i ∈ R, we have

�
M∑
i=1

�i�(xk)
T�(xi ) = 1

M

M∑
j=1

M∑
i=1

�j�(xk)
T�(xi )�(xi )

T

× �(xj ). (6)

Define the kernel matrix K = [Kij ] with Kij = k(xi , xj ) =
�(xi )

T�(xj ). Eq. (6) can then be written as M�K� = K2�
where � = [�1, �2, . . . , �M ]T. As K is symmetric, it has a set
of eigenvectors which spans the whole space, thus M��= K�.
The projection of the mapped data �(xi ) on the kth principal
component is

�(xi )
Tvk = �(xi ) ·

M∑
j=1

�k
j�(xj ) =

M∑
j=1

�k
j�(xi )

T�(xj )

=
M∑

j=1

�k
j Kij .

Therefore, all these can be computed once the kernel function
is known.
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3. Spectral feature analysis

We have briefly reviewed traditional PCA and KPCA in the
last section. Their basic assumption is that the training data are
independently and identically distributed (i.i.d.), so that all the
data points are treated equally (the contribution of each data
point to the covariance matrix is 1/M). However, this may not
always be the case in real-world problems. For example, in face
recognition, the face images are usually sampled from a video
sequence, and this causes the obtained images to be related to
each other. So it will be more reasonable if different weights
can be assigned to the data points. Moreover, this weight should
reflect the importance of each data point in the training set. In
this section, we will first introduce such weighted versions of
PCA and KPCA. Then, we will propose SFA, which can be
viewed as a special case of weighted KPCA.

3.1. Weighted PCA and weighted KPCA

In Eq. (5), all the xi’s are implicitly assumed to have equal
importance. Here, we consider the general case where each
xi carries a weight of pi > 0. Without loss of generality, we
assume

∑M
i=1pi = 1. The weighted covariance matrix is then

S̃ =
M∑
i=1

pi(xi − m̃)(xi − m̃)T, (7)

where m̃ =∑M
i=1pixi is the weighted mean. Assume that the

data have been centered (w.r.t. the weights pi’s), we have m̃=0
and S̃=∑M

i=1pixixT
i =XPXT, where X=[x1, x2, . . . , xM ] and

P = diag(p1, p2, . . . , pM). The desired principal components
are the leading eigenvectors of S̃.

The corresponding kernel extension is straightforward. The
weighted covariance matrix in the kernel-induced feature space
is C̃ =∑M

i=1pi�(xi )�(xi )
T. Again, assume that the data have

been centered,2 i.e.,
∑M

i=1pi�(xi ) = 0. Eigendecomposition
of C̃ gives

�̃ṽ = C̃ṽ =
M∑
i=1

(wi�(xi )
Tṽ)(wi�(xi )),

where wi =√
pi . Again, ṽ lies in the span of {wi�(xi )}Mi=1. Let

ṽ =
M∑
i=1

�̃iwi�(xi ),

for some �̃i ∈ R. Proceeding as in Section 2.2, we obtain the
eigensystem

K̃�̃ = �̃�̃, (8)

where K̃ = [K̃ij ] with K̃ij = (wi�(xi ))
T(wj�(xj )). Alterna-

tively, K̃ can be written as

K̃ = WKW, (9)

2 The case when the data are not centered in F is discussed in
Appendix A.

where W = diag(w1, w2, . . . , wM). We have to normalize the
eigenvectors of the covariance matrix C̃ through scaling the

eigenvectors of K̃ by �̂i = �̃i/

√
�̃i , where �̃i is the eigenvalue

of K̃ corresponding to the eigenvector �̃i [19].
Projection of the mapped training pattern �(xk) onto the jth

weighted kernel principal component can then be computed as

�(xk)
Tṽj =

M∑
i=1

�̂j
i �(xk)

T(wi�(xi ))

= w−1
k (K̃�̂j )k

= w−1
k (

√
�̃j �̃

j )k . (10)

Similarly, for the test set {y1, y2, . . . , yN }, the projection of
�(yk) onto the jth principal component is

�(yk)
Tṽj =

M∑
i=1

�̂j
i �(yk)

T(wi�(xi )). (11)

Define the kernel matrix K̃t ∈ RN×M between the training and
test patterns, where K̃t

ij =�(yi )
T(wj�(xj )). Projections in Eq.

(11) can then be computed as

�(yk)
Tṽj = (K̃t �̂j )k . (12)

After the projections of the training and test data are obtained,
data analysis (e.g., classification and clustering) can be per-
formed in the much lower-dimensional embedded space.

3.2. Spectral feature analysis

Recall that at the crux of spectral clustering is the generalized
eigensystem (Eq. (4)). Define Y = D1/2Z, then Eq. (4) can be
written as

D−1/2AD−1/2Y = �Y. (13)

It is easy to see that D−1/2AD−1/2 in Eq. (13) is of the same
form as K̃ in Eq. (9). To be more specific, on setting the weight
pi = 1/dii/

∑
i1/dii , where dii’s are the diagonal elements of

the degree matrix D, then we have P = (1/Z)D−1, where Z =∑
i1/dii is the normalization factor. If A in Eq. (13) is a kernel

matrix, then the corresponding weighted kernel matrix is

K̃ = P1/2AP1/2 = 1

Z
D−1/2AD−1/2. (14)

Since Z is constant, the eigenvectors of D−1/2AD−1/2 and K̃
are the same. Therefore, the jth embedded coordinate3 of the
kth data point Ykj can be obtained by solving the eigensystem

K̃Y = �Y. (15)

Comparing Eq. (15) with that for WKPCA in Eq. (10), we find
that they have essentially the same form. The only difference

3 Note that Y can also be used as the embedded coordinates. Interested
readers are referred to Ref. [16].
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Table 2
Spectral feature analysis

SFA using Gaussian kernel
Input: Training and testing set{xi}Mi=1,{yi}Ni=1 ∈ Rd

Variance of the RBF kernel �2, final dimensionality k

Output: Projections of the training and testing set
1. Construct the kernel matrix Kij = exp(−||xi − xj ||2/2�2) and the degree
matrix D
2. Construct the matrix K̃ = D−1/2KD−1/2

3. Perform eigendecomposition on K̃. Compute the projections of the training
data on the first k
eigenvectors corresponding to the k largest eigenvalues by Eq. (10)
4. Calculate the affinity matrix between the testing set and the training set
5. Compute the projections of the testing data set on the first k eigenvectors
calculated from step 3

is that in WKPCA, the jth coordinate of the kth data point

in the embedded space is scaled by the factor w−1
k

√
�̃j . This

can be understood intuitively as follows. First, the factor
√

�̃j

only scales the jth axis of the embedded space, and does not
change the structure of the embedded data. Second, in spectral
clustering, the factor w−1

k =√
dk assigns large weights to points

having high degrees (i.e., those that are more similar to the
other points) and small weights to low-degree points. In such
a way, densities of the different clusters can be leveraged since
this weighting scheme makes the high-density clusters sparser
and low-density clusters more compact. This will be beneficial
to the final clustering results as the different densities of the
different clusters can bias the clustering algorithm [27]. Such a
scaling will not change the cluster properties of the coordinates.
Thus, spectral clustering can be viewed as a particular instance
of WKPCA, with the weights determined only by the training
set.

While the original spectral clustering can only compute
spectral features for the training set, this connection between
spectral clustering and WKPCA allows spectral features to
be obtained for the unseen testing data. The resultant feature
extraction process will be called SFA (Table 2).

The way that SFA weights each data can be understood
intuitively. Since dii =∑

j 〈�(xi ), �(xj )〉, this can reflect the
combined similarity of xi with the rest of the data set. More-
over, pi = 1/dii/

∑
i1/dii ∝ 1/dii . Hence, the more similar

is xi to the other points, the less important xi will be. This is
a common principle in data analysis and pattern recognition.
For example, in the support vector machines [28], we only use
those data points that are close to the class boundary (i.e., the
support vectors), while points lying around the mean vector are
rarely adopted.

Another interesting property of SFA is that in the nor-
malized cuts [14], the trailing eigenvector of the normalized
Laplacian matrix is not used since it has no discriminative
information. This is also true in SFA. The trailing eigen-
vector of the normalized Laplacian just corresponds to the
leading eigenvector of the (weighted) covariance matrix
C̃=(1/Z)

∑M
i=11/dii�(xi )�(xi )

T. The following lemma shows
that this eigenvector is indeed the mean � of the mapped data

in the feature space and thus clearly contains no discriminative
information.

Proposition 1. The scaled mean vector in the feature space is
the leading eigenvector of the (weighted) covariance matrix C̃.

Proof. Using the fact that if u is an eigenvector of X′X (where
X is a matrix), then Xu is an eigenvector of XX′. Now, the
kernel matrix K̃ = D−1/2AD−1/2 corresponds to the inner
product X′X where X=[w1�(x1), . . . , wM�(xM)]=�D−1/2,
where � = [�(x1), �(x2), . . . , �(xM)]; while C̃ corresponds
to the outer product XX′ = �D−1�T. As D1/21 is the leading
eigenvector4 of K̃ [14], the leading eigenvector of C̃ is thus
X1 = �D−1/2D1/21 = �1, which is Mμ. �

4. Analysis and discussions

In this section, we present some theoretical analysis of SFA
and discuss its connections to LDA and LPP.

4.1. Connections to LDA

LDA [29] is a feature extraction method that finds projection
directions which are efficient for discrimination. Given the data
set X = [x1, x2, . . . , xM ] with K classes. Let ni be the size of
class i (with M =∑K

i=1ni), x(i)
j the jth pattern in class i, and

m(i) = (1/ni)
∑ni

j=1x(i)
j the mean of class i. LDA seeks the

direction w that maximizes the criterion:

max
w

wTSbw
wTSww

, (16)

where

Sb =
K∑

i=1

ni(m(i) − m)(m(i) − m)T (17)

is the between-class scatter matrix and

Sw =
K∑

i=1

ni∑
j=1

(x(i)
j − m(i))(x(i)

j − m(i))T (18)

is the within-class scatter matrix.

Proposition 2. Assume that the data set X is centered, then
LDA can be viewed as a special case of SFA when the kernel
matrix is

K∗
ij =

{
1/nl both xi and xj belong to class l,

0 otherwise.
(19)

4 If D−1/2AD−1/2u = �u, then let v = D−1/2u, we get D−1/2Av =
�D1/2v, which can be further transformed to D−1Av = �v. Since D−1A is a
Markov matrix, then from the Perron–Frobenius theorem, we have the largest
eigenvalue of the matrix D−1W is 1, with its corresponding eigenvector
equivalent to 1. Thus the largest eigenvalue of the matrix D−1/2WD−1/2 is
1, with its corresponding eigenvector equivalent to D1/21.
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Proof. Let X(i) = [x(i)
1 , x(i)

2 , . . . , x(i)
ni

] be the data matrix of
class i, and ei = (1, 1, . . . , 1)T an ni-dimensional vector with
all its elements equal to 1. The contribution to the within-class
scatter matrix from class i is

S(i)
w =

ni∑
j=1

(x(i)
j − m(i))(x(i)

j − m(i))T

=
ni∑

j=1

(
x(i)
j − 1

ni

X(i)ei

)(
x(i)
j − 1

ni

X(i)ei

)T

=
(

X(i) − 1

ni

X(i)eieT
i

)(
X(i) − 1

ni

X(i)eieT
i

)T

= X(i)

(
I(i) − eieT

i

ni

)(
I − eieT

i

ni

)T(
X(i)

)T

= X(i)

(
I(i) − eieT

i

ni

)
(X(i))T, (20)

where the last equality comes from the symmetry and idempo-
tency of L(i) = I(i) − eieT

i /ni , and I(i) is the ni × ni identity
matrix. Hence, the total within-class scatter matrix in Eq. (18)
can be written as

Sw =
K∑

i=1

S(i)
w =

K∑
i=1

X(i)L(i)(X(i))T. (21)

Thus L = I − K∗, where I is the M × M identity matrix. It is
then easy to obtain that

Sw = XLXT. (22)

Define the total data scatter matrix as

S =
M∑
i=1

(xi − m)(xi − m)T. (23)

Then, the total between-class scatter matrix becomes [29]

Sb = S − Sw = S − XLXT. (24)

LDA seeks a direction w corresponding to the largest eigenvalue
of the generalized eigenvalue problem

Sbw = �Sww. (25)

Combining Eqs. (22), (24) and (16), and assuming that the
data have already been centered in the feature space (so that
S = XXT), we obtain

max
w

wTSbw
wTSww

= max
w

wT(S − XLXT)w

wTXLXTw

= max
w

wTXXTw

wTXLXTw
− 1

= max
w

wTXXTw

wTXLXTw
. (26)

Let y = XTw, then Eq. (26) is equivalent to

max
y

yTy
yTLy

= min
y

yTLy
yTy

, (27)

which is the reciprocal of a standard Rayleigh quotient. By
the Perron–Frobenius theorem [24], the eigenvalues of L lie
between 0 to 2. Thus, the maximization of (yTy)/(yTLy) cor-
responds to the minimization of (yTLy)/(yTy). Moreover, we
discard the eigenvector corresponding to the eigenvalue 0 be-
cause of the reason stated in Ref. [14] and Proposition 1. From
the Rayleigh quotient theorem [24], the solution of Eq. (27)
is the eigenvector corresponding to the smallest eigenvalue of
L. In other words, we have to solve the following eigenvalue
problem:

Ly = 	y. (28)

Define 
 = 1 − 	, and recall that L = I − K∗. Then, Eq. (28)
can be rewritten as

K∗y = 
y. (29)

Thus, the optimal y is the leading eigenvector of K∗.
Comparing Eq. (29) with Eq. (13), we find that the main

difference is the weighted matrix D−1/2. However, from the
definition of K∗ (Eq. (19)) we can easily infer that the corre-
sponding degree matrix D= I, so W=D−1/2 is also an identity
matrix.

Since SFA requires K̃ in Eq. (9) to be a kernel matrix, and
from the analysis above we know that under the assumption of
Proposition 2, K̃ = K∗ = A. Thus, the only remaining issue is
to prove that K∗ is a kernel. This can be seen directly from the
lemma presented in Appendix B.

Therefore, comparing the projection y with the projection
equation from Eq. (10), we can find that the only difference
is the scaling factor in Eq. (10). As discussed in Section 3.2,
this will not affect the cluster characteristics of the data in the
projected space. Thus LDA can be viewed as a special case of
SFA. �

4.2. Connections to LPP

LPP [6] is a linear feature extraction method which aims at
finding a direction under which the local structure of the dataset
can be optimally preserved. This direction w is obtained by
minimizing∑
i,j

(wTxi − wTxj )
2aij , (30)

where aij represents the similarity between xi and xj .
We will prove in Proposition 3 that SFA is equal to kernel

LPP, which means that SFA can preserve the nonlinear structure
underlying the data set.

Proposition 3. SFA can be viewed as a special case of kernel
LPP when the kernel matrix has full rank.

Proof. If the data are first mapped to a high-dimensional fea-
ture space through a nonlinear mapping �, then the kernel LPP
directions in this space can be obtained by solving

�L�Tw = ��D�Tw, (31)
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where � = [�(x1), . . . ,�(xM)], and the optimal w’s are the
eigenvectors of the above generalized eigensystem correspond-
ing to the smallest eigenvalues. Clearly, w is the linear combi-
nation of �(x1), . . . ,�(xM). Assuming

w =
M∑
i=1

�i�(xi ) = ��. (32)

Define the kernel matrix as K = (�(xi ) ·�(xj )). If we multiply
�T on both sides of Eq. (31), and then combine Eqs. (31) and
(32), we obtain

�T�L�T�� = ��T�D�T�� ⇔ KLK� = �KDK�. (33)

In general, K is invertible (e.g., when K is a Gaussian kernel
[28]). Therefore, we can multiply K−1 on both sides of Eq.
(33) and obtain

LK� = �DK�. (34)

Recall that L = D − A, then

LK� = (D − A)K� = �DK� ⇒ AK� = (1 − �)DK�. (35)

The projections of the training data are

z = �Tw = �T�� = K�. (36)

Let 
 = 1 − �, thus Eq. (35) becomes

Az = 
Dz, (37)

which is equivalent to Eq. (4), and the optimal z’s are the eigen-
vectors of the above generalized eigensystem corresponding to
its largest eigenvalues. Thus kernel LPP can be viewed as a
special case of SFA. �

5. Experiments

In this section, we use the proposed SFA algorithm for face
manifold analysis and face recognition. Unless otherwise stated,
the Gaussian kernel exp(−‖x1 − x2‖2/(2�2)) will always be
used to define the similarity matrix.

5.1. Face manifold analysis

In this section, we applied SFA to the face data set used in
Ref. [12]. It has 1965 images taken from a video sequence, with
the pose and expression of the faces vary slowly and smoothly.
Each image is of size 20 × 28, and with 256 gray levels. In our
experiment, we randomly use 1955 images for training and the
remaining 10 images for testing.

Fig. 1 shows the projections of all the images on the
2-dimensional space defined by the second and third coordi-
nates of the spectral features. Some representative faces are also
shown. As can be seen, the embedded space is roughly divided
into two parts. On the left, the faces have closed mouths, while
on the right, the faces have open mouths. Moreover, it can be
clearly seen that the pose and expression of the faces change
continuously and smoothly, from top to bottom, and from left

Fig. 1. The 2-dimensional embedding of face images obtained by spectral
feature analysis. The embedded space is roughly divided into two parts. On
the left, the faces have closed mouths, while on the right, the faces have open
mouths. Moreover, the pose and expression of the faces change continuously
and smoothly, from top to bottom, and from left to right. For example, the
face expression changes from angry to happy from left to right. On the right,
the face pouts gradually from top to bottom. A particular mode of variability
in the face expression is illustrated by the image sequence inside the lower
ellipse, which corresponds to points along the path (linked by a solid line)
in the upper ellipse.

Fig. 2. Embeddings of the 10 test images obtained by spectral feature analysis.
Comparing with Fig.1, we can easily see that these testing samples can find
their optimal coordinates which reflect their intrinsic properties, i.e., pose and
expression.

to right. For example, the face expression changes from angry
to happy from left to right. On the right, the face pouts grad-
ually from top to bottom. A particular mode of variability in
the face expression is illustrated by the image sequence inside
the lower green ellipse, which corresponds to points along the
red path (linked by red solid line) in the upper green ellipse.

The 10 test samples can be easily located in this lower-
dimensional space by SFA, which are shown in red in Fig. 2.
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Fig. 3. “Faces” obtained by the different methods. (a) Eigenfaces. (b) Fisherfaces. (c) Laplacianfaces. (d) Spectralfaces.

As can be seen, these testing samples find their optimal co-
ordinates which reflect their intrinsic properties, i.e., pose and
expression. This shows that SFA is able to capture the intrinsic
face manifold structure.

5.2. Face representation using linear SFA

Since SFA is a kernel-based method, the data lie in a very
high-dimensional feature space after the �-mapping. Moreover,
usually we do not know the explicit form of �. However, if we
use the linear kernel [28], then SFA is just a special case of
weighted PCA. Thus, we can show the eigenvectors ṽ of the
weighted covariance matrix C̃ as ordinary images. We will call
these images spectralfaces. To be consistent with the nomen-
clature of these standard methods, we will also call SFA the
spectralface method in the rest of this paper. As an illustration,
we use the ORL data set [30] as our training set and show its
first 10 eigenfaces, Fisherfaces, Laplacianfaces and spectral-
faces in Fig. 3. We can see that the spectralfaces are very sim-
ilar to the eigenfaces, since with the linear kernel SFA is just a
special version of WPCA.

5.3. Face recognition

In this section, we will investigate the performance of our
proposed Spectralface method for face recognition on three
benchmark databases. The results of the following standard face
recognizers are also provided for comparison: (1) Eigenface
(PCA) [4]; (2) Fisherface (LDA) [5]; and (3) Laplacianface
(LPP) [6].

5.3.1. ORL face database
In this experiment, we perform face recognition by using

the ORL face database [30]. There are 10 images for each of
the 40 human subjects. For some subjects, the images were
taken at different times, with varying lighting, facial expres-
sions (open/closed eyes, smiling/not smiling) and facial de-
tails (glasses/no glasses). All the images were taken against a
dark homogeneous background with the subjects in an upright,
frontal position (with tolerance for some side movement). The

Fig. 4. Sample images from the ORL face database.

original images (with 256 gray levels) have size 92×112, which
are downsampled to 23×28 for efficiency. Fig. 4 shows the 10
images of one particular subject.

We performed experiments with different numbers of train-
ing samples. As each subject has 10 images, k of them were
randomly selected for training and the remaining 10 − k were
used for testing. The dimensionality of the projected space was
set to 10. The nearest-neighbor classifier, with the Euclidean
metric, was adopted in the projected space. The variance of the
Gaussian function (used in the spectralface and Laplacianface
methods) was adjusted for best performance. For each value
of k, 50 independent runs were performed. Fig. 5 shows the
average recognition accuracies. Notice that SFA achieves higher
accuracy than the other methods.

Next, we experimented with different dimensionalities of the
projected space. A random subset with six images per subject
(and thus 240 images in total) was used for training, and the
remaining images were used for testing. Note that for the Fish-
erface method, there are at most K − 1 nonzero generalized
eigenvalues (where K is the number of subjects) [5], and thus
the dimensionality of the projected space will be less than K.
The recognition results are shown in Fig. 6, where the accuracy
values were averaged over 50 random splits. Table 3 shows
the best performance for each method and the corresponding
dimensionalities of the projected spaces. Again, spectralface
clearly outperforms the others.

5.3.2. UMIST face database
The UMIST face database [31] consists of 564 images of 20

people. The number of images of each subject vary from 19
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Fig. 5. Recognition accuracies on the ORL face database. The abscissa is
the number of training images per subject and the ordinate is the average
recognition accuracy.
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Fig. 6. Average recognition accuracy on the ORL face database with different
dimensionalities of the projected space. The abscissa is the dimensionality
and the ordinate is the average recognition accuracy.

Table 3
Best average recognition accuracy on the ORL face database

Dimensionality Accuracy (%)

Eigenface 98 91.06
Fisherface 39 92.81
Laplacianface 96 93.47
Spectralface 40 96.07

to 36. The subjects cover a range of race/sex/appearance. Each
image has 256 shades of gray, and is of size 92 × 112, which
is again down-sampled to 23 × 28 for efficiency. Fig. 7 shows
the 10 images of a particular subject.

Fig. 7. Sample images from the UMIST face database.
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Fig. 8. Average recognition accuracies on the UMIST face database. The
abscissa is the number of training images per subject and the ordinate is the
average recognition accuracy.
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Fig. 9. Average recognition accuracies on the UMIST face database with
different dimensionalities of the projected space. The abscissa is the dimen-
sionality and the ordinate is the average recognition accuracy.

From each subject, we randomly select k images for training
and the remaining for testing. The dimensionality of the pro-
jected space is set to 10. The other experimental setups are the
same as those in Section 5.3.1. Results are shown in Fig. 8.
Clearly, the spectralface method is superior.
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Table 4
Best average recognition accuracy on the UMIST face database

Dimensionality Accuracy (%)

Eigenface 36 83.05
Fisherface 17 90.98
Laplacianface 94 87.14
Spectralface 78 92.19

Fig. 10. Sample images from the Yale face database.
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Fig. 11. Average recognition accuracies on the Yale face database. The
abscissa is the number of training images per subject and the ordinate is the
average recognition accuracy.

Next, we experimented with different dimensionalities of the
projected space. Six face images per subject were randomly
selected for training, and the remaining were used for testing.
Fig. 9 shows the results averaged over 50 trials. Finally, Table
4 shows the best performance for each method and the corre-
sponding dimensionalities of the projected spaces. Again, our
spectralface method is clearly the best.

5.3.3. Yale database
The Yale face database [32] contains 11 grayscale images for

each of the 15 individuals. The images demonstrate variations
in lighting condition (left-light, center-light, right-light), facial
expression (normal, happy, sad, sleepy, surprised, and wink),
and with/without glasses. In our experiment, the images were
also resized to 23×28. Fig. 10 shows 10 images of a particular
object.
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Fig. 12. Average recognition accuracies on the Yale face database with differ-
ent dimensionalities of the projected space. The abscissa is the dimensionality
and the ordinate is the average recognition accuracy.

Table 5
Best recognition accuracy on the Yale face database

Dimensionality Accuracy (%)

Eigenface 35 78.56
Fisherface 14 83.22
Laplacianface 38 85.04
spectralface 40 89.26

For each individual, a random subset of k images was used
for training, and the rest were used for testing. The other ex-
perimental setups are the same as those in Sections 5.3.1 and
5.3.2. Fig. 11shows the results, and the spectralface also per-
forms best. Next, we experimented with different dimension-
alities of the projected spaces, with the size of the training set
fixed to 90, and with six images per subject. The average recog-
nition accuracies over 50 independent runs are shown in Fig.
12. The best performance and the corresponding dimensionali-
ties of the projected spaces for each method are shown in Table
5. Clearly, our method is more advantageous.

6. Conclusion and discussion

Inspired by spectral clustering, we introduce in this paper a
novel feature extraction method called spectral feature analysis
(SFA). Theoretical analysis shows that it has many appealing
properties including the immunity from the small-sample-size
problem, and the abilities of extracting discriminative informa-
tion and exploiting the nonlinear manifold structure hidden in
the data set. Experimental results on face manifold analysis and
face recognition showed the effectiveness of our method.

Despite these advantages, there are still some problems to be
solved. For example, the weighting factor wi = 1/

√
dii used in

Section 3.2 seems a little unreasonable. Since dii =∑
j Aij is

the total similarity between pattern i and the remaining patterns,
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so the further is pattern i away from the other patterns, the
smaller is dii , and consequently the larger is wi . This may make
SFA sensitive to outliers. Therefore, how to make SFA more
robust and how to make the weights more reasonable is an
important future direction. Moreover, automatic tuning of the
parameters in SFA (e.g., the variance of the Gaussian kernel) is
also a challenging and interesting task since the tuning of the
parameters in kernel-based methods is still a hard problem in
machine learning research.
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Appendix A.

In Section 3.1, we assume that all the mapped data are
centered in the feature space. Now we will drop this assump-
tion. Generally speaking, the sample mean of a data set is
the best representative in the sense that the total squared dis-
tance between all the data objects and the mean is the smallest.
More precisely, if μ= (1/M)

∑M
i=1xi , then μ=arg min�

∑M
i=1‖xi − �‖2. Extending this idea, we can define the sample mean

in the weighted case as

m =
∑M

i=1pixi∑M
i=1pi

= arg min
�

M∑
i=1

pi‖xi − �‖2. (38)

It is easy to see that if we set all the weights of the data ob-
jects to be one, then m = μ. According to Eq. (38), since
we assume

∑
ipi = 1, we can define the weighted mean of

the data objects in the feature space as m = ∑M
i=1pi�(xi ).

Let P = diag(p1, p2, . . . , pM) = W2, then m = �Pe, where
� = [�(x1), �(x2), . . . ,�(xM)] and e is the M-dimensional
column vector with all ones. Let the centered weighted kernel
matrix be Ãc, then

Ãc = ((� − meT)W)T((� − meT)W)

= (�W − �PeeTW)T(�W − �PeeTW)

= (�W(I − WeeTW))T(�W(I − WeeTW))

= (I − WeeTW)(�W)T(�W)(I − WeeTW)

= (I − WeeTW)Ã(I − WeeTW). (39)

For the test set �t = [�(y1), �(y2), . . . ,�(yN)], the centered
matrix of Ãt is

Ãtc = (�t − meT
t )T((� − meT)W)

= (�t − �PeeT
t )T(�W − �PeeTW)

= Ãt (I − WeeTW) − eteTWÃ(I − WeeTW)

= (K̃t − eteTWÃ)(I − WeeTW), (40)

where et = [1, 1, . . . , 1]T
1×N , and N is the number of testing

data.
Assume that ṽj is the jth eigenvector of the covariance matrix

C̃′ =
M∑
i=1

pi(�(xi ) − m)(�(xi ) − m)T, (41)

then we can calculate the projections of the training and testing
data as

(�(xk) · ṽj ) =
M∑
i=1


̂j
i (�(xk) · wi�(xi ))

= w−1
k (Ãc�̂j )k , (42)

(�(yk) · ṽj ) =
M∑
i=1

�̂j
i (�(yk) · wi�(xi ))

= (Ãtc�̂j )k , (43)

where �̂i = �̃i/
√

�i , and (�i , �̃i ) is the eigenvalue–eigenvector
pair of K̃c.

Appendix B.

Lemma 1. K∗ (defined by Eq. (19)) is a kernel.

Proof. Define the M-dimensional indication vector of class i as

q(i)
j =

{
1 j ∈ class i,

0 otherwise.
(44)

then K∗ =∑K
i=1(1/ni)q(i)(q(i))T. Let K∗

i = (1/ni)q(i)(q(i))T,
then

(K∗)2 = q(i)(q(i))T

ni

· q(i)(q(i))T

ni

= q(i)(q(i))T

ni

= K∗. (45)

Thus, K∗
i is idempotent and its eigenvalues are either 0 or 1

[24]. In addition, K∗ is symmetric, and therefore it is positive
semidefinite (Example 2.4 in Ref. [28]). Let SM+ be the set of
all M × M symmetric positive semidefinite kernels, then SM+
is a convex cone [33]. So, K∗ is positive semidefinite. From
Definition 2.5 of Ref. [28], we then know that K is a kernel.
�
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