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Abstract—Hierarchical multilabel classification allows a sample to belong to multiple class labels residing on a hierarchy, which can be

a tree or directed acyclic graph (DAG). However, popular hierarchical loss functions, such as the H-loss, can only be defined on tree

hierarchies (but not on DAGs), and may also under- or over-penalize misclassifications near the bottom of the hierarchy. Besides, it has

been relatively unexplored on how to make use of the loss functions in hierarchical multilabel classification. To overcome these

deficiencies, we first propose hierarchical extensions of the Hamming loss and ranking loss which take the mistake at every node of the

label hierarchy into consideration. Then, we first train a general learning model, which is independent of the loss function. Next, using

Bayesian decision theory, we develop Bayes-optimal predictions that minimize the corresponding risks with the trained model.

Computationally, instead of requiring an exhaustive summation and search for the optimal multilabel, the resultant optimization

problem can be efficiently solved by a greedy algorithm. Experimental results on a number of real-world data sets show that the

proposed Bayes-optimal classifier outperforms state-of-the-art methods.

Index Terms—Hierarchical classification, multilabel classification, loss function, Bayesian decision theory

Ç

1 INTRODUCTION

IN multilabel classification, a sample can be associated
with multiple class labels. This is different from binary

or multiclass classification in which only one label can be
assigned to each sample. In recent years, there has been a
lot of interest on multilabel classification in diverse applica-
tion domains. For example, a document can belong to more
than one topic categories in text categorization [1], [2]; a
gene may be assigned with more than one functions in bio-
informatics [3]; and an image can be associated with multi-
ple semantic classes in image annotation [4]. Recent surveys
on the mining of multilabel data can be found in [5], [6], [7].

Often, the labels are organized into hierarchies, which can
be a tree (e.g., in text classification and bioinformatics [3], [8],
[9]), or a directed acyclic graph (DAG) (as in the gene
ontology (GO) [10]). The hierarchy is usually constructed by
domain experts, but can also be learned automatically from
the data using procedures such as hierarchical clustering
[11] and Bayesian network structure learning [12]. It is well-
known that the label hierarchy information is beneficial for
prediction [3], [8], [9], [13]. For example, if we predict an arti-
cle as belonging to entertainment, it is more likely that this
also belongs to music (a subcategory of entertainment in the
hierarchy) than to politics. Algorithms that make use of the
label hierarchy are called hierarchical classification algo-
rithms; while those ignoring the hierarchy are called flat clas-
sification algorithms.

Hierarchical classification can be further categorized
as hierarchical multiclass classification, in which a feasible

multilabel consists of only a single branch as positive labels;
and hierarchical multilabel classification, the feasible multila-
bel of which allows multiple branches and partial paths as
positive labels. A number of techniques have been developed
for hierarchical multiclass classification [14], [15], [16]. Hierar-
chical multilabel classification, on the other hand, may have a
large number of feasiblemultilabels even for a label hierarchy
with a small size, thus the problem is more complicated [8],
[9]. Moreover, most of the works on hierarchical multilabel
classification can only deal with the simpler tree-structured
hierarchies [8], [9], [17], [18]. Recently, more powerful algo-
rithms that can be used on both tree- and DAG-structured
label hierarchies have also been proposed [3], [13], [19].

In any classification problem, the loss function is of central
importance [20]. For binary or multiclass classification, the
zero-one loss is the most popular. It simply checks if the pre-
diction is identical to the ground-truth. However, in multila-
bel classification, the predicted multilabel on a sample may
partially overlapwith its set of ground-truth labels. To assign
different penalties to different degrees of partial correctness,
loss functions such as the Hamming loss, top-k precision and
ranking loss have been proposed for flat classification [21],
[22], [23], [24]. In hierarchical multilabel classification, the H-
loss [8], which takes the hierarchy into account, has been
commonly used. Yet, it can only be defined on label trees
(but not DAGs), and may under-penalize misclassifications
near the bottom of the hierarchy. On the other hand, other
hierarchical loss functions, such as the matching loss [25],
may penalize thesemisclassifications too heavily.

Once a loss function is chosen, it should be properly used
in the classification algorithm [20], [26]. A classification
algorithm usually operates in two phases—training and
prediction. The loss function can be incorporated into either
of the phases. For example, the structured SVM [26] uses
the loss function to re-scale the slack variable or margin in
training. Generally, it needs to solve different optimization
algorithms if different loss functions are used. Meanwhile,
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the Bayes-optimal classifier exploits the loss functions in the
prediction phase, which derives the optimal decision rule
with minimum risk over all feasible outputs. A good prop-
erty of the Bayes-optimal classifier is that the training algo-
rithm is independent of the loss function, as long as it can
obtain the prediction distribution of the outputs. Thus, it is
more convenient to be used when multiple loss functions
are available. Also, the flexible design of the training algo-
rithm for the Bayes-optimal classifier makes it achieve better
training efficiency compared with the structured SVM,
which is often not scalable with a large output space [27].
Thus, we focus on the Bayes-optimal classifier in this work.
In flat multilabel classification, Bayes-optimal decision rules
corresponding to a number of loss functions have been
derived [23], [28], [29]. However, this is still relatively unex-
plored for hierarchical multilabel classification, as the risks
over all its feasible multilabels are more difficult to evaluate
and minimize. The only exception is the B-SVM [30], which
is Bayes-optimal for the H-loss.

In this paper, we revisit the Hamming loss and ranking
loss in flat classification, and extend them for hierarchical
multilabel classification by incorporating misclassification
weights based on the label hierarchy. We show that these
hierarchical extensions can avoid the limitations of existing
hierarchical multilabel loss functions. Then, based on Bayes-
ian decision theory, we compute the Bayes-optimal pre-
diction rules with respect to different loss functions
by minimizing their (conditional) risks. On both tree- and
DAG-structured label hierarchies, the training algorithm
only needs to estimate the conditional probability for each
node to compute such risks. Moreover, all the risks can be
minimized by simple greedy algorithms, without the need
for summing and searching over a potentially exponential
number of feasible multilabels.

The rest of this paper is organized as follows. Section 2
first reviews the related work , particularly on the loss func-
tions used in flat/hierarchical multiclass/multilabel classifi-
cation. Section 3 revisits the Hamming loss and ranking loss
commonly used in flat classification, and extends them for
use in hierarchical multilabel classification. Section 4 shows
how the risks can be efficiently computed and minimized.
Experimental results are presented in Section 5. In the last
section, we gives some concluding remarks. All the proofs
are in the appendix, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TKDE.2015.2441707.

Preliminary results of this paper have been reported in a
shorter version [31]. Besides providing a more thorough
literature review, this paper considers the matching loss,
hierarchical Hamming loss and hierarchical ranking loss;
while the preliminary version [31] only discussed the
hierarchical Hamming loss. In particular, we will show
that for all these loss functions, their Bayes-optimal classi-
fiers can be cast under the same problem formulation by
setting with different weighting parameters. Also, more
experimental evidence is provided to demonstrate the mer-
its of the proposed algorithm.

Notations. In the following,H denotes the label hierarchy.
Its nodes are indexed as 0 (for the root), 1; 2; . . . ; N � 1,
where N is the number of nodes in H. For a node i, we use
paðiÞ to denote its (unique) parent when H is a tree, PaðiÞ

for the set of its parent(s) when H is a DAG, and ancðiÞ for
its set of ancestors. ðx;yÞ denotes the sample, where x is the

input and y is the multilabel ½y0; . . . ; yN�1�T 2 f0; 1gN denot-
ing the memberships of x to each of the nodes (labels) in H.
Moreover, for a given set S and a label vector y, yS denotes
the subvector of ywith indices from S.

2 RELATED WORK

2.1 Hierarchy Constraints in Hierarchical
Classification

In hierarchical classification, if the label hierarchy is a tree, a
node i (excluding the root) can be labeled positive only if its
parent is also labeled positive, i.e.,

yi ¼ 1) ypaðiÞ ¼ 1: (1)

For DAG-structured label hierarchies, there are two in-
terpretations of its hierarchy constraint [3], [13]. One is
the AND-interpretation, which means that a node can be
labeled positive only if all its parents are positive. The other
is the OR-interpretation, which means a node can be labeled
positive if at least one of its parents is positive. In this paper,
we adopt the AND-interpretation which is more common.
Thus, for each node i (again excluding the root),

yi ¼ 1) yPaðiÞ ¼ 1: (2)

2.2 Loss Functions in Flat and Hierarchical
Classification

2.2.1 Flat Classification

In this section, we first review some loss functions that have
been popularly used in flat multilabel classification.

1) Zero-one loss: Let ŷ be the predicted label vector for
sample x. The zero-one loss is defined as

‘0=1ðŷ;yÞ ¼ Iðŷ 6¼ yÞ; (3)

where Ið�Þ is the indicator function that returns 1
when the argument holds, and 0 otherwise. It has
been popularly used for both multiclass classifica-
tion [15] and multilabel classification [23], [32]. How-
ever, the zero-one loss cannot distinguish near-
misses (where ŷ is very similar to y) from completely
incorrect predictions.

2) Hamming loss (or symmetric loss) [1], [21], [33]:

‘hammingðŷ;yÞ ¼
X
i2H

Iðŷi 6¼ yiÞ: (4)

It is commonly used for multilabel classification, and
more informative than the zero-one loss.

3) Top-k precision: In some applications, one is only
interested in the k most-confident predicted (posi-
tive) labels for each sample [22]. This can be
measured by the top-k precision, which is defined

as 1
k� ð#true positives in the top-k labels of ŷÞ. The

corresponding loss is then

‘top-kðŷ;yÞ ¼ 1� top-k-precisionðŷ;yÞ: (5)
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4) Ranking loss: Multilabel classification is sometimes
cast as a bipartite ranking problem [23], [24]. A non-
zero loss is incurred when a positive label is ranked
after a negative one, leading to

‘rankðŷ;yÞ ¼
X

ði;jÞ:yi > yj

Iðŷi < ŷjÞ þ
1

2
Iðŷi ¼ ŷjÞ

� �
: (6)

Many of these have also been used in hierarchical multi-
label classification [9]. Yet, a major deficiency is that their
definitions are independent of the hierarchy. For example,
both predictions A and B in Fig. 1 have the same Hamming
loss. However, in hierarchical classification, misclassifica-
tions at the upper hierarchy levels (which correspond to
more generic concepts) are often considered more expensive
than those at the lower levels (which correspond to more
specific concepts) [8], [9]. Hence, B should be inferior.

2.2.2 Hierarchical Multiclass Classification

In hierarchical multiclass classification, only a single path
can be predicted positive. The following commonly used
loss functions are all closely related.

1) Cai and Hofmann [34] defined the loss

‘ðŷ;yÞ ¼
X
i2H

ciIðŷi 6¼ yiÞ; (7)

where ci � 0 (in [34], all the nodes have the same ci).
Intuitively, nodes that are on the path from the most
specific nodes (i.e., node at the lowest level) of ŷ and
y to the first common ancestor of ŷ and y are penal-
ized. An illustration is shown in Fig. 2b.

2) Dekel et al. [14] defined the loss as the number of
nodes on the path between the most specific nodes
of ŷ and y. This is similar to (7), but counts also the
first common ancestor (Fig. 2c).

3) Mcauley et al. [16] defined the loss as the path length
from the most specific node in y to ŷ (Fig. 2d).

2.2.3 Hierarchical Multilabel Classification

Popular loss functions for hierarchical multilabel classifica-
tion include:

1) H-loss [8], [9], [30], [35], which counts the first classi-
fication mistakes as

‘Hðŷ;yÞ ¼ a
X

i:yi¼1;ŷi¼0
ciIðŷancðiÞ ¼ yancðiÞÞ

þ b
X

i:yi¼0;ŷi¼1
ciIðŷancðiÞ ¼ yancðiÞÞ:

(8)

Here, a and b are used to weight false negatives
(FN) (the first term on the right of (8)) and false pos-
itives (FP) (the second term) differently. In Fig. 1,
predictions A and B have the same Hamming loss,
but A is better w.r.t. the H-loss (all the ci’s are
assumed to be 1).

As mentioned in Section 2.2.1, misclassifications
at the upper hierarchy levels are often considered
more expensive than those at the lower levels.
Thus, ci in (8) can be used to encode node i’s impor-
tance by penalizing upper-level misclassified nodes
more heavily. When the label hierarchy is a tree, ci
is defined in [9] as

ci ¼
1 i ¼ 0 (the root)
cpaðiÞ
nsiblðiÞ

i > 0;

(
(9)

where nsiblðiÞ is the number of siblings of i (including
i). Intuitively, the penalty associated with the parent
is equally shared by all its children.

However, since the H-loss only counts the first
classification mistakes, it may encourage more mis-
takes near the bottom of the hierarchy which are not
counted. As an example, predictions B and C in
Fig. 1 have the same H-loss. Another limitation is
that the H-loss can only be used on tree-structured
hierarchies. In a DAG, since the root may have multi-
ple paths to a node, definition of the “first” classifica-
tion mistake can be ambiguous (Fig. 3).

2) For two multilabels ŷ and y, Nowak et al. [25]
defined the matching loss as1

Fig. 1. An example illustrating the deficiencies of various loss functions.
Here, colored nodes are the positive nodes in the given multilabel. Mis-
classified nodes that contribute to the H-loss are marked in squares.
Please refer to the text for details.

Fig. 2. Example illustrating some popular loss functions in hierarchical
multiclass classification. Here, colored nodes are the positive labels for
the given multilabel. Misclassified nodes that contribute to each loss are
marked in squares.

1. For simplicity, we set the annotation agreement factors and
a-factor in [25] to 1.
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‘matchðŷ;yÞ ¼ a
X
i:yi¼1

fði; ŷÞ þ b
X
i:ŷi¼1

fði;yÞ; (10)

where fði;yÞ ¼ minj:yj¼1 costðj! iÞ, and costðj! iÞ
is the cost to traverse from node j to node i in the
hierarchy. This can be defined as the path length
from j to i, or the total weight along this path if the
edges are weighted (Fig. 4a). In particular, in a label
tree, since every node (except the root) has unit in-
degree, one can use (9) as the weight of the edge inci-
dent on a node. We can then rewrite fði;yÞ as

fði;yÞ ¼
X

ðu;vÞ 2 path from y to i

cv: (11)

The same holds for fði; ŷÞ.
While the H-loss penalizes only the first misclassi-

fied node on the path from y (or ŷÞ) to i, the match-
ing loss penalizes all misclassified nodes on this
path, with those further away (e.g., near the bottom
of the hierarchy) more heavily penalized. On the
other hand, similar to the H-loss, the matching loss
can be ambiguous on DAGs, where multiple paths
from y (or ŷ) to a node may exist (Fig. 4b).

3) Verspoor et al. [36] introduced hierarchical versions
of precision, recall and F-score. However, these
measures are more expensive to compute and thus
not considered in this paper.

2.3 Hierarchical Multilabel Classification:
Condensing Sort and Selection Algorithm
(CSSA)

Recently, Bi and Kwok [13] proposed a novel hierarchical
multilabel classification algorithm which can be used on
both tree- and DAG-structured hierarchies. A key step is to
find the multilabel ŷ that is (i) most similar to a given
crudely estimated multilabel ~y; (ii) agrees with the label
hierarchy; and (iii) has a pre-determined number of nodes
(say, L) predicted positive. For the label tree, they formu-
lated this as the following optimization problem:

max
fcigi2H

X
i2H

ci~yi (12)

s.t. ci � cpaðiÞ 8i 2 Hnf0g; (13)

c0 ¼ 1; ci ¼ f0; 1g; (14)

XN�1
i¼0

ci ¼ L: (15)

Here, ci is a binary indicator such that ci ¼ 1 denotes that
node i is predicted positive in ŷ; and 0 otherwise. Constraint
(13) encodes the hierarchy constraint in (1); while constraint
(15) requires that L nodes are predicted positive. It can
be shown that problem (12) can be solved efficiently in
OðNlogNÞ time, via a greedy algorithm called condensing
sort and selection algorithm [13].

When the label hierarchy is a DAG, one only has to
replace constraint (13), which is used to encode the hierar-
chy constraint for label trees, to

ci � cj 8i 2 Hnf0g; 8j 2 PaðiÞ; (16)

which corresponds to the hierarchy constraint in (2). The
resultant optimization problem can also be solved effi-
ciently by a DAG extension of CSSA (called CSSAG). Inter-
ested readers are referred to [13] for details.

As mentioned above, both CSSA and CSSAG require the
user to pre-determine the number of positive labels (L) in ŷ.
Moreover, loss function is not explicitly considered in their
formulation.

3 REVISITING HAMMING LOSS AND RANKING LOSS

As the decision on each label node represents the classifier’s
cognition on that label, mistake at every node should be
taken into consideration. In this section, we revisit the Ham-
ming loss in (4), and the ranking loss in (6) (Section 2.2.1),
which are originally used for flat classification. It will be seen
that their hierarchical extensions can (i) avoid the problem
with H-loss (resp. matching loss) that misclassfications at the
lower levels may not be penalized (or penalized too heavily);
and (ii) be used on both tree andDAG label hierarchies.

3.1 Hierarchical Hamming Loss

Denote the misclassification cost associated with node i by
ci � 0. The hierarchical Hamming loss is defined as

‘H-hammingðŷ;yÞ ¼ a
X

i:yi¼1^ŷi¼0
ci þ b

X
i:yi¼0^ŷi¼1

ci: (17)

The first term on the right corresponds to false negatives,
while the second term is for false positives.

In [34], their loss function in (7) for hierarchical multiclass
classification can also been seen as an extension of Hamming
loss, thus is similar to our extension. However, all the nodes
have the same ci in (7). Here, as discussed in Section 2.2.3,
we want to incorporate hierarchy information by penalizing
upper-level misclassifications more heavily. Thus, when the
label hierarchy is a tree, we follow the H-loss and define ci’s
as in (9). When the label hierarchy is a DAG, (9) can be

Fig. 3. Ambiguity in defining the H-loss. Node a is always counted as a
classification mistake, but node b is a classification mistake only if the
left path is taken.

Fig. 4. Example illustrating fði;yÞ in (10). Here, nodes in the ground-
truth multilabel are colored red, and node i is a particular misclassified
node. (a): The shortest path corresponding to fði;yÞ is shown in green.
(b): Multiple paths exist between y and node i.
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analogously extended as

ci ¼
1 i ¼ 0P

j2PaðiÞ
cj

nchildðjÞ
i > 0

�
; (18)

where nchildðjÞ is the number of child nodes of j.

3.1.1 Special Cases

The definition in (17) is quite flexible. Even for the special
case where all ci’s are 1, it already encompasses many of the
loss functions in Section 2.2. For example, when used for
flat classification:

� On setting a ¼ b ¼ 1, ‘H-hammingðŷ;yÞ reduces to the
Hamming loss in (4).

� Suppose that a given number (k) of labels are to be
predicted positive. On setting a ¼ 0;b ¼ 1=L,

‘H-hammingðŷ;yÞ ¼
1

k

X
i

Iðyi ¼ 0 ^ ŷi ¼ 1Þ

¼ 1� 1

k

X
i

Iðŷi ¼ yi ¼ 1Þ:

Note that
P

i Iðŷi ¼ yi ¼ 1Þ is the number of true
positives in ŷ. Hence, ‘H-hammingðŷ;yÞ becomes (5),
and minimizing ‘H-hammingðŷ;yÞ becomes maximiz-
ing the top-k precision.

When used for hierarchical multiclass classification, both
ŷ and y consist of one single path, and ‘H-hammingðŷ;yÞ can
be reduced to the following loss functions in Section 2.2.2:

� When a ¼ b ¼ 1, ‘H-hammingðŷ;yÞ reduces to the loss
in (7). As discussed in Section 2.2.2, this differs from
the loss function in [14] by 1.

� On setting a ¼ 1 and b ¼ 0, ‘H-hammingðŷ;yÞ reduces
to the loss proposed in [16].

3.2 Hierarchical Ranking Loss

The ranking loss in (6) can also be easily extended for hier-
archical classification as

‘H�rankðŷ;yÞ ¼
X

ði;jÞ:yi > yj

cij Iðŷi < ŷjÞ þ
1

2
Iðŷi ¼ ŷjÞ

� �
; (19)

where cij is the misclassification cost on a misplaced label
pair ði; jÞ. To ensure a high penalty when an upper-level
positive label is ranked after a lower-level negative label,
we set

cij ¼ cicj; (20)

where ci is as defined in (9) for tree hierarchies or (18) for
DAG hierarchies. Obviously, other settings can also be used.

3.3 Remarks

The hierarchical Hamming loss counts every misclassifi-
cation node, and the hierarchical ranking loss counts
every misplaced label pair. Thus, they avoid the problem
with H-loss that some lower-level misclassifications may
not be penalized. Moreover, by setting the ci’s according
to the label hierarchy as in (9), upper-level label misclas-
sifications/misplacements can be penalized more, thus

alleviating the problem with matching loss that lower-
level mistakes may be over-penalized. Besides, as dis-
cussed, these two losses can be readily used on both tree
and DAG label hierarchies.

4 MINIMIZING THE RISK

Given a sample x, the conditional risk (or simply the risk)
RðŷÞ of predicting multilabel ŷ is the expectation of ‘ðŷ;yÞ
over all possible y’s as ground truth, i.e.,

RðŷÞ ¼
X
y

‘ðŷ;yÞP ðyjxÞ: (21)

From Bayesian decision theory [20], the optimal ŷ	 is the
one that minimizes the risk:

ŷ	 ¼ argmin
ŷ2V
RðŷÞ; (22)

where V is the set of feasible multilabel predictions satisfy-
ing the hierarchy constraint (1) or (2).

Though risk minimization has been widely discussed in
flat multilabel classification [23], [28], it has only received
limited attention in the more complicated hierarchical mul-
tilabel classification. To the best of our knowledge, only the
H-loss has been considered [30]. In this section, we discuss
how ŷ	 can be obtained for a number of loss functions
shown in Sections 2.2 and 3. We will focus our discussion
on the matching loss, hierarchical Hamming loss and hierar-
chical ranking loss. Since hierarchical Hamming loss admits
many loss functions as special cases (Section 3.1.1), the
results for such special cases can be directly obtained thus
we do not discuss them to avoid redundancy. Specifically,
the following issues will need to be addressed:

1) How to estimate P ðyjxÞ in (21) from the data?
2) How to efficiently compute RðŷÞ for a particular ŷ,

without exhaustively summing all the possibly up to

2N combinations of y’s in (21)?
3) How to efficiently minimize RðŷÞ in (22), without

exhaustively enumerating all the possibly up to 2N

combinations of ŷ?
Specifically, the first issue corresponds to the training
phase, which is independent of the loss function; the lat-
ter two correspond to the prediction phase, which will be
loss-specific. These will be covered in Sections 4.1, 4.2,
and 4.3, respectively.

4.1 Estimation of P ðyjxÞP ðyjxÞ
As in [8], we assume that the labels of a group of sibling
nodes in the label hierarchy are conditionally independent
given their parent label(s). This simplification is standard in
Bayesian networks and also commonly used in hierarchical
multilabel classification [37], [38]. Thus, for a tree label hier-
archy, we have

P ðyjxÞ ¼
Y

i2Hnf0g
P ðyijypaðiÞ;xÞ: (23)

Moreover, P ðyi ¼ 1jypaðiÞ ¼ 0;xÞ ¼ 0 as such a label combi-
nation violates the hierarchy constraint (1). Similarly, for a
DAG label hierarchy, we have
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P ðyjxÞ ¼
Y

i2Hnf0g
P ðyijyPaðiÞ;xÞ; (24)

and P ðyi ¼ 1jyPaðiÞ;xÞ ¼ 0 if yj ¼ 0 for any j 2 PaðiÞ.
With this simplification, we only need to train estimators

for pðyi ¼ 1jypaðiÞ ¼ 1;xÞ (resp. pðyi ¼ 1jyPaðiÞ ¼ 1;xÞ) for
each tree (resp. DAG) label node i, using methods such as
logistic regression or support vector machines. If the num-
ber of labels is very large, we can first do some label dimen-
sion reduction or label selection, then efficiently train the
model in a much smaller reduced space, and recover the
probabilistic estimations for all the labels from the reduced
space or selected label subset [13], [39]. Also, if auxiliary
properties about the labels exist, such as label imbalance or
sparsity, label reduction methods can help to achieve better
prediction performance [13], [40]. The algorithm in this
work is nevertheless independent of the way these probabil-
ity estimators are learned.

4.2 Efficient Computation ofRðŷÞRðŷÞ
4.2.1 Matching Loss in (10)

Let pi be the probability that node i is labeled positive given
x. By the hierarchy constraint in (1), all ancestors of i must
also be positive. Hence,

pi ¼ P ðyi ¼ 1jxÞ ¼ P ðyi ¼ 1;yancðiÞ ¼ 1jxÞ: (25)

Recall that the matching loss is only defined on tree label
hierarchies. Using (23),

pi ¼ P ðyi ¼ 1jypaðiÞ ¼ 1;xÞ
Y

j2 ancðiÞ nf0g
P ðyj ¼ 1jypaðjÞ ¼ 1;xÞ

¼ P ðyi ¼ 1jypaðiÞ ¼ 1;xÞppaðiÞ:

Note that the root is always labeled positive, and so
p0 ¼ 1. By traversing the tree with breadth-first-search
(BFS) or depth-first-search (DFS), all pi’s can be obtained
in OðNÞ time.

With the pi’s obtained, the following Proposition shows
that the corresponding risk RmatchðŷÞ ¼

P
y P ðyjxÞ‘matchðŷ;yÞ

can be easily computed (proof is in Appendix A, available
online).

Proposition 1.With a label tree T ,

RmatchðŷÞ ¼
X
i:ŷi¼0

fði; ŷÞpi þ
X
i:ŷi¼1

qi; (26)

where

qi ¼
XdðiÞ�1
j¼0

XdðiÞ
l¼jþ1

canclðiÞP ðyanc0:jðiÞ ¼ 1; yancjþ1ðiÞ ¼ 0jxÞ; (27)

dðiÞ is the depth of i (the root has depth 0), ancjðiÞ is i’s ances-
tor at depth j, anc0:jðiÞ ¼ fanc0ðiÞ; anc1ðiÞ; . . . ; ancjðiÞg is
the set of i’s ancestors at depths 0 to j. The two terms on the
RHS of (26) are due to false negatives and false positives,
respectively.

Note that the qi’s in (27) can be efficiently computed.
First, on using (23), we have

P ðyanc0:jðiÞ ¼ 1; yancjþ1ðiÞ ¼ 0jxÞ
¼ P ðyancjþ1ðiÞ ¼ 0jyancjðiÞ ¼ 1;xÞ

�
Yj
l¼1

P ðyanclðiÞ ¼ 1jyancl�1ðiÞ ¼ 1;xÞ

¼ pancjðiÞð1� P ðyancjþ1ðiÞ ¼ 1jyancjðiÞ ¼ 1;xÞÞ:

(28)

Given pi’s obtained above and P ðyi ¼ 1jypaðiÞ ¼ 1;xÞ’s esti-
mated in Section 4.1, one can compute fP ðyanc0:jðiÞ ¼ 1;

yancjþ1ðiÞ ¼ 0jxÞgNi¼1 in (28) in OðNÞ time. Then we compute qi

using (27) by traversing the path from root to node i, which
takes OðdðiÞÞ time. Assuming that the nodes have been
indexed in topological order, we have dðiÞ � i. Thus, comput-

ing fqigNi¼1 takesOðN þ
PN

i¼1 dðiÞÞ � OðNþ
PN

i¼1 iÞ ¼ OðN2Þ
time. Hence, RmatchðŷÞ can be computed in a total of

OðN þN2Þ ¼ OðN2Þ time.

4.2.2 Hierarchical Hamming Loss in (17)

For both tree and DAG label hierarchies, the risk
RH-hammingðŷÞ ¼

P
y P ðyjxÞ‘H-hammingðŷ;yÞ can be easily com-

puted by the following Proposition (proof is in Appendix B,
available online). As in Proposition 1, the two terms on the
RHS are due to false negatives and false positives,
respectively.

Proposition 2.

RH-hammingðŷÞ ¼ a
X
i:ŷi¼0

cipi þ b
X
i:ŷi¼1

cið1� piÞ: (29)

For a label tree, we have shown in Section 4.2.1 that the
pi’s can be computed in OðNÞ time. The following shows
that they can also be computed efficiently for a label DAG.
Specifically, on using (24),

pi ¼ P ðyi ¼ 1jyPaðiÞ ¼ 1;xÞ
Y

j2ancðiÞnf0g
P ðyj ¼ 1jyPaðjÞ ¼ 1;xÞ: (30)

Observe that ancðiÞ ¼ PaðiÞ [ fancðjÞgj2PaðiÞ. Hence, all the
ancðiÞ’s can be obtained recursively by traversing the DAG
using topological sort, which takes OðN þ EÞ time (where E
is the number of edges inH). Note that this only needs to be
computed once, as part of preprocessing. With ancðiÞ and
P ðyi ¼ 1jyPaðiÞ ¼ 1;xÞ’s estimated in Section 4.1, each pi in

(30) can be computed in OðjancðiÞjÞ time. Each jancðiÞj in
turn is upper-bounded by the number of nodes placed before
it in the topological order. Hence, the time to compute all pi’s

is
PN

i¼1 jancðiÞj �
PN

i¼1 i ¼ OðN2Þ. Thus, RH-hammingðŷÞ can
be computed in a total ofOðN þN2Þ ¼OðN2Þ time.

Remark 1. Recall from Section 3.1.1 that the hierarchical
Hamming loss encompasses many loss functions, the
corresponding RðŷÞ’s can be easily obtained by proper
settings of a, b and ci’s. For example, the risk for the
Hamming loss is

P
i:ŷi¼0 pi þ

P
i:ŷi¼1ð1� piÞ.

4.2.3 Hierarchical Ranking Loss in (19)

For both tree and DAG label hierarchies, the risk
RH-rankðŷÞ ¼

P
y P ðyjxÞ‘H-rankðŷ;yÞ can be easily computed
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from the pi’s in (25) using the following Proposition (proof is
in Appendix C, available online).

Proposition 3.

RH-rankðŷÞ ¼
X

0�i< j�N�1
cijðpiIðŷi < ŷjÞ þ pjIðŷi > ŷjÞ

þ pi þ pj
2

Iðŷi ¼ ŷjÞÞ � C;

(31)
where C is independent of ŷ.

4.3 Efficient Minimization ofRðŷÞ
For the loss functions considered in Section 4.2, we will now
show how to efficiently find the ŷ	 that minimizes the corre-
sponding risk.

4.3.1 Common Optimization Problem

First, we decompose problem (22) intoN subproblems, each
for a fixed value of L 2 f1; . . . ; Ng:

ŷ	 ¼ arg min
L¼1;...;N

Rðŷ	ðLÞÞ; (32)

where

ŷ	ðLÞ ¼ argmin
ŷ2V
RðŷÞ : jsuppðŷÞj ¼ L (33)

is the optimal multilabel with L nodes labeled positive. The
following Proposition shows how yðLÞ can be obtained for

the various loss functions (proof is in Appendix D, available
online).

Proposition 4. Let fn1; n2; . . . ; nLg be the L nodes labeled posi-
tive in ŷ	ðLÞ, ŷðlÞ be the multilabel with only fn1; n2; . . . ; nlg
labeled positive, and for node i,

dðiÞ ¼
aci pi þ

P
j2descðiÞ pj

� �
� bqi matching loss

ci api � bð1� piÞð Þ hier: Hamming loss
1
2

P
j2H cijðpi � pjÞ hier: ranking loss;

8><
>:

where descðiÞ is its set of descendants. Then the ni’s can be
obtained as:

max
n1;n2;...;nL

XL
l¼1

dðnlÞ

s.t. fŷðlÞgLl¼1 are valid multilabels in H:
(34)

The ŷ	ðLÞ for zero-one loss can also be obtained in a simi-
lar manner. Interested readers are referred to Proposition 1
in [41] for details.

4.3.2 Solving the Optimization Problem (34)

We associate a binary indicator uðiÞ 2 f0; 1g with each node
i, where uðiÞ ¼ 1 denotes that node i is selected by ŷ	ðLÞ, and

0 otherwise. The objective in (34) can then be written asPN�1
i¼0 uðiÞdðiÞ. Moreover, the hierarchy constraints on ŷðlÞ’s

can be enforced by adding constraints (13) for label trees, or
(16) for label DAGs. Thus, we obtain the following reformu-
lations of (34).

Proposition 5. For a label tree, problem (34) can be reformulated
as the following problem:

max
u

X
i

uðiÞdðiÞ

s.t. uðiÞ � uðpaðiÞÞ 8i 2 Hnf0g;

uð0Þ ¼ 1; uðiÞ ¼ f0; 1g;
XN�1
i¼0

uðiÞ ¼ L:

(35)

Proposition 6. For a label DAG, problem (34) can be reformu-
lated as the following problem:

max
u

X
i

uðiÞdðiÞ

s.t. uðiÞ � uðjÞ 8i 2 Hnf0g; 8j 2 PaðiÞ;

uð0Þ ¼ 1; uðiÞ ¼ f0; 1g;
XN�1
i¼0

uðiÞ ¼ L:

(36)

Interestingly, (35) and (36) are of the same form as the
optimization problem in (12), except that ~yi in (12) is now
replaced by dðiÞ. Thus, we can reuse the efficient CSSA
(resp. CSSAG) algorithm in [13] for the tree (resp. DAG)
label hierarchy.

Recall from (32) that we need to first compute the risks
for L ¼ 1; . . . ; N using the above procedure, and then pick
the L with the smallest risk. A straightforward procedure is
to run CSSA/CSSAG N � 1 times (the case for L ¼ 1 trivi-
ally yields the multilabel with only the root labeled posi-
tive). However, since CSSA/CSSAG is a greedy algorithm,
the optimal solution of size L1 contains all the optimal solu-
tions of sizes L2 < L1. Thus, we can simply set L ¼ N , and
keep track of the optimal solution obtained for each inter-
mediate value of L. The total time to obtain the optimal
solution (with the L value yielding the smallest risk) is then
still OðN log NÞ.

The complete algorithm, which will be called HIerarchi-
cal Risk-Optimizing Multilabel classification (HIROM), is
shown in Algorithm 1. Recall that CSSA/CSSAG in [13]
requires as input the number of labels (L) to be predicted.
On the other hand, HIROM can automatically determine L.

Algorithm 1. Hierarchical Risk-Optimizing Multilabel
Classification

1: Train estimators for pðyi ¼ 1jypaðiÞ ¼ 1;xÞ (resp. pðyi ¼ 1jyPaðiÞ ¼
1;xÞ) for all i 2 H.

2: for each testing sample do
3: For label tree: Traverse the tree H using BFS or DFS to

compute pi for all i 2 H.
For label DAG: Perform BFS and obtain ancðiÞ’s for all
i 2 H, then compute pi’s with ancðiÞ’s.

4: For matching loss only: Compute qi for all i 2 H.
5: Compute dðiÞ’s for all i 2 H using the corresponding for-

mula in Proposition 4.
6: Use CSSA (resp. CSSAG) for label tree (resp. DAG) in [13]

with the computed dðiÞ’s, and obtain fŷ	ð1Þ; . . . ; ŷ	ðNÞg.
7: ŷ	  argminŷ	ðLÞ

Rðŷ	ðLÞÞ.
8: end for
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5 EXPERIMENTS

5.1 Setup

In this section, we perform experiments on a number of
real-world data sets commonly used in multilabel classifica-
tion. These include 19 data sets with tree label hierarchies
(Table 1).

� Five subsets of the RCV1v2 data [42].2 These contain
documents in the REUTERS topics categories with
the topic hierarchy.

� Enron[43]:3 This is a text data set for email analysis,
and its label hierarchy describes the relationships of
the email users.

� eurolex-dc [44]:4 It contains a collection of documents
on the European Union law. The labels include sev-
eral EuroVoc descriptors, directory codes and subject
matters. Here, we use the second one, as it has four
level label hierarchy.

� Twelve genomic data sets [3]:5 These contain differ-
ent aspects of genes in the yeast genome, with anno-
tations fromMIPS’s functional catalogue (Funcat).

For the DAG-structured data sets6 (Table 2), they are the
same set of genomic data sets, but the samples are anno-
tated from the GO [3]. There are three subgraphs in its label
DAG. The first subgraph is used in the experiment. For pre-
processing, we remove labels with fewer than 10 positive
training samples as in [35].

Each of the constituent probabilities in P ðyjxÞ are
obtained from a SVM trained on the training set. Specifi-
cally, for each node i, we first train a binary (linear) SVM,
using those samples that the parent(s) of i is labeled positive

as training examples [30]. The SVM output is then con-
verted to a probability estimate using the procedure in [45].

The SVM’s C parameter is chosen from f2�10; 2�9; . . . ;
1; . . . ; 29; 210g using three-fold cross-validation on the train-
ing set.

The proposed HIROM algorithm will be compared with
the following state-of-the-art methods.

1) CSSA (resp. CSSAG) [13]: As discussed in Section
2.3, this is most similar to the proposed algorithm,
except that the loss function is not used in its for-
mulation. Recall that CSSA requires as input the
number of labels to be predicted (L). Here, we first
run HIROM and use the number of labels obtained
as input to CSSA.

2) H-SVM [8]: This trains a binary classifier at each
node. On prediction, if pðyi ¼ 1jypaðiÞ ¼ 1;xÞ or
pðyi ¼ 1jyPaðiÞ ¼ 1;xÞ is � t, node i is predicted posi-

tive and the process continues to its children. t is set
by a 3-fold cross validation on the given training set.

3) B-SVM [35]: We use the cost-sensitive extension in
[30]. It is optimal w.r.t. the H-loss, but can only be
used on tree label hierarchies.

4) CLUS-HMC [3]: This extends the decision tree for
multilabel classification on both tree and DAG label
hierarchies.

Performance evaluation is based on five-fold cross-
validation.

5.2 Matching Loss (10)

The matching loss can only be used with data sets having
tree label hierarchies. We set ci using (9), and a ¼ �b, where
� ¼ n�

nþ
balances the misclassification costs between the nþ

positive labels (i.e., yi ¼ 1 on all training samples), and n�
negative labels (i.e., yi ¼ 0 on all training samples). The a;b
values are normalized as aþ b ¼ 2. Note that for the vari-
ous algorithms under comparison, only HIROM and B-
SVM depend on a.

Results are shown in Table 3. As can be seen, HIROM
achieves the smallest loss as expected, and outperforms
CSSA by a significant margin.

5.3 Hierarchical Hamming Loss (17)

The hierarchical Hamming loss can be used on both tree
and DAG label hierarchies. We set ci using (9) for the label

TABLE 1
Data Sets with Tree Label Hierarchies

data set #sample #feature #label cardinality

rcv1-subset1 6,000 47,236 104 4.23
rcv1-subset2 6,000 47,236 104 4.23
rcv1-subset3 6,000 47,236 104 4.22
rcv1-subset4 6,000 47,236 104 4.21
rcv1-subset5 6,000 47,236 104 4.21
enron 1,648 1,001 57 6.30
eurolex-dc 19,348 5,000 865 6.00
seq 3,919 489 500 9.55
pheno 1,591 170 456 10.08
struc 4,291 19,629 500 9.67
hom 3,854 47,035 500 9.57
cellcycle 4,190 77 500 9.76
church 4,192 26 500 9.75
derisi 3,725 63 500 9.79
eisen 2,424 79 462 10.20
gasch1 3,764 173 500 9.74
gasch2 3,779 52 500 9.74
spo 3,703 83 500 9.78
expr 3,779 551 500 9.74

(“cardinality” is the average number of labels per sample).

TABLE 2
Data Sets with DAG Label Hierarchies

data set #sample #feature #label cardinality

seq 3,828 489 143 5.87
pheno 1,556 170 58 5.03
struc 3,752 19,629 142 5.78
hom 3,766 47,035 140 5.88
cellcycle 3,680 77 141 5.75
church 3,678 26 141 5.74
derisi 3,648 63 141 5.77
eisen 2,414 79 101 5.69
gasch1 3,687 173 141 5.74
gasch2 3,701 52 141 5.74
spo 3,626 83 139 5.75
expr 3,702 551 141 5.74

2. http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
multilabel.html

3. http://www.cs.cmu.edu/~enron/
4. http://www.ke.tu-darmstadt.de/resources/eurlex
5. http://dtai.cs.kuleuven.be/clus/hmcdatasets/
6. http://dtai.cs.kuleuven.be/clus/hmcdatasets/
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tree, and (18) for the label DAG. The a and b values are set
as in Section 5.2.

Table 4 shows the hierarchical Hamming loss values
on the tree-structured data sets. As can be seen, HIROM
again achieves the smallest loss as expected. The B-SVM
is also quite competitive. Table 5 shows the results on
the DAG-structured data sets. Again, HIROM consis-
tently outperforms CSSA and H-SVM. Note that the bot-
tom-up strategy used in B-SVM cannot be extended to
handle DAG label structures and so cannot be compared
here. Because of the lack of space, we do not report the
sensitivity of the performance w.r.t. �. Interested readers
are referred to [31] for details.

5.4 Hierarchical Ranking Loss (19)

We set cij as in (20). Results of the tree-structured and
DAG-structured data sets are shown in Tables 6 and 7,
respectively. For text data sets (rcv1, H-SVM performs the
best and HIROM almost achieves the best performance
(except on rcv1-subset5). However, for the genomic data
sets, H-SVM can not perform well consistently as HIROM.
A possible reason is that the cardinalities of the text data
sets is generally small, and most positive labels are on the
top levels of the hierarchy, thus predicting the positive
labels from top to bottom as in H-SVM can obtain a rank-
ing of all the labels well. However, for genomic data sets,
the cardinality increases and some positive labels lie on

TABLE 3
Matching Loss Values on Data Sets with Tree Label Hierarchies

data set HIROM CSSA H-SVM B-SVM CLUS-HMC

rcv1-subset1 0.074 
 0.003 0.131 
 0.003 0.081 
 0.004 0.164 
 0.003 0.204 
 0.015
rcv1-subset2 0.072 
 0.003 0.131 
 0.004 0.082 
 0.006 0.159 
 0.004 0.204 
 0.019
rcv1-subset3 0.074 
 0.005 0.132 
 0.005 0.082 
 0.006 0.167 
 0.007 0.217 
 0.013
rcv1-subset4 0.074 
 0.002 0.126 
 0.006 0.081 
 0.006 0.162 
 0.004 0.199 
 0.026
rcv1-subset5 0.074 
 0.005 0.124 
 0.004 0.083 
 0.005 0.164 
 0.007 0.204 
 0.006
enron 0.148 
 0.011 0.231 
 0.023 0.204 
 0.043 0.305 
 0.014 0.224 
 0.037
eurolex-dc 0.033 
 0.001 0.190 
 0.003 0.225 
 0.002 0.248 
 0.008 -
seq 0.145 
 0.004 0.657 
 0.234 0.228 
 0.007 0.749 
 0.026 0.212 
 0.019
pheno 0.177 
 0.011 0.904 
 0.073 0.269 
 0.010 0.974 
 0.036 0.242 
 0.041
struc 0.156 
 0.004 0.786 
 0.043 0.249 
 0.009 0.872 
 0.045 0.220 
 0.006
hom 0.145 
 0.007 0.591 
 0.024 0.207 
 0.007 0.700 
 0.019 0.247 
 0.007
cellcycle 0.150 
 0.003 0.741 
 0.008 0.231 
 0.005 0.828 
 0.011 0.231 
 0.030
church 0.157 
 0.006 0.821 
 0.028 0.262 
 0.013 0.888 
 0.069 0.212 
 0.023
derisi 0.156 
 0.030 0.792 
 0.027 0.261 
 0.005 0.894 
 0.040 0.209 
 0.012
eisen 0.156 
 0.008 0.723 
 0.045 0.243 
 0.013 0.800 
 0.021 0.248 
 0.022
gasch1 0.146 
 0.004 0.693 
 0.017 0.242 
 0.005 0.765 
 0.012 0.236 
 0.012
gasch2 0.155 
 0.016 0.757 
 0.096 0.757 
 0.096 0.814 
 0.030 0.320 
 0.035
spo 0.156 
 0.003 0.817 
 0.029 0.256 
 0.006 0.856 
 0.025 0.218 
 0.012
expr 0.146 
 0.003 0.660 
 0.015 0.234 
 0.006 0.736 
 0.018 0.223 
 0.012

The results with best mean values are in bold Note that CLUS-HMC runs out of memory on the Euro-lexðdcÞ data set.

TABLE 4
Hierarchical Hamming Loss Values on Data Sets with Tree Label Hierarchies

data set HIROM CSSA H-SVM B-SVM CLUS-HMC

rcv1-subset1 0.039 
 0.001 0.044 
 0.001 0.046 
 0.001 0.042 
 0.001 0.086 
 0.007
rcv1-subset2 0.038 
 0.001 0.054 
 0.002 0.045 
 0.001 0.041 
 0.001 0.093 
 0.005
rcv1-subset3 0.040 
 0.002 0.052 
 0.003 0.047 
 0.002 0.042 
 0.002 0.097 
 0.005
rcv1-subset4 0.039 
 0.000 0.053 
 0.003 0.046 
 0.003 0.042 
 0.001 0.089 
 0.010
rcv1-subset5 0.040 
 0.002 0.050 
 0.002 0.047 
 0.002 0.043 
 0.002 0.091 
 0.003
enron 0.129 
 0.012 0.130 
 0.017 0.137 
 0.010 0.137 
 0.011 0.143 
 0.016
eurolex-dc 0.017 
 0.000 0.050 
 0.001 0.029 
 0.002 0.022 
 0.000 -
seq 0.083 
 0.002 0.228 
 0.005 0.091 
 0.002 0.090 
 0.003 0.089 
 0.006
pheno 0.101 
 0.004 0.299 
 0.016 0.107 
 0.004 0.110 
 0.007 0.105 
 0.011
struc 0.091 
 0.001 0.263 
 0.012 0.095 
 0.002 0.098 
 0.004 0.096 
 0.002
hom 0.081 
 0.003 0.208 
 0.009 0.089 
 0.001 0.087 
 0.002 0.098 
 0.002
cellcycle 0.087 
 0.002 0.251 
 0.003 0.093 
 0.001 0.095 
 0.003 0.097 
 0.003
church 0.092 
 0003 0.271 
 0.004 0.095 
 0.004 0.099 
 0.006 0.094 
 0.005
derisi 0.092 
 0.002 0.264 
 0.003 0.096 
 0.002 0.099 
 0.002 0.093 
 0.003
eisen 0.091 
 0.004 0.248 
 0.011 0.104 
 0.004 0.103 
 0.004 0.100 
 0.002
gasch1 0.085 
 0.002 0.239 
 0.004 0.093 
 0.002 0.093 
 0.002 0.097 
 0.003
gasch2 0.089 
 0.009 0.254 
 0.022 0.094 
 0.009 0.097 
 0.010 0.119 
 0.013
spo 0.091 
 0.002 0.271 
 0.004 0.095 
 0.002 0.099 
 0.002 0.094 
 0.004
expr 0.083 
 0.001 0.231 
 0.003 0.091 
 0.001 0.093 
 0.002 0.092 
 0.003

The results with best mean values are in bold.
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some deep levels of some long paths, then top-down pre-
diction scheme may fail to given a good ranking. Overall,
HIROM can achieve stable good performance on all cases.

5.5 Comparison among H-Loss, Matching Loss, and
Hierarchical Hamming Loss

In this section, we further examine the different behaviors of
Bayes-optimal classifiers with respect to H-loss, matching
loss, and hierarchical Hamming loss, which penalize FP
and FN of a partially mistaken prediction differently. Here
we ignore the comparison with hierarchical ranking loss,
since it is not directly defined on FP and FN. Experiments
are performed on the tree-structured rcv1-subset1, enron
and seq data sets. Fig. 5 shows the numbers of FP, and FN
at different levels of the label hierarchy as obtained by the
B-SVM (which minimizes the H-loss), and the two HIROM
variants (which minimize the matching loss and hierarchi-
cal Hamming loss, respectively).

As can be seen, at lower levels of the hierarchy, B-SVM
has the largest FP and smallest FN; HIROM (matching loss)
has the smallest FP and largest FN, while the FP and FN

values of HIROM (hierarchical hamming loss) are in
between these two. This is consistent with the discussions
in Sections 2.2.3 and 3 that the H-loss (resp. matching loss)
is most (resp. least) willing to predict positive labels near
the bottom of the hierarchy; while the hierarchical Ham-
ming loss is intermediate between the two. Thus, for appli-
cations that are interested in retrieving more TP (i.e., less
FN) labels, such as information retrieval tasks, the H-loss-
minimizing B-SVM can be used; whereas for applications
that prefer fewer classification FP mistakes, such as medical
imaging annotation, the matching-loss-minimizing HIROM
is recommended. On the other hand, for applications prefer-
ring a compromise of the two, the hierarchical-Hamming-
loss-minimizing HIROMmay be more desirable.

5.6 Prediction Time Comparison

In this section, we compare the prediction efficiency of the
various classifiers with respect to hierarchical Hamming
loss. For all results, all standard deviations are smaller than
0.001, thus we only show the mean values. The results are
shown in Tables 8 and 9. As can be seen, though HIROM

TABLE 6
Hierarchical Ranking Loss Values on Data Sets with Tree Label Hierarchies

data set HIROM CSSA H-SVM B-SVM CLUS-HMC

rcv1-subset1 0.076 
 0.002 0.202 
 0.009 0.075 
 0.002 0.230 
 0.006 0.217 
 0.006
rcv1-subset2 0.075 
 0.003 0.199 
 0.007 0.075 
 0.002 0.226 
 0.009 0.216 
 0.006
rcv1-subset3 0.075 
 0.002 0.083 
 0.003 0.074 
 0.003 0.232 
 0.006 0.213 
 0.004
rcv1-subset4 0.078 
 0.006 0.199 
 0.013 0.073 
 0.004 0.229 
 0.004 0.213 
 0.008
rcv1-subset5 0.081 
 0.003 0.195 
 0.006 0.075 
 0.003 0.233 
 0.004 0.233 
 0.004
enron 0.097 
 0.014 0.097 
 0.014 0.099 
 0.014 0.389 
 0.028 0.328 
 0.008
eurolex-dc 0.058 
 0.011 0.162 
 0.008 0.059 
 0.001 0.657 
 0.021 -
seq 0.227 
 0.007 0.478 
 0.012 0.239 
 0.008 0.996 
 0.014 0.384 
 0.018
pheno 0.266 
 0.006 0.567 
 0.031 0.275 
 0.009 1.113 
 0.032 0.497 
 0.011
struc 0.251 
 0.007 0.557 
 0.019 0.258 
 0.008 1.073 
 0.023 0.337 
 0.015
hom 0.213 
 0.005 0.454 
 0.008 0.222 
 0.006 0.941 
 0.017 0.346 
 0.010
cellcycle 0.246 
 0.005 0.340 
 0.005 0.255 
 0.005 1.056 
 0.022 0.414 
 0.011
church 0.261 
 0.018 0.336 
 0.011 0.268 
 0.016 1.123 
 0.021 0.412 
 0.020
derisi 0.260 
 0.005 0.334 
 0.004 0.267 
 0.005 1.116 
 0.017 0.422 
 0.009
eisen 0.240 
 0.011 0.317 
 0.015 0.254 
 0.013 0.982 
 0.019 0.396 
 0.022
gasch1 0.239 
 0.003 0.322 
 0.004 0.251 
 0.005 1.018 
 0.021 0.391 
 0.009
gasch2 0.250 
 0.022 0.337 
 0.027 0.258 
 0.024 1.034 
 0.057 0.414 
 0.007
spo 0.255 
 0.006 0.574 
 0.003 0.263 
 0.006 1.102 
 0.018 0.413 
 0.006
expr 0.232 
 0.006 0.315 
 0.002 0.243 
 0.007 0.955 
 0.026 0.387 
 0.014

The results with best mean values are in bold.

TABLE 7
Hierarchical Ranking Loss Values on Data Sets

with DAG Label Hierarchies

data set HIROM CSSAG H-SVM CLUS-HMC

seq 0.158 
 0.004 0.171 
 0.004 1.450 
 0.002 1.470 
 0.002
pheno 0.185 
 0.007 0.240 
 0.012 1.151 
 0.010 1.188 
 0.002
struc 0.168 
 0.006 0.179 
 0.003 1.449 
 0.001 1.468 
 0.001
hom 0.136 
 0.008 0.150 
 0.005 1.440 
 0.003 1.460 
 0.003
cellcycle 0.184 
 0.004 0.194 
 0.005 1.446 
 0.001 1.466 
 0.001
church 0.194 
 0.004 0.202 
 0.006 1.447 
 0.001 1.466 
 0.002
derisi 0.191 
 0.003 0.200 
 0.007 1.456 
 0.001 1.476 
 0.001
eisen 0.189 
 0.007 0.216 
 0.014 1.389 
 0.005 1.416 
 0.005
gasch1 0.179 
 0.006 0.191 
 0.006 1.446 
 0.002 1.466 
 0.001
gasch2 0.182 
 0.002 0.194 
 0.005 1.446 
 0.003 1.466 
 0.003
spo 0.187 
 0.003 0.199 
 0.012 1.440 
 0.001 1.460 
 0.001
expr 0.175 
 0.006 0.188 
 0.010 1.447 
 0.002 1.466 
 0.001

The results with best mean values are in bold.

TABLE 5
Hierarchical Hamming Loss Values on Data Sets

with DAG Label Hierarchies

data set HIROM CSSAG H-SVM CLUS-HMC

seq 0.105 
 0.002 0.291 
 0.007 2.250 
 0.005 2.284 
 0.005
pheno 0.222 
 0.013 0.281 
 0.014 2.151 
 0.010 2.224 
 0.008
struc 0.117 
 0.007 0.301 
 0.012 2.247 
 0.006 2.280 
 0.005
hom 0.096 
 0.004 0.244 
 0.013 2.247 
 0.008 2.281 
 0.007
cellcycle 0.117 
 0.004 0.327 
 0.019 2.244 
 0.003 2.278 
 0.003
church 0.128 
 0.004 0.360 
 0.015 2.244 
 0.006 2.278 
 0.005
derisi 0.125 
 0.004 0.344 
 0.022 2.244 
 0.004 2.278 
 0.004
eisen 0.137 
 0.008 0.276 
 0.025 2.224 
 0.021 2.272 
 0.019
gasch1 0.116 
 0.006 0.226 
 0.005 2.244 
 0.003 2.278 
 0.003
gasch2 0.120 
 0.007 0.230 
 0.016 2.244 
 0.010 2.279 
 0.011
spo 0.126 
 0.004 0.234 
 0.005 2.242 
 0.003 2.277 
 0.003
expr 0.113 
 0.005 0.312 
 0.026 2.244 
 0.006 2.278 
 0.005

The results with best mean values are in bold.
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takes more time to performs testing than other methods, it
finishes the testing of a sample in less than 0.02 second per
sample on average for tree data sets and 0.04 second per
sample on average for DAG data sets, which is still very effi-
cient. Thus, considering both classification performance and
testing efficiency, HIROM is most encouraged to use.

6 CONCLUSION

In this paper, we compared various loss functions and
extended the Hamming loss and ranking loss for hierarchi-
cal multilabel classification. Following the Bayesian decision
theory, we developed Bayes-optimal classifiers that mini-
mize the risks corresponding to these loss functions. Both
the computation and minimization of the risk can be effi-
ciently obtained without exhaustive enumeration of an
exponential number of possible multilabels. Experimental
results on a large number of real-world data sets with both
tree-and DAG-structured label hierarchies demonstrate
the superiority of the proposed Bayes-optimal classifier.
In the future, we will study some theoretical guarantees
for the proposed Bayes-optimal classifiers about how the
errors in the probability estimates will transfer to errors
and how much the hierarchy information used in these
classifiers can help increase the performance over the
non-risk-minimizing classifiers and flat classifiers.
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