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Abstract

CLUHSIC is a recent clustering framework that unifies the

geometric, spectral and statistical views of clustering. In

this paper, we show that the recently proposed discrimi-

native view of clustering, which includes the DIFFRAC and

DisKmeans algorithms, can also be unified under the CLUH-

SIC framework. Moreover, CLUHSIC involves integer pro-

gramming and one has to resort to heuristics such as iterative

local optimization. In this paper, we propose two relaxations

that are much more disciplined. The first one uses spec-

tral techniques while the second one is based on semidefinite

programming (SDP). Experimental results on a number of

structured clustering tasks show that the proposed method

significantly outperforms existing optimization methods for

CLUHSIC. Moreover, it can also be used in semi-supervised

classification. Experiments on real-world protein subcellu-

lar localization data sets clearly demonstrate the ability of

CLUHSIC in incorporating structural and evolutionary in-

formation.

1 Introduction

Clustering has been an invaluable data analysis tool and
is now widely used in diverse domains ranging from engi-
neering, medical science, earth science, social science to
economics. Over the decades, a battery of clustering al-
gorithms have been developed. In general, these can be
considered as representing three different views of clus-
tering [24]: (1) geometric view, which includes methods
like k-means; (2) spectral view, which includes methods
such as normalized cut and various spectral clustering
algorithms; (3) statistical view, which includes methods
such as information bottleneck.

Recently, Song et al. [24] proposed the CLUHSIC
(“Clustering using HSIC”) framework that unifies these
different views of clustering. It is based on statistical de-
pendence using the Hilbert Schmidt Independence Cri-
terion (HSIC) [9]. Besides, correlations and structural
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relationships among clusters can be utilized as side in-
formation for clustering. This will be useful when, for
example, the user specifies that the clusters should form
a hierarchy (e.g., document clusters in a document hi-
erarchy), chain (e.g., image clusters in a video along the
time axis) or even graphs. Very recently, Blaschko and
Gretton [2] further extended CLUHSIC so that learn-
ing of an output taxonomy can be simultaneously per-
formed with data clustering.

Despite its generality and success, there are two is-
sues associated with CLUHSIC. First, while CLUHSIC
unifies many existing views of clustering, a novel dis-
criminative view of clustering has been recently pro-
posed. Examples include the DIFFRAC [1], which
uses a discriminative cost function as the objective,
and DisKmeans [27], which performs subspace selection
and discriminant analysis simultaneously. It is unclear
whether this view can also be unified under CLUHSIC.

The second issue is that CLUHSIC involves optimiz-
ing an integer program which is NP-hard. To obtain an
approximate solution, Song et al. [24] relied on a heuris-
tic that iteratively updates the partitioning based on
greedy local optimization. Later, two approaches that
are more disciplined, namely, spectral relaxation and
nonnegative matrix factorization (NMF), are also stud-
ied in [23]. However, the spectral relaxation in [23] is
only applicable to the special case where the output has
no structure. As for NMF, it needs to modify the ker-
nel matrix K so that all its entries are non-negative.
However, this makes K non-centered and CLUHSIC is
no longer maximizing the HSIC as is supposed. More-
over, empirically, its performance with NMF is often
poor [23]. Recently, Khot and Noar [12] proposed a
constant factor polynomial time approximation algo-
rithm for solving this integer program. However, this is
only designed for the unnormalized version of CLUHSIC
(whose performance is often inferior than the normal-
ized version) and no experimental results are provided.

In this paper, we address the first issue by showing
that the discriminative view of clustering can indeed be
included under CLUHSIC (Section 3). As for the second
issue, we propose two relaxations. The first one is spec-
tral relaxation (Section 4) which, unlike the one studied
in [23], is applicable to the general case where the out-
put has non-trivial structure. However, it turns out that
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this relaxation yields the same solution as the spectral
relaxation of k-means and so is not useful in structured
clustering. The second relaxation is based on semidefi-
nite programming (SDP) (Section 5). Experimental re-
sults show that it significantly outperforms the other op-
timization heuristics for CLUHSIC. Moreover, CLUH-
SIC can also be extended for semi-supervised learning
and experiments on protein subcellular localization also
show similarly encouraging results (Section 6).

Notation The transpose of vector/matrix is de-
noted by the superscript T , and the identity matrix
by I. The vectors of all ones and zeros are denoted
by 1 and 0, respectively. Moreover, tr(A) denotes the
trace of matrix A = [Aij ], rank(A) is the rank of A,

∥A∥F =
√
tr(ATA) is its Frobenius norm, vec(·) is the

vectorizing operator that stacks the columns of a matrix
in a column vector, A ≥ 0 denotes that every element
of A is non-negative, and A ≽ 0 denotes that A is sym-
metric, positive semidefinite (psd).

2 Clustering using HSIC (CLUHSIC)

CLUHSIC [24] is a clustering algorithm based on max-
imizing the (possibly highly nonlinear) dependence be-
tween input data and output cluster labels. Given a
sample S = {(x1,y1), . . . , (xm,ym)}, the linear depen-
dence between input xi’s and output yi’s can be easily
estimated by simple statistics such as linear correlation.
However, nonlinear dependencies are more difficult to
measure. A recently proposed dependence (or, more
precisely, independence) measure is the Hilbert Schmidt
Independence Criterion (HSIC) [9]. Specifically, let ϕ
and λ be the feature maps on the input and output, re-
spectively. Denote the corresponding reproducing ker-
nel Hilbert space (RKHS) by F and G, and the corre-
sponding kernels by k(·, ·) and l(·, ·). HSIC is defined as
the square of the Hilbert-Schmidt norm ∥ · ∥HS of the
cross-covariance operator Cxy from F to G [8]:

Cxy = Exy [(ϕ(x)−E[ϕ(x)])⊗ (λ(y)−E[λ(y)])] .

Here, ⊗ is the tensor product and E[·] is the expectation
operator. It can be shown that

HSIC(F ,G) = ∥Cxy∥2HS

=Exx′yy′ [k(x,x′)l(y,y′)] +Exx′ [k(x,x′)]Eyy′ [l(y,y′)]

−2Exy[Ex′k(x,x′)][Ey′ l(y,y′)]].

Given the sample S, an empirical estimate of HSIC is

(2.1) (m− 1)−2tr(HKHL),

where K = [k(xi,xj)],L = [l(yi,yj)] are kernel matri-
ces defined on {x1, . . . ,xm} and {y1, . . . ,ym}, respec-
tively, and H = I− 1

m11′ is the so-called centering ma-
trix. In the sequel, we will always assume that K is

centered and so (2.1) can be simply written as

(2.2) (m− 1)−2tr(KL).

Recent studies show that HSIC has several advantages
over other independence measures [9, 23]. First, its em-
pirical estimate in (2.2) is easy to compute. Moreover,
it has good uniform convergence guarantees and very
little bias even in high dimensions.

To use HSIC in clustering, one first defines a kernel
matrix A ∈ Rc×c on a set of c clusters. This is
used to model the prior structural relationships and
correlation among clusters. In general, kernel entries
for clusters that are structurally close to each other will
be assigned high values. For example, for the chain
structure in Figure 1(a), one can use the output kernel

matrix


2 1 0 0
1 2 1 0
0 1 2 1
0 0 1 2

. Here, the leftmost cluster

in Figure 1(a) corresponds to the first row/column of
the kernel matrix, the second-left cluster corresponds
to the second row/column, and so on. For more
complicated structures such as rings (Figure 1(b)) and
trees (Figure 1(c)), the corresponding kernel matrices

can be defined as


2 1 0 1

1 2 1 0
0 1 2 1
1 0 1 2

 and


2 1 0 0

1 2 0 0
0 0 2 1
0 0 1 2

,
respectively.

(a) chain.

(b) ring.

(c) tree.

Figure 1: Some common structures among clusters.

Let Π ∈ Rm×c be a binary partition matrix such
that the ith row specifies the assignment of the ith
pattern to one of the c clusters. CLUHSIC aims at
finding the cluster assignment Π that maximizes the
dependence (as measured by HSIC) between the input
kernel matrix K and the output kernel matrix L =
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ΠAΠT defined on the labels. Using (2.2), this leads
to the following optimization problem:

maxΠ tr(KΠAΠT )(2.3)

s.t. Π1 = 1, Πij ∈ {0, 1}.

In clustering, it is often necessary to normalize each
cluster’s contribution to the objective by its size [13]. In
CLUHSIC, Π can be normalized such that each column
(cluster) has the same norm. The optimization problem
for the normalized version of (2.3) is then:

maxP tr(KPAPT )(2.4)

s.t. P = ΠD, Π1 = 1, Πij ∈ {0, 1},

where D = (ΠTΠ)−1/2 is a diagonal matrix. Empiri-
cally, this normalized version often performs better, and
so will be of our primary interest here.

3 CLUHSIC and Discriminative Clustering

The formulation in (2.3) and (2.4) is very flexible. In
particular, by using different A’s in the output label
space, many traditional clustering algorithms such as
the k-means, weighted k-means, kernel k-means, hier-
archical clustering, and spectral clustering can all be
subsumed under this CLUHSIC framework [24]. In this
section, we will show that the recently proposed discrim-
inative clustering approach, including the DIFFRAC [1]
and DisKmeans [27] algorithms, can also be considered
as special cases of CLUHSIC.

3.1 DIFFRAC [1] Suppose that we are given a set
of d-dimensional unlabeled data X = [x1, . . . ,xm]T ∈
Rm×d coming from c underlying classes. With the use
of a linear model f(x) = WTx (where W ∈ Rd×c),
DIFFRAC simultaneously solves for the partition ma-
trix Π and the weight matrix W by optimizing the fol-
lowing linear discriminative cost function:

min
Π,W

1

m
∥Π−XW∥2F + κ∥W∥2F ,(3.5)

where κ is a tradeoff parameter. Note that if Π were
known, (3.5) reduces to the standard regularized linear
regression problem. Hence, the idea of discriminative
clustering is to adopt a cost function originally used for
classification as a clustering criterion.

3.1.1 DIFFRAC is a Special Case of CLUHSIC
It is easy to show that (3.5) can be reduced to

(3.6) max
Π

tr((K̃− I)ΠΠT ),

where K̃ = X
(
XTX+mκI

)−1
XT . The derivation is

similar to that in [1] and so is not shown here because of

the lack of space. The objective function can be further
rewritten as

tr((K̃− I)ΠΠT ) = tr(K̃ΠΠT )− tr(ΠΠT )

= tr(K̃ΠΠT )−m.

On dropping the constant m, this is thus the same as
CLUHSIC with the use of a transformed (input) kernel
matrix K̃ and an output kernel matrix A = I.

3.1.2 Adding Structure Information to
DIFFRAC Since DIFFRAC implicitly uses A = I, it
cannot utilize structure information among the cluster
labels. Here, we show that DIFFRAC can also be
extended for the incorporation of structure information.

To achieve this, we replace the Frobenius norm in
(3.5) with the weighted Frobenius norm ∥ · ∥M,N . In
general, for a matrix Z ∈ Rm×n, one can define the
matrix norm

∥Z∥M,N = ∥M 1
2ZN− 1

2 ||F ,

where M ∈ Rm×m,N ∈ Rn×n are positive definite ma-
trices [29]. In our context, in order to encode the cor-
relations between outputs as defined via A, we choose
M = I and N = A−1. Then ∥Z∥2I,A−1 = tr(ZAZT )
captures the correlation of the various components of
Z. On substituting this weighted Frobenius norm in
(3.5), and following a similar derivation as in [1], it can
be shown that we will obtain an optimization problem
which is analogous to (3.6)

max
Π

tr
(
(K̃− I)ΠAΠT

)
(3.7)

= max
Π

{
tr(K̃ΠAΠT )− tr(ΠAΠT )

}
.

Typically, the self-similarities of the clusters are the
same, so Aii = d for some d > 0. Then, tr(ΠAΠT ) =
md, and (3.7) again reduces to

max
Π

tr(K̃ΠAΠT ),

which is of the form of CLUHSIC.

3.2 DisKmeans [27] DisKmeans achieves discrimi-
native clustering by performing subspace selection and
linear discriminant analysis (LDA) simultaneously. Let
the normalized partition matrix be P. The between-
cluster scatter of the data in the original input space
is Sb = XTPPTX while its within-cluster variance
Sw = XTX − XTPPTX. Let the projection matrix
be R ∈ Rd×b, where b < d is the dimensionality of the
projected space. DisKmeans then finds P and R such
that the between-cluster scatter of the projected data
RTSbR is maximized while its within-cluster variance
RTSwR (or the total scatter RT (Sw + Sb)R) is mini-
mized as in standard LDA.
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3.2.1 DisKmeans is a Special Case of CLUH-
SIC Since DisKmeans is equivalent to kernel k-means
with a particular kernel [27] and kernel k-means is a
special case of CLUHSIC [24], it is thus immediate that
CLUHSIC also includes DisKmeans.

3.2.2 Adding Structure Information to
DisKmeans As in Section 3.1.2, we can also extend
DisKmeans by incorporating the correlation between
clusters defined in A. We replace the between-cluster
scatter Sb by its correlated variant

(3.8) S̃b = XTPAPTX,

and similarly the within-cluster scatter Sw by

(3.9) S̃w = XTX−XTPAPTX.

DisKmeans then maximizes the between-cluster scatter
and minimizes the regularized total scatter of the pro-
jected data, i.e.,

(3.10) max
P,R

tr
(
(RT (S̃w + S̃b + λI)R)−1RT S̃bR

)
,

where λ is a regularization parameter. Using the
representer theorem, the optimal R can be expressed
as

(3.11) R = XTB

for some B ∈ Rm×b. Substituting (3.8), (3.9) and (3.11)
into (3.10), we obtain the optimization problem

(3.12) max
P,B

tr[(BT (KK+ λK)B)−1BTKPAPKB],

where K = XTX. It can be shown that we can factor
out the matrix B from (3.12) and obtain the following
proposition.

Proposition 1. The optimal P in (3.12) can be ob-
tained from the following trace maximization problem

P∗ = max
P

tr

[(
I− (I+

1

λ
K)−1

)
PAPT

]
.

Proof. The proof follows a similar derivation as in [27]
and is not shown here because of the lack of space.

Thus, this extension can also be regarded as a variant
of CLUHSIC with the transformed input kernel matrix
I− (I+ 1

λK)−1 and output kernel matrix A.

4 Spectral Relaxation

Recall that CLUHSIC leads to the optimization prob-
lem (2.4) which is a difficult integer program. In order

to improve its computational efficiency, Song et al. [24]
relied on a heuristic that iteratively updates the parti-
tioning based on greedy local optimization. Obviously,
a more disciplined optimization approach is highly de-
sirable. As discussed in Section 1, a preliminary study
on the spectral relaxation of CLUHSIC has been investi-
gated in [23]. However, it only considers the special case
where A = I, which unfortunately only corresponds to
the spectral relaxation of standard k-means with no out-
put structure [28].

4.1 The General Case A ̸= I In this section, we
consider the general case where A ̸= I. By ignoring the
special structure of P in (2.4) and let it be an arbitrary
orthonormal matrix, we obtain the following relaxed
trace maximization problem:

maxP tr(KPAPT )(4.13)

s.t. PTP = I.

Our main tool is a technical result from [21].

Theorem 1. (Theorem 3.1 of [21]) Let the eigenvalues
of A (resp. B) be λ1 ≥ · · · ≥ λm ≥ 0 (resp. µ1 ≥ · · · ≥
µc ≥ 0). Then, maxXTX=I tr(AXBXT ) =

∑m
i=1 λiµi.

The optimal P in (4.13) can then be obtained by the
following proposition.

Proposition 2. Let the eigenvalues of K (resp. A) be
λ1 ≥ · · · ≥ λm ≥ 0 (resp. µ1 ≥ · · · ≥ µc ≥ 0) and the
matrix containing the eigenvectors be U = [u1, . . . ,um]
(resp. V = [v1, . . . ,vc]). Then,

max
PTP=I

tr(KPAPT ) =
c∑

i=1

λiµi,

and the optimal is

(4.14) P∗ = [u1, · · · ,uc]V
T .

Proof. Let P̂ ∈ Rm×m be an orthonormal matrix. It
can be partitioned as P̂ = [P,P⊥] where P⊥ is the

orthogonal complement of P. Let Â =

[
A 0
0 0

]
∈

Rm×m. It is easy to verify that KP̂ÂP̂T = KPAPT ,
and hence

max
P̂T P̂=I

tr(KP̂ÂP̂T ) = max
PTP=I

tr(KPAPT ).

Moreover, let Λ = diag([µ1, . . . , µc]), then Â can be
eigen-decomposed as

Â = V̂Λ̂V̂T

=

[
V 0
0 I

] [
Λ 0
0 0

] [
VT 0
0 I

]
.
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Using Theorem 1 above, we have

max
P̂T P̂=I

tr(KP̂ÂP̂T ) =
c∑

i=1

λiµi

when P̂ = UV̂T , which corresponds to the optimal P

of U

[
VT

0

]
= [u1, . . . ,uc]V

T . �

Recall that the spectral relaxation of k-means [28]
leads to a similar trace maximization problem

(4.15) max
PTP=I

tr(KPPT ).

Its optimal P is given by [u1, · · · ,uc]S, where the ui’s
are as defined in Proposition 2 and S is an arbitrary
orthogonal matrix. Now, since the matrix V in (4.14)
is orthonormal (and thus orthogonal), the optimal P
solution of (4.13), i.e., P∗ in (4.14), is thus also opti-
mal for (4.15). In other words, the spectral relaxations
of CLUHSIC and k-means yield the same cluster as-
signment. Unfortunately, this also implies that spectral
relaxation cannot gain additional information from A.

4.2 Concave Convex Procedure Recently, in the
context of kernelized sorting, Quadrianto et al. [19]
proposed the use of the concave convex procedure to
optimize over the set of permutation matrices. While
the P here is not a permutation matrix, we find that
a similar approach can also be used for CLUHSIC.
Specifically, let the estimate of P at the tth iteration
be Pt. We replace the objective tr(KPAPT ) in (2.4)
by its first-order approximation at Pt

tr(KPtAPT
t ) + 2tr[(P−Pt)

TKPtA](4.16)

= 2tr(PTBt) + constant,

where Bt = KPtA. This linearized objective is then
maximized w.r.t. P and the process re-iterated until
convergence. Interestingly, we will show in the following
that this procedure leads to the same spectral relaxation
in Section 4.1.

First, maximizing the linearized objective in (4.16)
is obviously the same as

(4.17) max
PTP=I

tr(PTBt).

Since

∥P−Bt∥2F = tr((P−Bt)
T (P−Bt))

= tr(PTP−PTBt −BT
t P+BT

t Bt)

= −2tr(PTBt) + constant,

(4.17) is also equivalent to: minPTP=I ∥P − Bt∥F ,
which is a matrix nearness problem1 [10]. From matrix
theory, its optimal P∗ can be obtained from the polar
decomposition2 of Bt [10]. Besides, when the above
iteration converges (i.e., Pt = Pt+1), P

∗ satisfies (4.17),
and so

max
P∗TP∗=I

tr(P∗TB) = max
P∗TP∗=I

tr(KP∗AP∗T ),

which is the same as the spectral relaxation in (4.13).
This equivalence is also confirmed in the experiments.

5 Semidefinite Relaxation

In this section, we propose another disciplined optimiza-
tion approach for solving the difficult integer program
in CLUHSIC. This relaxation results in a semidefinite
program (SDP), which optimizes a linear objective over
the cone of positive semidefinite matrices. SDP relax-
ations have been highly successful in machine learning
and data mining. They can construct tight convex ap-
proximations in many hard combinatorial optimization
problems [3].

As will be shown in Section 5.1, the resultant
optimization problem is a standard SDP and can be
solved in polynomial time by off-the-shelf interior point
solvers [3]. However, these general-purpose solvers can
be slow. In Section 5.2, we show that the matrix variable
Q in the SDP should ideally have rank one, and so it
is natural to consider a low-rank SDP solver instead.
SDP-LR [4] eliminates the psd constraint by replacing
Q with a factorization of the form YYT , where Y
is a low-rank matrix, and then applies a fast first-
order nonlinear optimizer. Empirically, this approach
directly exploits the low-rank structure and significantly
faster than existing interior-point solvers. It has also
been successfully used in many machine learning and
data mining problems such as embedding, clustering
and semi-supervised learning [5, 14, 22]. Finally, the
recovery of the cluster assignment from the obtained
matrix variable will be discussed in Section 5.3.

5.1 Optimization Problem Recall that DIFFRAC
can be considered as a special case of CLUHSIC (Sec-
tion 3.1). A SDP relaxation has already been proposed
for DIFFRAC, which is based on relaxing ΠΠT in (3.6)
as a matrix variable [1]. However, with the incorpora-

1Here, the problem consist of finding the orthonormal matrix P

that is nearest to Bt, where distance is measured by the Frobenius
norm.

2For A ∈ Rm×n, m ≥ n, there exists a matrix U ∈ Rm×n

with orthonormal columns and a unique positive semi-definite
matrix H ∈ Rn×n such that A = UH. This is called the polar
decomposition of A [10].
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tion of structure information in CLUHSIC, ΠΠT be-
comes ΠAΠT and one cannot simply replace ΠAΠT

by a matrix variable. The relaxation of CLUHSIC’s op-
timization problem into an SDP is thus more involved.

First, we will need the following property of the
Kronecker product [16]:

Lemma 1. For A ∈ Rm×n,B ∈ Rn×p and C ∈ Rp×q,

(C′ ⊗A)vec(B) = vec(ABC).

We can then rewrite the objective in (2.4) as

tr(KPAPT ) = ⟨vec(P), vec(KPA)⟩
= vec(P)T (A⊗K)vec(P)

= tr((A⊗K)vec(P)vec(P)T )

= tr((A⊗K)Q),

where Q = vec(P)vec(P)T . Thus, the CLUHSIC
problem in (2.4) can be equivalently formulated in terms
of Q, as

(5.18)

maxQ tr((A⊗K)Q)

s.t. Q ∈ Q =

vec(P)vec(P)T

∣∣∣∣∣∣
P = ΠD,
Π1 = 1,
Πij ∈ {0, 1}

 .

Note that this combinatorial optimization is still NP-
hard [7]. However, the objective is now linear in the
matrix variable Q. In the following, we will show how
an efficient convex relaxation can be obtained.

First, we introduce some notations. Let Q[ij] be the
(ij)th block of the matrix Q = vec(P)vec(P)T , i.e.,

Q =

 Q[11] · · · Q[1c]

...
. . .

...
Q[c1] · · · Q[cc]

 =

 p1p
T
1 · · · p1p

T
c

...
. . .

...
pcp

T
1 · · · pcp

T
c

 ,

where P = [p1,p2, . . . ,pc]. Define the two linear
operators bdiag : Rmc×mc → Rm×m and odiag :
Rmc×mc → Rc×c such that

bdiag(Q) =

c∑
i=1

Q[ii],(5.19)

(odiag(Q))ij = tr(Q[ij]), i, j = 1, . . . , c.(5.20)

It is easy to show that for Q = vec(P)vec(P)T ,

bdiag(Q) = PPT ,(5.21)

odiag(Q) = PTP.(5.22)

To obtain an efficient convex relaxation, we replace
the non-convex constraint Q = vec(P)vec(P)T by the
positive semidefinite constraint Q ≽ 0. By using the
following properties of P, we can also replace the other
constraints in Q by convex constraints on Q.

1. Columns of P are orthonormal. Using (5.21), this
is equivalent to the constraint odiag(Q) = I.

2. Each column of PPT has a constant sum of one.
Using (5.22), this is equivalent to the constraint
bdiag(Q)1 = 1.

3. Πij ∈ {0, 1} is relaxed to the constraint Q ≥ 0.

Combining these three constraints with the positive
semidefinite constraint, we arrive at the following SDP
relaxation of (5.18):

maxQ tr((A⊗K)Q)(5.23)

s.t. Q ∈ C =

 Q ≽ 0,Q ≥ 0,
odiag(Q) = I,
bdiag(Q)1 = 1

 .

This is a standard SDP and can be solved in polynomial
time by off-the-shelf solvers.

5.2 Low-Rank SDP Recall that a crucial step in
the above relaxation is to replace the constraint Q =
vec(P)vec(P)T by Q ≽ 0. Interestingly, the following
proposition shows that one can recover the original
CLUHSIC formulation by adding back the rank-one
constraint on Q.

For any Q ∈ C ∩ R, where C is defined in (5.23)
and R = {Q : rank(Q) = 1}, we can first decompose it

into Q = vec(P̃)vec(P̃)T , then we will prove that this P̃
has the following properties, which eventually guarantee
that Q ∈ Q.

Lemma 2. P̃ ≥ 0 or P̃ ≤ 0, and there is only one
nonzero element in each row of P̃.

Proof. The constraint Q = vec(P̃)vec(P̃)T ≥ 0 in C
implies that the product between every two elements of
P̃ must be non-negative. This implies either P̃ ≥ 0 or
P̃ ≤ 0. Moreover, the constraint odiag(Q) = I in C is

equivalent to P̃T P̃ = I. This column orthogonality of
P̃ then ensures that each row of P has only one nonzero
element. �

Let the ith column of P̃ be p̃i, then P̃ =
[p̃1, p̃2, . . . , p̃c]. Denote the jth element of p̃i by p̃ij .

Lemma 3. Given the uth column vector p̃u, for any
p̃uα ̸= 0 and p̃uβ ̸= 0 where 1 ≤ α, β ≤ m, (α ̸= β),
then p̃uα = p̃uβ. In other words, the nonzero elements

in each column of P̃ are equal to each other.

Proof. The constraint bdiag(Q)1 =
∑c

i=1 Q[ii] = 1, is
equivalent to

(5.24)
c∑

i=1

m∑
j=1

p̃irp̃ij = 1, for 1 ≤ r ≤ m.
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From Lemma 2, there is only one nonzero element in
each row. Without loss of generality, assume that the
αth and βth rows both have nonzero elements in the uth
column. Then, from (5.24), we could get the following
two equations,

c∑
i=1

m∑
j=1

p̃iαp̃ij = p̃uα

m∑
j=1

p̃uj = 1,

c∑
i=1

m∑
j=1

p̃iβ p̃ij = p̃uβ

m∑
j=1

p̃uj = 1,

as p̃iα = 0 and p̃iβ = 0 for i ̸= u. Therefore we
can obtain that p̃uα and p̃uβ have the equal value of
1/

∑m
j=1 p̃uj . �

Proposition 3. Problem (2.4) is equivalent to

maxQ tr((A⊗K)Q)(5.25)

s.t. Q ∈ C ∩ R,

where C is defined in (5.23) and R = {Q : rank(Q) =
1}.

Proof. Note that problem (2.4) is equivalent to prob-
lem (5.18), thus we turn to prove the equivalence be-
tween problems (5.18) and (5.25).

As the objective functions in (5.25) and (5.18) are
the same, we only need to show the equivalence of
feasible regions, i.e., Q = C ∩ R. Now, it is obvious
that Q ⊂ C ∩R. So, we will only show that Q ⊃ C ∩R.

For any Q ∈ C ∩ R, we decompose it as Q =
vec(P̃)vec(P̃)T since it is a rank-one matrix. From

Lemmas 2 and 3, we know that this P̃ satisfies three
properties: (1) P̃ ≥ 0 or P̃ ≤ 0; (2) There is only one
nonzero element in each row; (3) The nonzero elements
in each column are equal to each other. Obviously,
any P̃ with these three properties also satisfies the
definition of P in (2.4), which in turn leads to a matrix

Q = vec(P̃)vec(P̃)T ∈ Q. �

Because of this low-rank nature of the optimal Q
solution, we now consider the use of a low-rank SDP
solver [4], which is empirically much faster than existing
interior-point solvers.

5.2.1 Low-Rank Representation On replacing Q
by a low-rank representation YYT , where Y ∈ Rmc×r

and r is the rank, (5.23) becomes

maxY tr(YT (A⊗K)Y)

s.t. odiag(YYT ) = I, bdiag(YYT )1 = 1,(5.26)

Y ≥ 0.

Note that this formulation is indeed tighter than (5.23)
since Y ≥ 0 is a stronger constraint than YYT ≥ 0.
Moreover, the following lemmas show that the two
constraints in (5.26) can both be rewritten as a set of
constraints of the form tr(YTAiY) = bi.

Lemma 4. The constraint odiag(YYT ) = I is equiva-
lent to the set of constraints

(5.27) tr(YTAo
i,jY) = δ[i = j], 1 ≤ i, j ≤ c,

where Ao
i,j ∈ Rmc×mc and δ[i = j] =

{
1 i = j
0 otherwise

.

Each Ao
i,j is partitioned into c2 m ×m submatrices in

the same manner as (5.19). Its (ij)th block is I and all
the other blocks are 0, i.e.,

(5.28) Ao
i,j =


...

· · · Ao
[ij] = I · · ·
...

 .

Proof. The original constraint can be rewritten as c2

constraints3, each of which corresponds to one matrix
element odiag(YYT )ij . It is then easy to check that
odiag(YYT )ij = tr(YTAo

i,jY) when Ao
i,j is defined as

in (5.28). �

Lemma 5. The constraint bdiag(YYT )1 = 1 is equiva-
lent to the set of constraints

(5.29) tr(YTAl
iY) = 1, 1 ≤ i ≤ m,

where each Al
i ∈ Rmc×mc is block-diagonal, and every

m×m block on its diagonal has the i-th column equals
1 and all the other columns are 0.

Proof. As in Lemma 4, we rewrite the original con-
straint as a set of constraints, each on one of its m ele-
ments. It is then easy to check that (bdiag(YYT )1)i =
tr(YTAl

iY) when Al
i is as defined in the lemma. �

According to Proposition 3, one should set r, the
rank of Y, to one. However, as the optimization
problem is difficult, empirical results show that the use
of r = 1 can easily get stuck in poor local minima.
Hence, we further relax the problem by enlarging the
feasible region with the use of a larger r. We bias the
optimizer towards a rank-one solution by favoring YYT

3Indeed, as odiag(YYT ) is symmetric, only c(c + 1)/2 con-
straints are needed. However, for simplicity of exposition, we
write it as c2 constraints here.
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that has a large projection tr(11TYYT ) onto this space.
The resultant optimization problem thus becomes

maxY tr(YT (A⊗K)Y) + γtr(YT11TY)(5.30)

s.t. tr(YTAiY) = bi in (5.27) and (5.29),

Y ≥ 0,

and γ > 0 balances the contributions from the two
terms. Preliminary experiments indicate that the per-
formance is not sensitive to γ and so it is always fixed at
0.1. Moreover, as will be seen in Section 6, r only needs
to be a small number for good clustering performance.
This also agrees with the fact that ideally r should be
1. Hence, in the experiments, r is always fixed to 10 for
all the data sets.

5.2.2 Computational Cost The main computa-
tional cost is on computing the Lagrangian and its gra-
dient, in which their most expensive step is on the com-
puting of tr(YT (A ⊗ K)Y) and tr(YT11TY). This
can be done in O(rzc2) time, where z is the number of
nonzero entries in matrix K.

5.3 Recovering the Cluster Assignment After
obtaining Y from (5.30), the last step is to recover the
binary partition matrix Π. Note that unlike traditional
clustering algorithms, CLUHSIC has to ensure that the
objects are in the correct clusters and also that the
extracted clusters preserve the structure in A. As an
illustrating example, suppose that in Figure 2(a), one
has to cluster the six images into three clusters along
a chain. We assume that each cluster should contain 2
images. For the four possible Π solutions below:

(a)


1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

; (b)


0 0 1
0 0 1
0 1 0
0 1 0
1 0 0
1 0 0

;

(c)


1 0 0
1 0 0
0 1 0
0 0 1
0 0 1
0 0 1

; (d)


1 0 0
1 0 0
0 0 1
0 0 1
0 1 0
0 1 0

.

Solutions (a) and (b) are both correct (as both success-
fully capture the adjacent relationships between clus-
ters), even though they are in different orders. Solution
(c) is incorrect because the third and fourth elements
are not in the same cluster. Solution (d) is also incor-
rect because the clusters are in the wrong order, which
violates the structural relationships of the clusters in a
chain. On the other hand, traditional clustering meth-
ods disregard the structural relationships and will con-
sider (a), (b), (d) as correct.

To recover Π, we first find the rank-one matrix that
is nearest to YYT in terms of Euclidean distance. This

(a) teapot.

(b) face.

(c) coil.

Figure 2: Data sets used in the clustering experiment.

is simply λππ′, where λ is the largest eigenvalue of
YYT and π is the corresponding eigenvector. We then
resize

√
λπ ∈ Rmc to a matrix Π ∈ Rm×c. This is

transformed to a non-negative orthonormal matrix by
alternately projecting Π onto

1. the Stiefel manifold: Let the polar decomposition
of Π be UH, where U ∈ Rm×c has orthonormal
columns and H ∈ Rc×c is a Hermitian positive
semi-definite matrix. Then the nearest matrix with
orthonormal columns is U [10]; and

2. the set of nonnegative matrices, by simply setting
the negative matrix elements to zeros.

This is repeated until convergence. Alternating projec-
tion in Stiefel manifold has been highly successful in
practice (e.g., [25, 15]. In the experiments, we observe
that it typically converges in fewer than 10 iterations.
Finally, each pattern (which corresponds to a row in Π)
is then assigned to the cluster (a column in Π) which
has the largest value on that row.

6 Experiments

In Section 6.1, we first report experiments on cluster-
ing. Similar to DIFFRAC, CLUHSIC can also be used
for semi-supervised learning by enforcing the similar-
ity/dissimilarity information as constraints on the parti-
tion matrix. Hence, in Section 6.2, we will apply CLUH-
SIC on the task of semi-supervised protein subcellular
localization.

6.1 Clustering
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6.1.1 Data Sets The first data set is the teapot
data4 used in [24]. We consider a chain structure by
using 100 images with rotation angles from 1◦ to 180◦.
They are grouped into 5 well-separated clusters, each
having 20 images (Figure 2(a)). The Gaussian kernel is
used on the input, and the kernel matrix 2 1 0 0 0

1 2 1 0 0
0 1 2 1 0
0 0 1 2 1
0 0 0 1 2


as suggested for chains in [24], is used on the output.

The second data set is the facial expression data
also used in [24]. It consists of 185 images of three types
of facial expressions from three subjects (Figure 2(b)).
The Gaussian kernel is used on the input, and the kernel
matrix [

1 0 0
0 1 0
0 0 1

]
⊗

[
2 1 1
1 2 1
1 1 2

]
as suggested for hierarchies in [24], is used on the
output.

The third data set is the COIL-100 data5, which
consists of images of objects taken at different poses.
Here, we use 4 objects (number 14, 36, 48, 74). For each
object, we select 24 images from 1◦ to 180◦, which are
then grouped in 3 well-separated clusters. The Gaussian
kernel is used on the input. As for the output structure,
its upper level is tree-structured with 4 nodes (one for
each object), while its lower level is chain-structured
(Figure 2(c)). Hence, we use the kernel matrix[

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]
⊗
[

2 1 0
1 2 1
0 1 2

]
.

6.1.2 Setup We compare the following optimiza-
tion approaches of CLUHSIC: (1) local greedy search
(greedy) [24]; (2) NMF [23]; and (3) the proposed low-
rank SDP relaxation (SDPLR), with r = 10. Spectral
relaxation will not be compared as it yields the same
solution as the spectral relaxation of k-means. We also
compare with other well-known clustering methods, in-
cluding (1) k-means (KM); (2) kernel k-means (KKM);
(3) normalized cut6 (NCut); and (4) DIFFRAC 7.

The following measures are used in performance
evaluation: (1) accuracy (acc); (2) normalized mutual
information (NMI), whose value is always between zero
and one; (3) chain loss (for chain structures), which
is the difference in relative positions from the ground

4http://www.cs.usyd.edu.au/∼lesong/software/cluhsic.zip
5http://www1.cs.columbia.edu/CAVE/databases/
6http://www.cis.upenn.edu/∼jshi/software/
7http://www.di.ens.fr/∼fbach/diffrac/

truth; and (4) tree loss (for hierarchical structures),
which is the height of the first common ancestor of the
true and predicted cluster labels in the hierarchy. These
loss functions have been commonly used in structured
prediction [26]. For both the accuracy and NMI, a
higher value indicates better clustering quality; whereas
for the chain/tree loss, the lower the better. Moreover,
to reduce statistical variability, all the results reported
here are based on averages over 50 repetitions.

Recall that, unlike CLUHSIC, the clustering algo-
rithms KM, KKM, NCut and DIFFRAC are “structure-
less” in that they do not indicate how the obtained clus-
ters are ordered in the structure (Section 5.3). For these
algorithms, we follow the common practice of permut-
ing the obtained clusters to best match the ground truth
[28]. Hence, these “structure-less” algorithms can have
an unfair advantage over CLUHSIC by trying a lot more
permutations than those allowed in the CLUHSIC so-
lution. Thus, the results reported for these “structure-
less” methods should be for reference only. For the face

data set, this unfair advantage can be reduced by im-
plementing a variant of the “structure-less” algorithm
that observes the hierarchical structure: We first use
the structure-less algorithm to cluster the data set into
3 clusters. Then, we further divide each cluster into 3
sub-clusters.

6.1.3 Results Clustering results are shown in Ta-
ble 1. As can be seen, SDPLR significantly outperforms
the other optimization methods for CLUHSIC. The im-
provements are statistically significant at a 0.01 level of
significance. It even beats the “structure-less” meth-
ods on face, even though these methods have an unfair
advantage over CLUHSIC. Moreover, note that some
methods yield good NMI but poor accuracy and loss
value. This is because NMI only measures the mutual
information between the set of obtained clusters and the
set of true clusters, but does not consider the structural
relationships among clusters. So, even when the clus-
ters are wrongly placed in the structure, the NMI value
can still be high (e.g., solution (d) in Section 5.3 is one
such example).

We also study the use of different ranks (r =
rank(Y)) on the accuracy of the SDP relaxation. As
can be seen from Figure 3, although ideally Y should
be rank one (Proposition 3), using r = 1 will easily get
stuck in a poor local minimum. The clustering accuracy
gradually improves with a larger r, which then flattens
off at around r = 10. On the other hand, as the number
of optimization variables increases with r, the CPU time
also increases. Empirically, as shown in Figure 4, the
time increases linearly with r.
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Table 1: Clustering performance on the data sets. Note that KM, KKM, NCut and DIFFRAC cannot preserve
the output structure so their results are for reference only. For details, please see the text.

teapot face coil
method acc (%) NMI (%) loss acc (%) NMI (%) loss acc (%) NMI (%) loss
KM 86.78 93.56 1.27 57.94 81.05 0.95 67.29 87.02 1.05
KKM 89.24 93.62 1.26 72.67 88.10 0.94 74.35 87.35 1.15
NCut 97.30 97.60 1.00 85.11 91.79 0.80 84.88 94.00 1.03

DIFFRAC 100.00 100.00 0.00 95.68 95.18 0.43 91.67 94.17 1.00
(CLUHSIC)

greedy 32.46 97.85 1.23 65.26 92.85 0.56 38.85 91.16 0.80
NMF 39.54 96.56 1.17 80.89 96.52 0.34 43.44 91.88 0.67

SDPLR 72.00 100.00 0.48 100.00 100.00 0.00 56.79 94.73 0.26
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Figure 3: Effect of the rank r on accuracy.
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Figure 4: Effect of the rank r on time.

6.2 Semi-Supervised Protein Subcellular Lo-
calization A major challenge in modern biology is to
advance the knowledge of the expression, regulation,
and function of the entire set of proteins encoded by
an organism, i.e., its proteome. This information will
be invaluable for understanding how complex biological
processes occur at a molecular level, how they differ in
various cell types, and how they are altered in disease
states. Protein subcellular localization is one of the key
steps to determining its biological function, as proteins
must be localized in the same subcellular compartment
in order to cooperate towards a common function.

In the past, researchers only used the amino acid
composition to predict subcellular localization, without
any explicit experimental knowledge of the protein
under investigation [6]. Furthermore, these methods
assume that all the subcellular locations are equivalent.
However, in reality, some locations are more similar
to each other than others. For example, endoplasmic
reticulum is closer to extra-cellular than to nuclear
due to proximity in the space of the biological sorting

Non-cytoplasmCytoplasm

EXT

RIP

CYT

(a) Prokaryotic cell.

Secretory pathwayIntra-cellular

EXT

CYT

NUC

Cytoplasm

MIT

(b) Eukaryotic cell.

Figure 5: Biological sorting structures. Here, EXT
stands for extra-cellular; NUC for nucleus; CYT for
cytosol; MIT for mitochondria; and RIP for periplasm.

machinery.
Recently, Nair and Rost [17] showed that struc-

tural and evolutionary information can significantly im-
prove prediction accuracy. Here, we demonstrate that
CLUHSIC can also benefit from the use of such struc-
tural information. Figure 5 shows the biological sorting
structures of the prokaryotic and eukaryotic cells, re-
spectively [17]. The hierarchical architecture has been
designed to mimic the biological protein sorting mech-
anism as closely as possible. The branches of the tree
represent intermediate stages in the sorting machinery
while the nodes represent the decision points in the sort-
ing machinery.
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Figure 6: Results on semi-supervised protein subcellular
localization.

6.2.1 Setup We use a popular data set from [20],
and randomly select 100 protein sequences from each
subcellular location. The amino acid composition,
which contains the percentage of each type of amino
acid in the protein, is used to construct a 20-dimensional
feature for each protein sequence [11, 18]. We follow a
transductive learning setting, and the total number of
labeled samples is varied from 30 to 120. Results are
averaged over five repetitions.

6.2.2 Results As can be seen from Figure 6, CLUH-
SIC yields significant improvement over the “structure-
less” DIFFRAC in terms of the testing error. Fig-
ure 7 compares the location accuracies (recall) at var-
ious subcellular locations. Within each group, the 4
bars are arranged in increasing number of labeled sam-
ples. Note that the most significant improvement is on
the EXT (extra-cellular) location, which is regarded as
structurally very distinct from the others, as shown in
Figure 5. This confirms our proposal that strong struc-
tural information can benefit the learning task.

7 Conclusion

In this paper, we first unify the recent discriminative
view of clustering into the CLUHSIC family. We then
study the integer program in the CLUHSIC algorithm
and propose two relaxations that are more disciplined
than the greedy local optimization heuristic used in [24].
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Figure 7: Location accuracies (recall) at various subcel-
lular locations.

The first one is spectral relaxation which leads to the
same solution as the spectral relaxations for k-means.
The second one is SDP relaxation, which can naturally
be solved by an efficient low-rank SDP solver. Exper-
imental results show that the SDP relaxation obtains
significantly improved clustering performance than the
existing optimization methods for CLUHSIC. Moreover,
it can also be used in semi-supervised learning. Exper-
iments on protein subcellular localization also confirm
that incorporating structural and evolutionary informa-
tion can significantly benefit the learning task.

Since CLUHSIC requires solving a difficult integer
program, there is still much room for improvement.
The local greedy optimization heuristic used in [24]
can only be used on small data sets. The proposed
approach shows encouraging results on mid-sized data
sets. However, the computational cost will still be high
on large-scale data. This will be further investigated in
the future.
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