
48 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 1, JANUARY 2006

Efficient Hyperkernel Learning Using
Second-Order Cone Programming

Ivor Wai-Hung Tsang and James Tin-Yau Kwok

Abstract—The kernel function plays a central role in kernel
methods. Most existing methods can only adapt the kernel param-
eters or the kernel matrix based on empirical data. Recently, Ong
et al. introduced the method of hyperkernels which can be used to
learn the kernel function directly in an inductive setting. However,
the associated optimization problem is a semidefinite program
(SDP), which is very computationally expensive, even with the
recent advances in interior point methods. In this paper, we show
that this learning problem can be equivalently reformulated as
a second-order cone program (SOCP), which can then be solved
more efficiently than SDPs. Comparison is also made with the
kernel matrix learning method proposed by Lanckriet et al. Ex-
perimental results on both classification and regression problems,
with toy and real-world data sets, show that our proposed SOCP
formulation has significant speedup over the original SDP formu-
lation. Moreover, it yields better generalization than Lanckriet et
al.’s method, with a speed that is comparable, or sometimes even
faster, than their quadratically constrained quadratic program
(QCQP) formulation.

Index Terms—Hyperkernel, kernel learning, second-order cone
program (SOCP), semidefinite program (SDP).

I. INTRODUCTION

I N RECENT years, kernels have been successfully used in
various aspects of machine learning, such as classification,

regression, clustering, ranking, and principal component anal-
ysis [3]–[5]. The basic idea is to map the data in the input space

to a feature space via some nonlinear map , and then apply a
linear method there. It is now well-known that the computational
procedure depends only on the inner products1 in
the feature space (where), which can be obtained ef-
ficiently from a suitable kernel function . Besides, kernel
methods have the important computational advantage that no
nonconvex nonlinear optimization is involved. Thus, the use of
kernels provides elegant nonlinear generalizations of many ex-
isting linear algorithms.

Because of the central role of the kernel, a poor kernel choice
can lead to significantly impaired performance. Typically, the
practitioner has to decide the kernel function before learning
starts, with common choices being the polynomial kernel,
Gaussian kernel and Laplacian kernel. The associated kernel
parameters (such as the order in the polynomial kernel and
the width in the Gaussian or Laplacian kernel) can then be

Manuscript received January 17, 2005; revised January 17, 2005.
The authors are with the Department of Computer Science, The Hong Kong

University of Science and Technology, Clear Water Bay, Hong Kong (e-mail:
ivor@cs.ust.hk; jamesk@cs.ust.hk).

Digital Object Identifier 10.1109/TNN.2005.860848

1In this paper, vector/matrix transpose (in both the input and feature spaces)
is denoted by the superscript .

determined by optimizing a quality functional of the kernel [1],
such as kernel target alignment [6], generalization error bounds
[7], [5], Bayesian probabilities [8], [9], cross-validation error
[10], and class separability [11].

Instead of adapting only the kernel parameters, recent de-
velopments also adapt the form of the kernel itself [1], [6],
[12]–[16]. In a transductive setting, as all information on the
feature space is encoded in the kernel matrix (with entries for
both the training and test patterns), one can bypass the learning
of kernel function by just learning the kernel matrix instead. As
the kernel matrix must be positive semidefinite (psd), Lanckriet
et al. [14], [2] used semidefinite programming (SDP) to opti-
mize a cost function (such as the hard/soft margin of the resul-
tant SVM classifier) on the training set over the set of psd ma-
trices. To avoid overfitting, capacity of the search space has to
be controlled. Inspired from a generalization bound for trans-
duction, Lanckriet et al. [2] constrained the kernel matrix to
be in a convex subset of psd matrices with a fixed trace. When
the kernel-target alignment [6] is used as the cost function in-
stead, this method can also be shown to be a generalization of
the kernel matrix learning method proposed in [6]. Other kernel
matrix learning methods, such as using boosting to optimize
a weighted combination of base kernels [13] and the use of
Bayesian inference with a hierarchical model [16], have also
been recently proposed.

However, transduction requires knowing the test patterns in
advance and, thus, may not always be appropriate. In an in-
duction setting, a novel approach that learns the kernel func-
tion directly is the method of hyperkernels [1], [17]–[18]. By
introducing the notion of a hyper-RKHS, the desired kernel
function can be obtained by minimizing a regularized quality
functional, in which the capacity of the search space is explic-
itly penalized by a regularization term. It can be shown that the
kernel function obtained is always a linear combination of a fi-
nite number of prespecified hyperkernel evaluations. Often, this
is further constrained to be a positive linear combination so as
to ensure that the resultant kernel is always a valid kernel. As
will be detailed in Section II, learning with hyperkernels in-
volves optimizing two sets of variables. The first set of vari-
ables, where is the number of training sam-
ples, are coefficients in the kernel expansion, while the second
set, , are coefficients in the hyperkernel expan-
sion. Originally, these two sets have to be optimized separately
in an alternating manner [1]. Recently, simultaneous optimiza-
tion of both sets of variables is made possible by formulating
this as a SDP problem [17].

However, even with the recent advances in interior point
methods, solving SDP problems is still very computationally

1045-9227/$20.00 © 2006 IEEE

TSANG AND KWOK: EFFICIENT HYPERKERNEL LEARNING 49

expensive. In the method of hyperkernels, this is further ag-
gravated by the fact that variables, instead of
variables as in other kernel methods, are involved. In [17] and
[1], this problem is partially alleviated by reducing the number
of variables using a low rank approximation (e.g., [19] and
[20]) on the hyperkernel matrix. While this often makes the
SDP problem more tractable, an alternative formulation faster
than SDP is still very desirable.

On the other hand, as the kernel function obtained by the
hyperkernel method is a positive linear combination of hyper-
kernel evaluations, the corresponding kernel matrix is, conse-
quently, a positive linear combination of some prespecified ma-
trices. Rather than regarding this as a derived property, one can
treat it as a constraint in the kernel learning process and then
apply Lanckriet et al.’s method [2] in such an induction setting.2

In particular, the computational problem reduces to a quadrat-
ically constrained quadratic program (QCQP), which can be
solved much faster than SDP problems. Recently, Bousquet and
Herrmann [21] proposed an even faster method based on the use
of gradient descent. Note that the hyperkernel method cannot
be similarly reduced to a QCQP because it uses the hyperkernel
prior, while [21] and [2] use the trace of the kernel matrix for
capacity control. However, although these QCQP-based and de-
scent-based methods have significant speed advantages over the
SDP-based hyperkernel method, our experiments in Section V
show that the hyperkernel method has better generalization per-
formance on all the real-world data sets tested.

In this paper, we attempt to improve the hyperkernel method
so that its generalization performance is as good as that of the
original SDP formulation, but with a speed that is closer to
the QCQP-based method of [2]. In particular, we will show
that the hyperkernel method can be equivalently formulated as
a second-order cone program (SOCP). SOCPs are convex op-
timization problems in which a linear function is minimized
over the intersection of an affine linear manifold with the Carte-
sian product of second-order cones. Moreover, interior-point
methods for SOCP have a much better worst-case complexity
and run far more efficiently in practice than those for SDP prob-
lems [22], [2].

The rest of this paper is organized as follows. Section II re-
views the kernel learning method using hyperkernels, and Sec-
tion III gives a short introduction on SOCP. Section IV shows
that the optimization problem associated with hyperkernels can
be equivalently formulated as a SOCP problem, which is then
followed by a number of SOCP examples in the context of var-
ious kernel methods. Experimental results on both toy and real-
world data sets are presented in Section V, and the last section
gives some concluding remarks. A preliminary version of this
paper has appeared in [23].

In the sequel, means that the matrix is symmetric
and positive semidefinite (psd), and
means that for . Moreover, denote
the sets of nonnegative and positive vectors in , respectively,
and denotes the training set, with s
in some input space and the corresponding s in .

2However, readers are cautioned that capacity control in this method is based
on a generalization bound for the transduction, but not induction, setting.

II. LEARNING WITH HYPERKERNELS

In this section, we review the method of hyperkernels as in-
troduced in [1], [17]–[18]. Section II-A first introduces the con-
cepts of reproducing kernel Hilbert space (RKHS) and regular-
ized risk functional minimization, which are then extended to
the hyper-RKHS and regularized quality functional minimiza-
tion in Section II-B.

A. RKHS

Given a nonempty set and a Hilbert space of functions
, is a RKHS [24], [25] with kernel function

if

1) has the reproducing property:
, where denotes the

dot product in ; in particular,
;

2) spans .
The regularized risk functional is a sum of the empirical risk
corresponding to a loss function ,
and a regularizer which is a strictly monotonic
increasing function. Minimizing this regularized risk leads to
the primal

(1)

where is the RKHS norm of and is a user-de-
fined constant that trades off the empirical risk with the com-
plexity of . By the representer theorem, the minimizer admits
a representation of the form , where

for .
The number of variables in the primal problem (1) depends

on the dimensionality of the kernel-induced feature space. For
many nonlinear kernels, this can be very large (sometimes even
infinite) and solving the primal directly is infeasible. Hence,
most kernel methods solve the dual instead, in which the number
of dual variables is only dependent on the size of the training set.
Usually, the dual is a quadratic programming (QP) problem of
the form

(2)

where , and
is a matrix-valued function of the kernel matrix

and is psd.

B. Hyper-RKHS

Denote . Analogous to a RKHS discussed in
Section II-A, the Hilbert space of functions is a
hyper-RKHS if there exists a hyperkernel such
that:

1) has the reproducing property:
, where denotes the

dot product in ; in particular,
;

2) spans ;

50 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 1, JANUARY 2006

3) for any fixed , the hyperkernel is a valid kernel
in its second argument; in other words, the function

with is a kernel.
The suitability of a kernel in a particular training data set is
measured by the regularized quality functional, which is a sum
of the regularized risk functional and the norm of in

. The desired kernel function is then obtained by minimizing
this functional over the entire space of kernels, leading to the
primal

(3)

where is another user-defined constant. By the repre-
senter theorem for hyper-RKHS, the minimizer admits a rep-
resentation of the form

(4)

where for . To ensure that in (4) is a valid
kernel, the expansion coefficients s are further constrained to
be nonnegative. By defining

, (4) can be written in matrix form as

(5)

It is obvious that from Property 3 of hyperkernels.
Combining (2) with the representer theorem for hyper-

RKHS, the dual of (3) can be obtained as

(6)

where
, and

means reshaping the vector to a matrix
. Notice that an additional constraint , where

and is a constant, is imposed to avoid
arbitrary scaling of the resultant matrix. Finally, this can
then be formulated and solved as a SDP problem [17].

III. SECOND-ORDER CONE PROGRAM (SOCP)

In recent years, it has been found that many optimiza-
tion problems, such as robust linear programming, robust
least-squares and problems involving sums or maxima of
norms, can all be formulated as SOCP [22], [26], [27]. In en-
gineering, SOCP has also found a wide variety of applications
such as filter design, antenna array weight design, and grasping
force optimization in robotics. Mathematically, SOCPs are

a class of convex optimization problems in which a linear
function is minimized over the intersection of an affine linear
manifold with the Cartesian product of second-order cones.
The second-order cone (also known as the quadratic cone,
Lorentz cone, or ice-cream cone) is the norm cone3 for the
Euclidean norm

where
and denotes the standard Euclidean norm. In general,

can be the Cartesian product of several such cones, i.e.,
where each . The cone also

induces a partial order on , as

Inequalities of these forms are called second-order cone in-
equalities.

Given and , the
standard primal form of a SOCP problem is

(7)

The corresponding dual is

where and each . Denote
and .

A duality theory, very similar to that for linear programs (LPs),
has been developed for SOCPs. In particular, the strong duality
theorem [22] guarantees that if the primal and dual problems
have strictly feasible solutions (i.e., and),
then both have optimal solutions (denoted and ,
respectively), and the duality gap is zero (i.e.,).

Moreover, it is well-known that standard optimization prob-
lems, such as LPs, convex QPs, and QCQPs, can all be solved
as SOCPs. In turn, SOCP is a special case of SDP4 [28]. While
SOCPs can be solved as SDPs, it is, however, not recommended
to do so [22], [26]. Interior-point methods for SOCPs (such as
MOSEK [29]) have a much better worst-case complexity than
solving the same problem as SDPs [20], and in practice they also
run far more efficiently.

IV. SOCP FORMULATION

In Section IV-A, we first show that the general optimiza-
tion problem in (6) can be equivalently formulated as a SOCP
problem. The specific SOCP formulations for kernel learning in

3A set K is called a cone if, for every x 2 K and � � 0, we have �x 2 K.
A set is a convex cone if it is convex and a cone, which means that for any
x ;x 2 K and � ; � � 0, we have � x + � x 2 K.

4SDP problems are a class of convex optimization problems in which a linear
function is minimized over the intersection of an affine set and the cone of pos-
itive semidefinite matrices.

TSANG AND KWOK: EFFICIENT HYPERKERNEL LEARNING 51

the context of various kernel methods are then discussed in Sec-
tion IV-B. Finally, Section IV-C compares the worst-case time
complexities of the SDP and SOCP formulations.

A. General Formulation

The Lagrangian for (2) is

(8)

where . By duality, we have
. Setting the derivative of (8) w.r.t. to

zero, we obtain the optimal solution of as5

(9)

Substituting (9) and the Karush–Kuhn–Tucker (KKT) condition
that back into (6), we then obtain

(10)

(11)

(12)

Now, we utilize two techniques on converting optimization
problems to SOCP problems as discussed in [22], [27]. Let

, and

(13)

where each is psd. The first technique shows that
inequality constraints on fractional quadratic functions of the
form

(14)

where , can be replaced by the system

where, for
and such that . As will be seen in

5When G(K) is only positive semidefinite, we can use the pseudoinverse
G(K) in place of G(K) .

Section IV-B, can often be written in the form of (13) in
many kernel methods, i.e.,

(15)

where and . We also decompose in the
same form as for , i.e.,

(16)

This is always possible as . The constraint

in (11) is, thus, of the same form as (14) and can be replaced by

(17)

where and for
.

The second technique converts hyperbolic constraints of the
form , where , to the equivalent
second-order cone constraint . Now, define
by

(18)

Then, for the constraints in (17) and

in (12), as , they can be rewritten as
and , respectively.

Finally, putting these and (17) back into (10), we obtain

(19)

(20)

where , and this is a SOCP
problem6.

6As in linear programming, the inequality constraint t � � in
(19) can be reduced to standard form in (7) without undue difficulty, by simply
using a slack variable z to obtain t + z = � and the bound z � 0.
However, this is not necessary here, as the SOCP solver used in the experiments
can handle these inequality constraints directly.

52 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 1, JANUARY 2006

B. Kernel Learning Examples

The hyperkernel method has been applied to a variety of
kernel methods, and their SDP formulations have been dis-
cussed in [18]. In this section, we derive the corresponding
SOCP formulations, which can then be solved more efficiently
than their SDP counterparts.

1) C-SVM: The most popular kernel classifier is the -SVM
[5]. Its primal is

while the dual is

where with each
being the training labels, denotes the Hadamard

product and is a user-defined parameter. On compar-
ison with (2), we have and

on using (5) and the distributive property of the Hadamard
product. This confirms that is of the form in (15), with

. It is also easy to see7 that . Moreover,
and , where

is the identity matrix and .
Define and by (16) and (18), respectively, and

. (20) then becomes

where and can be shown to be equal to the bias
and primal slack variables, respectively, in the -SVM.

2) -SVM, Lagrangian SVM, One-Class SVM and -Sup-
port Vector Regression: Hyperkernel methods for -SVM

7For an arbitrary z = [z ; . . . ; z] 2 ; z (K � yy)z =
z z [K �yy] = (y z)(y z)k((x ;x); (x ;x)) �

0, as k((x ;x); (�; �)) is a kernel. Thus, K � yy � 0.

[30], Lagrangian SVM [31], one-class SVM [31] and -support
vector regression (-SVR) [30] can be analogously formulated
as SOCP problems. For simplicity of presentation, here we
only list out their corresponding SOCP formulations. -SVM

where and are as defined for the -SVM.
Lagrangian SVM

where is given by by (18) and
.

One-class SVM

TSANG AND KWOK: EFFICIENT HYPERKERNEL LEARNING 53

where and are defined by (16) and (18), respectively, and
is the margin.

-SVR

w.r.t. , where is
defined by (18) and .

3) Kernel Target Alignment: The kernel target alignment
[6] measures the similarity between the kernel matrix and the
training labels. It is defined as

(21)

where denotes the Frobenius product of
matrices and . The alignment is not directly based on the
generalized risk functional and so the approach in Section IV
does not apply. However, we can still maximize (21) by maxi-
mizing and minimizing together, yielding the
optimization problem

where is a user-defined parameter. Substituting in (5) and
adding the hyperkernel regularizer , we obtain

which is a QCQP. As mentioned in Section III, QCQP can also
be solved as SOCP, though it is often more convenient to solve
it directly.

TABLE I
DATA SETS USED IN THE EXPERIMENTS. THE FIRST EIGHT

ARE CLASSIFICATION PROBLEMS WHILE THE LAST

FOUR ARE REGRESSION PROBLEMS

C. Worst-Case Time Complexities

In this section, we compare the worst-case time complexities
of the SDP and SOCP formulations. In the sequel, the following
notations are used:

and .
From [26], it is known that for a SDP problem of the form

(22)

its time complexity for each iteration is . Now,
as mentioned in Section II-B, the kernel learning optimization
problem in (6) is a SDP [17], which can be written as

Comparing this with the form in (22), we have
and the time complexity per iteration is, thus,

. Using the primal-dual method for solving this SDP, the
accuracy of a given solution can be improved by an absolute
constant factor in iterations [27]. Hence,
the total complexity is .

On the other hand, for a SOCP of the form

(23)

54 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 1, JANUARY 2006

Fig. 1. Data distribution of the toy data set.

its time complexity is only [26]. Now, the SOCP
formulation in (20) can be written as

w.r.t. , where is a slack variable, and
is a very large constant used to guarantee that the value of

goes to zero. Comparing with (23), we have and
, where

. Thus, the time complexity per iteration is . Using
the primal-dual method for solving this SOCP, the accuracy
of a given solution can be improved by an absolute constant
factor in iterations [27]. Hence, the total complexity
is , which is smaller than that of the
SDP formulation. Note that while these worst-case time com-

TABLE II
TEST SET ACCURACIES (%) ON THE TOY DATA SET

plexities may appear huge, their empirical time complexities are
usually much smaller, as will be experimentally demonstrated in
Section V.

V. EXPERIMENTS

In this section, we demonstrate the speed-up that can be
obtained by replacing the SDP formulation in [17] with our
SOCP formulation. For illustration purposes, classification
experiments using the -SVM (Section IV-B.1) and regression
experiments using the -SVR (Section IV-B.2) are discussed
in Sections V-A and V-B, respectively. Table I summarizes the
characteristics of the data sets used. Note that the induction,
rather than transduction, setting will be employed here. More-
over, as in [17], we use the automatic relevance determination
(ARD) hyperkernel

TSANG AND KWOK: EFFICIENT HYPERKERNEL LEARNING 55

Fig. 2. CPU time required on the toy data set (note that the two curves for SOCP and QCQP have almost overlapped). The QCQP implementation takes more
storage and has to stop at a training set size of 70. This may be alleviated by reformulating the QCQP as a SOCP.

where s are the components of (and similarly for
and), and are user-defined parame-

ters with the same setting as in [17]. For comparison, we also
perform [2] under this setting, by assuming that the candidate
kernel matrix is of the form in (5). Also, as in [2], we fix its trace
at . The mixing coefficients s, together
with the SVM (or SVR), are then to be learned. It is shown in
[2] that the resultant optimization problem is a QCQP. We use
SDPT3 (version 3.02)8 [34] as the SDP solver, and MOSEK
(version 3)9 for solving SOCP and QCQP. All implementations
are in MATLAB, and the experiments are performed on a
2.4-GHz Pentium-4 machine, with 1-GB memory, and running
Windows XP.

A. Classification

1) Toy Data Set: The first experiment is performed on the
two-class data used in [17]. It is generated from two Gaussian
distributions, one centered at (0,0) and the other at (3 3000),
with highly nonisotropic variance (the standard deviation is 1 in
one dimension and 1000 in the other) (Fig. 1). In order to better
demonstrate the computational requirements of the different for-
mulations, low rank approximation on the hyperkernel matrix
is not used here. The number of training samples is varied from
10 to 100, and an independent set of 1000 samples are used for
testing. To reduce statistical variability, results here are based
on averages over 30 random repetitions.

8SDPT3 can be downloaded from http://www.math.nus.edu.sg/~mattohkc/
sdpt3.html. A recent benchmark study [33] shows that SDPT3 is comparable
with SeDuMi (used in [17]) on small SDP problems, but is more capable of
solving larger SDP problems.

9MOSEK can be downloaded from http://www.mosek.com.

Table II compares the test set accuracies obtained. As both
the SDP and SOCP formulations are derived from the same op-
timization problem, they yield identical kernel functions and
identical -SVMs. On the other hand, their speeds are vastly
different. As can be seen from Fig. 2, our SOCP formulation is
about 100 times faster than that of SDP. Indeed, the SDP formu-
lation is so slow that we have to stop when the training set size
reaches 50. Notice that the QCQP-based method yields com-
parable generalization performance on this simple toy problem.
Moreover, it is also as fast as our SOCP formulation. Empiri-
cally, the time complexities we obtained for SDP, SOCP, and
QCQP are and , respectively.

2) Real-World Data Sets: The second set of experiments are
performed on seven real-world classification data sets:10 colon
cancer (colon), heart disease (heart), ionosphere (iono-
sphere), liver disorders (liver), lymphoma (lymphoma),
pima indians diabetes (pima) and sonar (sonar). We use 60%
of the data for training and the remaining 40% for testing. Re-
sults here are based on averages over 100 random repetitions.
Moreover, we perform low rank approximation on the hyperk-
ernel matrix as mentioned in [1] and [18]. We observe that the
resultant matrix ranks obtained are in the range of 10–20.

Results are shown in Table III. As can be seen, the test set ac-
curacies obtained by the SDP and SOCP formulations are iden-
tical, but significant speedup can be achieved with the use of
SOCP. Moreover, in terms of the test set accuracy, both the SDP
and SOCP formulations are better than the QCQP-based method
on all data sets tested. Using the one-tailed paired test, this dif-

10Data sets heart, ionosphere, liver, pima, and sonar are from the
UCI machine learning repository [35], while colon and lymphoma can be
downloaded from http://www.kyb.tuebingen.mpg.de/bs/people/weston/l0.

56 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 1, JANUARY 2006

TABLE III
TEST SET ACCURACIES AND CPU TIME ON THE REAL-WORLD CLASSIFICATION DATA SETS

ference is statistically significant at a 0.025 level of significance.
In terms of speed, our SOCP formulation is very competitive
with the QCQP-based method, with a running time of about 1.3
to 4.8 times that of the QCQP-based method on average.

B. Regression

While Lanckriet et al.’s method [2] only addresses the kernel
learning problem in classification problems, the hyperkernel
method can be naturally applied to a variety of scenarios (Sec-
tion IV-B). In this section, we demonstrate one such example,
namely, the -SVR in Section IV-B.2. For comparison, we
also extend the classification formulation in [2] by replacing
the margin criterion (and the corresponding constraints) in the
SVM by the objective function of -SVR, i.e.,

where is a user-defined constant11. Following a similar deriva-
tion as in [2], it can be shown that the resultant optimization
problem is still a QCQP

11Following [2], we set � = trace(K) in the experiment.

TABLE IV
CPU TIME (IN SECONDS) ON THE REGRESSION DATA SETS

Experiments are performed on four real-world regression
data sets from the UCI machine learning repository [35]: Boston
housing (boston), auto imports (imports), computer hard-
ware (computer) and auto mpg (mpg). The experimental
setup is the same as that for classification problems, with low
rank approximation performed on the hyperkernel matrix.
Denote the test patterns by and the resultant
function obtained by -SVR (with kernel learning) by .
The following three error criteria are used for performance
comparison:

1) root mean squared error (RMSE):

2) mean absolute error (MAE):

3) mean relative error (MRE):

Results based on averages over 100 random repetitions are
shown in Tables IV and V. As can be seen, the SDP and SOCP
formulations yield almost identical test errors, with minor
differences due to the use of different optimization solvers.
In terms of all three error measures, both the SDP and SOCP
formulations are better than the QCQP-based method, and
the differences are statistically significant at a 0.025 level of
significance. Moreover, as can be seen from Table V, our SOCP

TSANG AND KWOK: EFFICIENT HYPERKERNEL LEARNING 57

TABLE V
PREDICTION ERRORS ON THE REGRESSION DATA SETS

formulation is again much faster than the traditional SDP formu-
lation for hyperkernels, and is even faster than the QCQP-based
method under this regression setting.

VI. CONCLUSION

In this paper, we show that the kernel (function) learning
method using hyperkernels can be equivalently formulated as
a SOCP problem, which can be solved more efficiently than the
traditional SDP formulation. Experimental results on both clas-
sification and regression problems, with toy and real-world data
sets, exhibit significant speedups. We also demonstrate that the
hyperkernel method yields better generalization performance
than the kernel matrix learning method of [2]. The combination
of the proposed SOCP formulation with low rank approxima-
tion on the hyperkernel matrix will, thus, enable the method of
hyperkernels to be efficiently applied even on large data sets,
with good generalization performance.

In the experiments, we only used a straightforward imple-
mentation for the SOCP formulations. In the future, we will fur-
ther exploit potential structure and sparsity in our SOCP formu-
lation, which have often provided substantial speedups in many
convex optimization problems. Moreover, Bach et al. [36] re-
cently proposed a speedup technique for their kernel learning
method in [2] with the use of sequential minimal optimization
(SMO) [37]. Although this kernel learning method yielded in-
ferior performance in our experiments, the possible integration
of this SMO technique into our SOCP formulation will also be
studied in the future. Moreover, the two techniques that we have
used for reducing optimization problems to SOCP problems are
very general and we will explore similar reductions for some
recently introduced SDP-based methods in the kernel literature
(such as [38]). Finally, note that the hyperkernel method can also
be easily extended for transduction problems, and its compar-
ison with the transductive method in [2] will be further explored.

REFERENCES

[1] C. S. Ong, A. J. Smola, and R. C. Williamson, “Hyperkernels,” in
Advances in Neural Information Processing Systems 15, S. Becker, S.
Thrun, and K. Obermayer, Eds. Cambridge, MA: MIT Press, 2003.

[2] G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. E. Ghaoui, and M. I.
Jordan, “Learning the kernel matrix with semidefinite programming,” J.
Mach. Learn. Res., vol. 5, pp. 27–72, 2004.

[3] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector
Machines. Cambridge, U.K.: Cambridge Univ. Press, 2000.

[4] B. Schölkopf and A. J. Smola, Learning with Kernels. Cambridge,
MA: MIT Press, 2002.

[5] V. Vapnik, Statistical Learning Theory. New York: Wiley, 1998.
[6] N. Cristianini, J. Shawe-Taylor, A. Elisseeff, and J. Kandola, “On kernel-

target alignment,” in Advances in Neural Information Processing Sys-
tems 14, T. G. Dietterich, S. Becker, and Z. Ghahramani, Eds. Cam-
bridge, MA: MIT Press, 2002.

[7] O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee, “Choosing mul-
tiple parameters for support vector machines,” Mach. Learn., vol. 46, no.
1–3, pp. 131–159, 2002.

[8] J. T. Kwok, “The evidence framework applied to support vector ma-
chines,” IEEE Trans. Neural Netw., vol. 11, no. 5, pp. 1162–1173, Oct.
2000.

[9] P. Sollich, “Bayesian methods for support vector machines: Evidence
and predictive class probabilities,” Mach. Learn., vol. 46, no. 1/3, pp.
21–52, 2002.

[10] M. M. S. Lee, S. S. Keerthi, C. J. Ong, and D. DeCoste, “An efficient
method for computing leave-one-out error in support vector machines
with Gaussian kernels,” IEEE Trans. Neural Netw., vol. 15, no. 3, pp.
750–757, May 2004.

[11] H. Xiong, M. N. S. Swamy, and M. O. Ahmad, “Optimizing the kernel
in the empirical feature space,” IEEE Trans. Neural Netw., vol. 16, no.
2, pp. 460–474, Mar. 2005.

[12] K. P. Bennett, M. Momma, and M. J. Embrechts, “MARK: A boosting
algorithm for heterogeneous kernel models,” in Proc. 8th ACM SIGKDD
Int. Conf. Knowledge Discovery and Data Mining, Edmonton, AB,
Canada, Jul. 2002, pp. 24–31.

[13] K. Crammer, J. Keshet, and Y. Singer, “Kernel design using boosting,”
in Advances in Neural Information Processing Systems 15, S. Becker, S.
Thrun, and K. Obermayer, Eds. Cambridge, MA: MIT Press, 2003.

[14] G. Lanckriet, N. Cristianini, P. Bartlett, L. E. Ghaoui, and M. I. Jordan,
“Learning the kernel matrix with semi-definite programming,” in
Proc. 19th Int. Conf. Machine Learning, Sydney, Australia, 2002, pp.
323–330.

[15] K. Tsuda, S. Uda, T. Kin, and K. Asai, “Minimizing the cross validation
error to mix kernel matrices of heterogeneous biological data,” Neural
Process. Lett., vol. 19, pp. 63–72, 2004.

[16] Z. Zhang, D.-Y. Yeung, and J. T. Kwok, “Bayesian inference for trans-
ductive learning of kernel matrix using the Tanner-Wong data augmen-
tation algorithm,” in Proc. 21st Int. Conf. Machine Learning, Banff, AB,
Canada, Jul. 2004, pp. 935–942.

[17] C. S. Ong and A. J. Smola, “Machine learning with hyperkernels,” in
Proc. 20th Int. Conf. Machine Learning, Washington, DC, 2003, pp.
568–575.

[18] C. S. Ong, A. J. Smola, and R. C. Williamson, “Learning the kernel with
hyperkernels,” J. Mach. Learn. Res., to be published.

[19] S. Fine and K. Scheinberg, “Efficient SVM training using low-rank
kernel representations,” J. Mach. Learn. Res., vol. 2, pp. 243–264, Dec.
2001.

[20] T. Zhang, “Some sparse approximation bounds for regression problems,”
in Proc. 18th Int. Conf. Machine Learning, 2001, pp. 624–631.

[21] O. Bousquet and D. J. L. Herrmann, “On the complexity of learning the
kernel matrix,” in Advances in Neural Information Processing Systems
15, S. Becker, S. Thrun, and K. Obermayer, Eds. Cambridge, MA:
MIT Press, 2003.

[22] F. Alizadeh and D. Goldfarb, “Second-order cone programming,” Math.
Programm. Ser. B, vol. 95, pp. 3–51, 2003.

58 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 1, JANUARY 2006

[23] I. W. Tsang and J. T. Kwok, “Efficient hyperkernel learning using
second-order cone programming,” in Proc. 15th Eur. Conf. Machine
Learning, Pisa, Italy, Sep. 2004, pp. 453–464.

[24] G. Wahba, “Spline models for observational data,” presented at the
Number 59 in CBMS—NSF Regional Conf. Ser. Applied Mathematics,
Philadelphia, PA, 1990.

[25] , “Support vector machines, reproducing kernel Hilbert spaces
and the randomized GACV,” in Advances in Kernel Methods—Sup-
port Vector Learning, B. Schölkopf, C. Burges, and A. Smola,
Eds. Cambridge, MA: MIT Press, 1999, pp. 69–88.

[26] M. S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret, “Applications of
second-order cone programming,” Linear Algebra Appl., vol. 284, pp.
193–228, 1998.

[27] Y. Nesterov and A. Nemirovskii, Interior-Point Polynomial Algorithms
in Convex Programming Philadelphia, PA, 1994. SIAM.

[28] L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM Rev.,
vol. 38, no. 1, pp. 49–95, 1996.

[29] E. D. Andersen, C. Roos, and T. Terlaky, “On implementing a primal-
dual interior-point method for conic quadratic optimization,” Math. Pro-
gramm., vol. 95, no. 2, pp. 249–277, 2003.

[30] B. Schölkopf, A. Smola, R. C. Williamson, and P. L. Bartlett, “New sup-
port vector algorithms,” Neural Comput., vol. 12, no. 4, pp. 1207–1245,
2000.

[31] O. L. Mangasarian and D. R. Musicant, “Lagrangian support vector ma-
chines,” J. Mach. Learn. Res., vol. 1, pp. 161–177, 2001.

[32] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C.
Williamson, “Estimating the support of a high-dimensional distribu-
tion,” Neural Comput., vol. 13, no. 7, pp. 1443–1471, Jul. 2001.

[33] H. D. Mittelmann, “An independent benchmarking of SDP and SOCP
solvers,” Math. Programm. Ser. B, vol. 95, pp. 407–430, 2003.

[34] K. C. Toh, M. J. Todd, and R. H. Tutuncu, “SDPT3—A matlab software
package for semidefinite programming,” Optim. Meth. Software, vol. 11,
pp. 545–581, 1999.

[35] C. Blake, E. Keogh, and C. J. Merz. (1998) UCI Repository of Ma-
chine Learning Databases [Online]. Available: http://www.ics.uci.edu/
~mlearn/MLRepository.html

[36] F. R. Bach, G. R. G. Lanckriet, and M. I. Jordan, “Multiple kernel
learning, conic duality, and the SMO algorithm,” presented at the 21st
Int. Conf. Machine Learning, Banff, AB, Canada, Jul. 2004.

[37] J. C. Platt, “Fast training of support vector machines using sequential
minimal optimization,” in Advances in Kernel Methods—Support Vector
Learning, B. Schölkopf, C. Burges, and A. Smola, Eds. Cambridge,
MA: MIT Press, 1999, pp. 185–208.

[38] T. D. Bie and N. Cristianini, “Convex methods for transduction,” in Ad-
vances in Neural Information Processing Systems 16, S. Thrun, L. Saul,
and B. Schölkopf, Eds. Cambridge, MA: MIT Press, 2004.

Ivor Wai-Hung Tsang received the B.Eng. and
M.Phil. degrees in the computer science from the
Hong Kong University of Science and Technology
(HKUST), Clear Water Bay, in 2001 and 2003,
respectively. He is currently pursuing the Ph.D.
degree at HKUST.

His scientific interests includes machine learning
and kernel methods.

Mr. Tsang was the Honor Outstanding Student at
HKUST in 2001.

James Tin-Yau Kwok received the Ph.D. degree in
computer science from the Hong Kong University of
Science and Technology (HKUST), Clear Water Bay,
in 1996.

He was with the Department of Computer Science,
Hong Kong Baptist University, as an Assistant Pro-
fessor. He returned to the HKUST in 2000, where
he is currently an Assistant Professor with the De-
partment of Computer Science. His research inter-
ests include kernel methods, machine learning, pat-
tern recognition, and artificial neural networks.

	toc
	Efficient Hyperkernel Learning Using Second-Order Cone Programmi
	Ivor Wai-Hung Tsang and James Tin-Yau Kwok
	I. I NTRODUCTION
	II. L EARNING W ITH H YPERKERNELS
	A. RKHS
	B. Hyper-RKHS

	III. S ECOND -O RDER C ONE P ROGRAM (SOCP)
	IV. SOCP F ORMULATION
	A. General Formulation
	B. Kernel Learning Examples
	1) C-SVM: The most popular kernel classifier is the C -SVM [5
	2) ν -SVM, Lagrangian SVM, One-Class SVM and ν -Support
	3) Kernel Target Alignment: The kernel target alignment [6] me

	TABLE I D ATA S ETS U SED IN THE E XPERIMENTS . T HE F IRST E IG
	C. Worst-Case Time Complexities

	Fig.€1. Data distribution of the toy data set.
	TABLE II T EST S ET A CCURACIES (%) ON THE T OY D ATA S ET
	V. E XPERIMENTS

	Fig.€2. CPU time required on the toy data set (note that the two
	A. Classification
	1) Toy Data Set: The first experiment is performed on the two-cl
	2) Real-World Data Sets: The second set of experiments are perfo

	TABLE III T EST S ET A CCURACIES AND CPU T IME ON THE R EAL -W O
	B. Regression

	TABLE IV CPU T ime (in S econds) ON THE R EGRESSION D ATA S ET
	TABLE V P rediction E rrors ON THE R EGRESSION D ATA S ETS
	VI. C ONCLUSION
	C. S. Ong, A. J. Smola, and R. C. Williamson, Hyperkernels, in A
	G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. E. Ghaoui, a
	N. Cristianini and J. Shawe-Taylor, An Introduction to Support V
	B. Schölkopf and A. J. Smola, Learning with Kernels . Cambridge,
	V. Vapnik, Statistical Learning Theory . New York: Wiley, 1998.
	N. Cristianini, J. Shawe-Taylor, A. Elisseeff, and J. Kandola, O
	O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee, Choosing
	J. T. Kwok, The evidence framework applied to support vector mac
	P. Sollich, Bayesian methods for support vector machines: Eviden
	M. M. S. Lee, S. S. Keerthi, C. J. Ong, and D. DeCoste, An effic
	H. Xiong, M. N. S. Swamy, and M. O. Ahmad, Optimizing the kernel
	K. P. Bennett, M. Momma, and M. J. Embrechts, MARK: A boosting a
	K. Crammer, J. Keshet, and Y. Singer, Kernel design using boosti
	G. Lanckriet, N. Cristianini, P. Bartlett, L. E. Ghaoui, and M.
	K. Tsuda, S. Uda, T. Kin, and K. Asai, Minimizing the cross vali
	Z. Zhang, D.-Y. Yeung, and J. T. Kwok, Bayesian inference for tr
	C. S. Ong and A. J. Smola, Machine learning with hyperkernels, i
	C. S. Ong, A. J. Smola, and R. C. Williamson, Learning the kerne
	S. Fine and K. Scheinberg, Efficient SVM training using low-rank
	T. Zhang, Some sparse approximation bounds for regression proble
	O. Bousquet and D. J. L. Herrmann, On the complexity of learning
	F. Alizadeh and D. Goldfarb, Second-order cone programming, Math
	I. W. Tsang and J. T. Kwok, Efficient hyperkernel learning using
	G. Wahba, Spline models for observational data, presented at the
	M. S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret, Application
	Y. Nesterov and A. Nemirovskii, Interior-Point Polynomial Algori
	L. Vandenberghe and S. Boyd, Semidefinite programming, SIAM Rev.
	E. D. Andersen, C. Roos, and T. Terlaky, On implementing a prima
	B. Schölkopf, A. Smola, R. C. Williamson, and P. L. Bartlett, Ne
	O. L. Mangasarian and D. R. Musicant, Lagrangian support vector
	B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R.
	H. D. Mittelmann, An independent benchmarking of SDP and SOCP so
	K. C. Toh, M. J. Todd, and R. H. Tutuncu, SDPT3 A matlab softwar
	C. Blake, E. Keogh, and C. J. Merz . (1998) UCI Repository of Ma
	F. R. Bach, G. R. G. Lanckriet, and M. I. Jordan, Multiple kerne
	J. C. Platt, Fast training of support vector machines using sequ
	T. D. Bie and N. Cristianini, Convex methods for transduction, i

