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Large-Scale Maximum Margin Discriminant Analysis
Using Core Vector Machines

Ivor Wai-Hung Tsang, András Kocsor, and James Tin-Yau Kwok

Abstract—Large-margin methods, such as support vector ma-
chines (SVMs), have been very successful in classification prob-
lems. Recently, maximum margin discriminant analysis (MMDA)
was proposed that extends the large-margin idea to feature extrac-
tion. It often outperforms traditional methods such as kernel prin-
cipal component analysis (KPCA) and kernel Fisher discriminant
analysis (KFD). However, as in the SVM, its time complexity is
cubic in the number of training points , and is thus computa-
tionally inefficient on massive data sets. In this paper, we propose
an (1 + )2-approximation algorithm for obtaining the MMDA
features by extending the core vector machine. The resultant time
complexity is only linear in , while its space complexity is inde-
pendent of . Extensive comparisons with the original MMDA,
KPCA, and KFD on a number of large data sets show that the pro-
posed feature extractor can improve classification accuracy, and is
also faster than these kernel-based methods by over an order of
magnitude.

Index Terms—Feature extraction, support vector machines
(SVMs), core vector machines, scalability.

I. INTRODUCTION

I N MANY real-world problems, the presence of superfluous
features often deteriorates the classification performance.

It is thus worthwhile to perform dimensionality reduction
that maps the original features to a lower dimensional space
while still ensuring that the data’s overall structure remains
intact. Over the past few decades, many linear and nonlinear
dimensionality reduction methods have been proposed. In
particular, if a linear method only involves dot products of the
inputs, a nonlinear version can be readily obtained by using the
well-known “kernel trick” [1].

A popular kernel-based dimensionality reduction method is
the kernel principal component analysis (KPCA) [2]. While
KPCA is unsupervised, the use of supervised information like
that in the kernel Fisher discriminant analysis (KFD) [3] can
lead to even better features. In the special case where the two
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classes are normally distributed (in the kernel-induced feature
space) with the same covariance, the direction found by KFD
is Bayes optimal. However, when this is not the case, the
KFD directions may be far from optimal. Recently, several
nonparametric methods have been proposed that correct the
between-class covariance matrix by using points near the class
boundary [4] or support vectors identified by a support vector
machine (SVM) [5].

However, the margin, which is an important ingredient in the
success of the SVM [1], is not used in these approaches. On
some high-dimensional gene data sets, Guyon et al. [6] showed
that the use of features extracted from the SVM’s weight vector
can yield promising results. However, although the SVM often
performs superbly, it is not always perfect, especially when a
single hyperplane does not fit the data well. To overcome this
problem, Mangasarian et al. [7] proposed a multisurface version
that uses multiple hyperplanes to fit the data with large margin
and small variance. In addition, ensemble methods (such as bag-
ging and boosting) that combine multiple SVMs have also been
proposed [8], [9]. However, these methods usually involve a lot
of SVMs and are thus computationally expensive.

Based on the SVM approach, maximum margin discriminant
analysis (MMDA) [10] is a recent feature extraction method
which finds a sequence of orthogonal hyperplanes that best sep-
arate the classes. The corresponding normal vectors of the hy-
perplanes are taken as new features and the data is projected
onto them. The first MMDA feature is obtained by simply using
the standard SVM. Then, after obtaining orthogonal MMDA
features, the st feature is found by optimizing the SVM
in the remaining feature subspace. In contrast to KFD, MMDA
does not require normality assumptions on the data. Experimen-
tally, MMDA has been successfully used in tasks such as face
recognition [11].

From the computational point of view, feature extraction
in MMDA is formulated as a quadratic programming (QP)
problem similar to that for the SVM. This has the important
computational advantage of not suffering from the problem of
local minima. However, given training patterns, a naive QP
solver requires time and space [12]. Thus, a
major challenge is how to scale this up for massive data sets.
A common approach is to use decomposition methods [13],
[14], such as the well-known sequential minimal optimization
(SMO) algorithm [14], which break the original QP problem
into a series of smaller QP problems. Experimentally, these
schemes typically have an empirical training time complexity
of [14].

Recently, the core vector machine (CVM) approach was pro-
posed that exploits “approximateness” in the design of SVM
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implementations [15]. By making use of an approximation algo-
rithm for the minimum enclosing ball (MEB) problem in com-
putational geometry, the CVM has an asymptotic time com-
plexity that is linear in and a space complexity that is in-
dependent of . Experiments on large classification [15] and
regression [16], [17] data sets demonstrate that the CVM is as
accurate as other state-of-the-art SVM implementations, but is
much faster and can handle much larger data sets than existing
scaleup methods.

In this paper, we attempt to scale up MMDA by integrating it
with the CVM algorithm. However, as the original CVM does
not involve orthogonality constraints, MMDA’s QP is not of the
form required by the CVM. Thus, we propose an extension of
the MEB problem that imposes multiple projection constraints
on the MEB’s center. By adapting the CVM and its associated
optimization problem, we can then perform MMDA on massive
data sets in an efficient manner. A preliminary version of this
paper has appeared earlier in [18].

The rest of this paper is organized as follows. Sections II and
III briefly introduce the MMDA and CVM approaches, respec-
tively. Section IV then describes the proposed MEB and CVM
extensions. Experimental results are presented in Section V,
and the last section gives some concluding remarks. Proofs are
shown in the Appendices I–IV.

In the sequel, (resp., ) means that the matrix is
symmetric and positive definite (pd) [resp., positive semidefinite
(psd)]. Moreover, the transpose of a vector/matrix (in both the
input and feature spaces) will be denoted by the superscript ,
and denote the zero vector and the vector of all ones,
respectively. The inequality means that

for . In addition, denotes the set of
nonnegative vectors in .

II. MAXIMUM MARGIN DISCRIMINANT ANALYSIS

In this section, we first review MMDA [10]. Our main focus
will be on binary classification problems. For a multiclass classi-
fication problem, we use the traditional one-versus-all approach
[19] to decompose it into multiple binary problems. MMDA fea-
tures are then extracted from each of these pairwise classifiers.

Suppose that we are given a training set ,
where is the input and is the corresponding class
label. When the data is linearly separable in the (kernel-induced)
feature space, the SVM separates with maximum margin [1].
When it is not the case, the SVM tries to find a hyperplane with
large margin and small error. In this paper, we focus on an SVM
variant called the Lagrangian SVM (LSVM) [20] that penalizes
the 2-norm errors as

s.t. (1)

Experimentally, the generalization performance of the LSVM
is often comparable to that of the standard SVM using 1-norm
error [21], [22], [20]. Here, is the hyperplane to be
learned, is the nonlinear feature associated with a given kernel

are slack variables for the errors, and

is a regularization parameter. It can be easily shown that the
constraints (for ) are automatically satisfied
at the optimal solution and so they are dropped here.

As mentioned earlier, MMDA extracts the features one
by one. The first MMDA feature is simply the weight
vector of the SVM. Let be the features that
have already been extracted. To avoid potential scaling prob-
lems, we replace each by the corresponding unit vector

. As in other feature extraction methods [23],
MMDA requires that these features are orthogonal to each
other. To find a new feature , we thus solve the following
optimization problem:

s.t.

(2)

Introducing Lagrange multipliers
and for the inequality and equality
constraints, and by using the method of Lagrange multipliers,
we arrive at the dual

s.t. (3)

where

(4)

with being the dimensionality of the kernel-induced feature
space

(5)

and

(6)

with (where ). Note
that can be regarded as a kernel matrix of the transformed
kernel defined
on and , where when
and 0 otherwise. The feature map corresponding to is

(7)

where is zero except for the th entry of one. Obvi-
ously, (3) is also a QP problem.

By using the Karush–Kuhn–Tucker (KKT) conditions, the
primal variables can be recovered from the optimal values of

and via the relations

(8)
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Fig. 1. Digits 0, 6, and 9 in the 2-D feature spaces extracted by KPCA, KFD, and MMDA. (a) Original. (b) KPCA. (c) KFD. (d) MMDA.

Let be the optimal obtained at the th
iteration. Recall that the first MMDA feature is simply the
weight vector of the SVM, i.e.,

(9)

It is thus a linear combination of . For the
second MMDA feature, we have from (8) and (9)

which is again a linear combination of s. By induction,
it is easy to see that in (8) for each iteration can always be
expressed as a linear combination of .

As an illustration, Fig. 1 shows the features extracted by
KPCA, KFD, and MMDA on three-digit classes from the

Optdigits data set.1 As can be seen, both KFD (except for the
two circled points) and MMDA separate the classes well.

III. CORE VECTOR MACHINES

Now we review the CVM algorithm in [15]–[17], [24]. The
key idea is to transform the SVM training problem into an equiv-
alent MEB problem in computational geometry, which is then
solved by an efficient -approximation algorithm.2 As the
approximation ratio (which is here) is known, the quality
of the approximate solution obtained can thus be guaranteed. In

1Details of this data set and the experimental setup will be given in Section V.
2Let C be the cost of the solution returned by an approximate algorithm, and

C be the cost of the optimal solution. An approximation algorithm has approx-
imation ratio �(n) for an input size n ifmax((C)=(C ); (C )=(C)) � �(n).
Intuitively, this ratio measures how bad the approximate solution is compared
with the optimal solution. A large (small) approximation ratio means the solu-
tion is much worse than (roughly the same as) the optimal solution. If the ratio
does not depend on n, we can just write � and call the algorithm a �-approxi-
mation algorithm.
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the following, we denote the ball with center and radius by
. Moreover, given a ball , its center and radius will be

denoted by and , respectively.

A. Original MEB Problem

Given a set of points , the MEB of ,
denoted MEB , is the smallest ball that contains all the points
in . Denote the feature map associated with a given kernel
by . Finding the MEB in the feature space induced by

leads to the following optimization problem:

s.t. (10)

Its dual is the QP problem

(11)

s.t. (12)

where . In [15], we assumed that satisfies

(13)

a constant, for any pattern . This is satisfied when ei-
ther the isotropic kernel (e.g., Gaussian
kernel), or the dot product kernel (e.g., polyno-
mial kernel) with normalized inputs, or any normalized kernel

is used. As will be shown
in Section III-B, this assumption can also be dropped by using
the extension proposed in [16] and [17].

Using the constraint in (12), we have
. Dropping this constant from the objective in (11), we obtain

a simpler QP problem

s.t. (14)

Conversely, whenever the kernel satisfies (13), any QP
problem of the form (14) can be regarded as an MEB problem.
This reveals an important connection between the MEB
problem and kernel methods. For example, in the classification
setting (with training patterns ), it can be
shown that the dual of the two-class Lagrangian SVM is given
by [15]

s.t.

where

(15)

If satisfies (13), then the kernel function corresponding to
satisfies , which is also a constant.

Hence, training this SVM is the same as finding the MEB in the
feature space associated with [15].

Once the learning problem has been formulated as an MEB
problem, one can use state-of-the-art MEB algorithms to find

its solution. In particular, Bădoiu and Clarkson [25] proposed
an efficient -approximation algorithm using the idea of
core sets. To see how it works, first denote the estimate of the
MEB at the th iteration by . This MEB is then ex-
panded by including the furthest point outside the -ball

, and the process is repeated until all the points
in are covered. By using this approximation algorithm, the
resultant CVM procedure is much faster and almost as accurate
as existing SVM implementations. Experimentally, it also gen-
erates fewer support vectors (and thus leads to faster testing) on
large data sets [15], [24]. Moreover, for a fixed , its asymptotic
time complexity is only linear in the training set size while
its space complexity is independent of . Instead of finding
the furthest point at each iteration, one can use the probabilistic
speedup method in [26] to efficiently obtain a point that is prob-
ably furthest away from the current MEB estimate. As shown in
[24], the time complexity can then be reduced to become inde-
pendent of for a fixed value of .

B. Center-Constrained MEB Problem

In Section III-A, we assumed that the kernel function satis-
fies condition (13) and that the QP corresponding to the kernel
method has the form of (14). In this section, these conditions
are relaxed by extending the original MEB problem in (10) to
a center-constrained MEB problem that places additional con-
straints on the MEB’s center [16], [17]. To be more specific, we
first augment an extra to each in Section III-A,

forming . Then, we find the MEB for these augmented

points, while at the same time constraining the last coordinate
of the ball’s center to be zero. The primal in (10) is thus changed
to

s.t. (16)

The corresponding dual is again a QP problem

s.t. (17)

where . Because of the constraint
in (17), an arbitrary multiple of can be added to the ob-

jective without affecting its solution. In other words, for an
arbitrary , (17) yields the same optimal as

s.t. (18)

Using the same argument as in Section III-A, any QP problem of
the form (18), with , can be regarded as an MEB problem
(16). Note that (18) has a linear term in the objective, which al-
lows us to extend the CVM to kernel methods like support vector
regression and the ranking SVM [16], [17]. Besides, unlike that
in Section III-A, the derivation does not require the kernel to
satisfy condition (13). Moreover, this extension inherits from
the original CVM algorithm its low time and space complexi-
ties. For more details, interested readers are referred to [16] and
[17].
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IV. INTEGRATING MMDA WITH CVM

Note that MMDA’s QP problem in (3) does not take the same
form as (14) or (17). Hence, it can neither be formulated as a
standard MEB (in Section III-A) nor a center-constrained MEB
problem (in Section III-B). However, just as we can extend the
standard MEB problem (10) to the center-constrained MEB
problem (16) so as to accommodate more kernel methods,
we now consider another extension of the MEB problem
(Section IV-A). It will then be shown that this extension is
related to the optimization problem of MMDA (Section IV-B).
Moreover, efficient solution of this new MEB problem can
again be obtained with the use of core sets (Section IV-C).
Finally, some properties of the algorithm are discussed in
Section IV-D.

A. New Constrained MEB Problem

In this section, let the kernel be and the corresponding fea-
ture map be . We will see in Section IV-B how this kernel
is related to the kernel used in MMDA. As in Section III-B,

we first augment an extra to each , giving .

Then, we find the MEB for these augmented points, while at the
same time constraining the ball’s center such that the following
hold:

1) its last coordinate is equal to zero (i.e., of the form
as in Section III-B);

2) vector is orthogonal to a given set of orthogonal vectors
, where is the dimensionality of

.
Following the derivation as in Section III-B, the primal in (10)
can be modified to

s.t.

(19)

Note that the second set of constraints is not used in
Section III-B.

After introducing Lagrange multipliers
and for the inequality and equality

constraints respectively, it can be readily shown that the dual is

s.t. (20)

where , and
is the kernel matrix with

. As , an arbitrary multiple of
can be added to the objective without affecting its solution.

In other words, for an arbitrary , (20) yields the same
optimal solution as

s.t.

On setting , we have for a large
enough . The first term in the objective can then be dropped,
leading to

s.t. (21)

Conversely, any QP problem of this form corresponds to the
constrained MEB problem (19). Note that, as in Section III-B,
this does not place any restriction on the kernel function and so
the method can be used with any linear/nonlinear kernel. From
the optimal and , the radius and the center can be recov-
ered via

(22)

and

(23)

B. Correspondence Between the Duals of MMDA and the
Constrained MEB Problem

Note that MMDA’s dual [in (3)] is slightly different from the
constrained MEB problem’s dual [in (21)]. The term, which
appears in a constraint of (21), is part of the objective function
in (3). In this section, we show how the optimal solution of (3)
can be obtained from that of (21).

1) KKT Conditions for the Optimization Problems (3) and
(21): Recall that the KKT conditions have to be satisfied at op-
timality. Hence, we will first consider the KKT conditions for
the two optimization problems. For the problem in (3), after in-
troducing a Lagrange multiplier for each con-
straint, its Lagrangian is

where . At optimality, the KKT condi-
tions require that the derivatives of with respect to (w.r.t.)
and be zero, i.e.,

where

(24)

and also that

for

Property 1: in (24) is pd.
Proof is in Appendix I. Consequently, is invertible, and,

from (24), we have

(25)
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Similarly, for the optimization problem in (21), we introduce
a Lagrange multiplier for each nonnegative constraint
and for the equality constraint. Then, its Lagrangian is

)

(

where . At optimality, the KKT con-
ditions require that

where

(26)

and also that

for (27)

In Section IV-B2, we will show that for our particular
choice of . Hence, (26) can also be written as

(28)

2) Obtaining the Optimal Solution of (21) from the Optimal
Solution of (3): We now show how the optimal solutions of
the two optimization problems (3) and (21) are related. In the
following, we set in (21) to in (3), i.e.,

(29)

Using (7), the corresponding matrix of -mapped feature vec-
tors is

where and is the identity matrix of size

. As for , we set , where

is the matrix of all zeroes. Then

and (30)

Hence, in (26) becomes identical to in (24). Recall from
Property 1 that , hence is also pd as mentioned in
Section IV-B1.

Denote the upper left submatrix of by
. From (25), we have , and, similarly, from

(28), . Combining, we have

(31)

Note that3 . Take the dot product with on both sides
of (31). Then, by using the constraint in (20), we obtain

(32)

3Suppose to the contrary that ��� 1 = 0. We have ��� = 0 as ��� � 0. From (8),
the weight vector w obtained then lies in the span of u ’s. However, from (2),
w has to be orthogonal to all the u ’s; so  = 0, and subsequently, w = 0;

b = 0, and � = 0, which is not a feasible solution for (2).

on setting

(33)

Thus

(34)

We then obtain the following relationship between and
at optimality:

[from (28) and (34)]

[from (25) and (32)] (35)

Note that and
, and so (27) is satisfied. In other

words, the optimal solution of (20) can be recovered from
the optimal solution of (3) by the simple normalization in
(35). The converse is also true, i.e., the optimal solution
can also be recovered from the optimal solution . How-
ever, this result seems less useful here and so the derivation will
be postponed to Appendix II.

C. Finding the Constrained MEB Defined on the Core Set

Now, given that the optimal solutions of (3) and (21) are
related to each other, we can solve the optimization problem
(3) associated with MMDA by solving the corresponding con-
strained MEB problem (21) instead. Based on the encouraging
results using the CVM algorithm to solve various large-scale
MEB problems [15], [16], here we will apply the same CVM
algorithm (Section III) to solve this constrained MEB problem.
For completeness, the algorithm is shown in Algorithm 1. The
only change required is in the implementation of step 4, which
now requires finding the constrained MEB of the core set
instead of the standard MEB in [15] (or the center-constrained
MEB in [16]).

Algorithm 1: The CVM algorithm

1: Initialize and .

2: Terminate if there is no training point falling outside
the -ball .

3: Find such that is furthest away from . Set
.

4: Find the new and set
and .

5: Increment by 1 and go back to step 2.

To find the constrained MEB of in step 4, a straightforward
approach is to make use of (28). Denote the corresponding
to the core set by . As shown in (26), is defined in
terms of and , which in turn are defined using the patterns
in . However, (28) requires inverting the matrix , which
takes time and becomes costly when the core set is
large. In addition, the optimal values for and are not known
beforehand.
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Alternatively, one can solve (21), which is a QP problem,
directly by using some QP solver. In the implementation of [15],
we used an efficient decomposition method called SMO [14]
as the internal QP solver to find the standard MEB in step 4.
However, for the constrained MEB problem here, the Lagrange
multipliers are not involved in the equality constraint of (21)
and this hinders the use of SMO.

Recall that the optimal solutions of (3) and (21) are related
to each other, so we can solve the MEB subproblem in step 4
by solving the corresponding MMDA subproblem (3) instead.
This is advantageous because unlike (21), (3) does not have the
equality constraint , and can then be solved by a very
efficient optimization method called successive overrelaxation
(SOR) [27], [28].

1) SOR Algorithm: In the following, we first give a brief in-
troduction to SOR as detailed in [28]. SOR is an iterative pro-
cedure that employs the Gauss–Seidel (GS) iterations with the
extrapolation factor to accelerate the solving of the
linear system , where

, and . In particular, GS is the special
case of SOR when . In [28], SOR is further extended to
solve QP problems with linear convergence. Consider QPs of
the form

s.t. (36)

where with and . Following [27] and
[28], is initialized to some given feasible solution. At each
iteration, an index is selected and the change to
the corresponding is

(37)

At the next iteration, is obtained by projecting
to the feasible range in (36). Because is just 1-D,
this projection can be easily achieved by simple clipping. The
process is repeated with another index until the KKT condi-
tions are satisfied [27], or is less than some pre-
scribed tolerance [28], where and are two consecutive
solutions. The SOR algorithm is summarized in Algorithm 2.

Algorithm 2: The SOR algorithm

1: Initialize and .

2: For

3: Compute , where is given by (37).

4: Project to the feasible range .

5: End For

6: Go back to step 2 until convergence.

2) Finding MEB in (3) Using SOR: In this section, we
use the SOR procedure to solve the optimization problem of

MEB in (3). We first set and in (3) to some initial fea-
sible solution. Here, the subscript denotes that the variable is
defined w.r.t. the core set . For , there is only one pattern
in the core set and we can simply set and .
Otherwise, we use the solution of the previously
obtained MEB for warm start, and set
(recall that ) and . An index is
then selected from 1 to . Note that (3) can be written as

s.t.

where

(38)

by using (24) and the substitutions [(29) and (30)] needed to
establish the relationship between (3) and (21) in Section IV-B2.

At each iteration, the change in can thus be computed

according to (37) as

(39)

where denotes the th entry of the vector argument. Substi-
tuting (38) into (39), we obtain

(40)

(41)

where and are the th components of and
the th components of , respectively. The next iterate

is then obtained by clipping to the feasible
region . This updating process is repeated with the
next until the KKT conditions [27] defined
on

are satisfied. With the converged solution , the corre-
sponding values of can be recovered by using the nor-
malization factor in (35). Finally, the radius and the center of the
constrained MEB of can be determined from (22) and (23).

It should be mentioned here that while standard GS iterations
select the index sequentially for update, here we improve its
efficiency by selecting the point with the largest changes as in
[27] or the point that violates the KKT condition the most as
in [29]. The whole procedures is summarized in Algorithm 3.
Other strategies, such as caching of the kernel entries [14], [29],
can also be used to further improve memory usage and reduce
the number of kernel evaluations.



TSANG et al.: LARGE-SCALE MAXIMUM MARGIN DISCRIMINANT ANALYSIS USING CORE VECTOR MACHINES 617

TABLE I
DATA SETS USED IN THE EXPERIMENTS

Algorithm 3: Algorithm for solving MEB

1: Initialize .

2: Repeat

3: For , compute
, where is given by (40).

4: For , compute , where
is given by (41).

5: Pick .

6: If ; otherwise,
.

7: Go back to step 2 until it converges.

D. Properties of the Proposed Algorithm

The proposed MEB algorithm has properties analogous to
those of the original CVM in [15]. In particular, recall from
Section I that the main motivation for using an approximation
algorithm is that its resultant time and space complexities
are much lower than other procedures for finding an exact
solution. Indeed, the complexities required in extracting one
MMDA feature can be computed in a manner similar to that
in [15] (details are shown in Appendix III). When proba-
bilistic speedup is not used in step 3, it can be shown that the
total time required for computing the st projection is

, which is also linear in
for a fixed value of . When probabilistic speedup is used, this
changes to , which is even independent
of for a fixed . For the space complexity, the whole algo-
rithm requires a space of , independent of for a fixed
. Here, we ignore the space requirements for storing

the training patterns as they may be stored outside the core
memory.

As for the convergence rate, we have the following.
Theory 1: There exists a subset , with size , of the whole

training set such that the distance be-
tween and any point of is at most .

Its proof is similar to that of [17, Th. 1], and a sketch is shown
in Appendix IV. Recall that, in step 3 of Algorithm 1, one point
from is included in the MEB estimate at each iteration. This
property thus ensures that the proposed method converges in at
most iterations, independent of the feature dimensionality
and the size of . Moreover, it can be shown that all the training
patterns satisfy loose KKT conditions at the end of the extrac-
tion process for each MMDA feature.

Moreover, the algorithm converges to the (approximately) op-
timal solution, as shown by Theorem 2. Its proof is similar to
that in [15, Sec. 4.2], and a sketch is shown in Appendix V.

Theorem 2: When , Algorithm 1 finds the exact solution
of the center-constrained MEB problem in (19). When
and the algorithm terminates at the th iteration, we have

where is the optimal value of the objective in (19).
In other words, the proposed method is a -approxi-

mation algorithm. As is usually very small, the approximate
solution obtained is thus very close to the exact optimal solu-
tion.

V. EXPERIMENTS

In this section, we report experiments on a number of real-
world data sets4 (Table I). The following feature extraction al-
gorithms are compared:

1) the original MMDA, denoted by MMDA(SVM);
2) the proposed formulation,5 denoted by MMDA(CVM);
3) kernel Fisher discriminant (KFD);
4) kernel PCA (KPCA).

For KFD, recall that the rank of its between-class scatter
matrix is at most [3]. Hence, for the sake of con-
venience, we always set the number of KFD features to

. We use the Gaussian kernel ), where
is the average squared

distance between the training patterns. For MMDA, the pa-
rameter is always set to 1. All the algorithms are implemented
in MATLAB and run on an AMD Athlon PC with 4
GB of RAM. Moreover, as KFD and KPCA only require the
leading eigenvectors, the MATLAB function is used in the
implementations.

A. Varying the Number of Extracted Features

First, we investigate how the performance depends on the
number of features extracted. A feedforward artificial neural
network (ANN) is used as the classifier for the extracted fea-
tures. It has a single layer of ten hidden units and is trained
via standard backpropagation. Here, experiments are only per-
formed on the three smaller data sets ( , and

) in Table I. As all these have classes, we use
the one-versus-all scheme for MMDA and so MMDA is run

4The first five data sets are from the University of California at Irvine (UCI)
machine learning repository, while the last two are from http://www.cse.ust.hk/
~ivor/cvm.html.

5The value of � was fixed at 0.001. Preliminary results showed that this value
of � often leads to fast training and good extracted features.
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Fig. 2. Testing accuracies with different numbers of extracted features: (a) , (b) , and (c) .

times. For KFD, this is easier as we can use its standard multi-
class version [30]. For KPCA, it is unsupervised and so patterns
from all the classes can be directly used for feature extraction.

Fig. 2 shows the testing accuracies when the ANN is trained
on different numbers of features extracted by the various algo-
rithms. As can be seen, the use of more features can initially
improve performance. However, as more and more features are
added, the accuracy no longer increases and sometimes even
drops as features with little classification information are in-
cluded. For both MMDA implementations, the testing accura-
cies are better than the others when to features are
used.

Fig. 3 shows the time taken for each feature extraction algo-
rithm. As expected, this increases with the number of extracted
features for both MMDA implementations. On the other hand,
the one for KPCA is almost constant, as most of the time there
is spent on computing the constant-sized kernel matrix,
regardless of how many features were to be extracted.

As mentioned in Section II, the MMDA features (i.e., the
’s) can always be expressed as a linear combination of

. This is also true for KFD and KPCA. Fig. 4
compares the total numbers of kernel evaluations involved in
all the extracted features. As can be seen, this increases steadily
with the number of extracted features for all the feature ex-
tractors. Furthermore, as expected, MMDA(CVM) can identify
a small number of points when solving the constrained MEB

problem. Thus, the features obtained by MMDA(CVM) involve
a smaller number of kernel evaluations than the other feature
extractors, and are thus computationally less expensive in the
testing phase.

B. Experimental Results on All the Data Sets

In the previous section, we showed that MMDA performs
well when the number of features to be extracted lies around

to . Now we describe experiments performed on all
the data sets in Table I, with the number of MMDA features set
to or , while the number of KPCA features here is
fixed at . The extracted features are used with the following
classifiers:

1) SVM using the LIBSVM implementation;6

2) 1-nearest neighbor (1-NN) classifier;
3) ANN with the same settings as in Section V-A.

As a baseline, we also compare with the case that does not per-
form feature extraction. Note that when is large, KPCA and
KFD become expensive in terms of both time and space. To al-
leviate this problem, we only use a random sample of size 3500
when these two methods are used on the ,
and data sets. The sampling procedure is performed such
that the sizes of all the classes in the sample are the same.

6Downloaded from http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Fig. 3. CPU time (in seconds) taken by the various algorithms in extracting different numbers of features: (a) , (b) , and (c) .

Table II shows the results of the testing accuracies. Methods
that do not finish in 24 h are indicated by “—.” The following
remarks can be made. First, feature extraction can evidently im-
prove classification accuracy. In particular, the use of MMDA
features can outperform SVM that uses no feature extraction.
Second, both the original and new implementations of MMDA
have better accuracies than the other feature extraction methods.
Third, as also demonstrated in Section V-A, the use of to

features for MMDA is often beneficial. But note that KPCA
and KFD sometimes perform miserably on the large data sets.
This is because we only used a random sample of size 3500 for
these two methods. Thus, in general, random sampling is not a
good approach for reducing computational complexity.

Table III shows the central processing unit (CPU) time
required in the feature extraction process. As expected,
MMDA(CVM) is always faster than the original MMDA im-
plementation, and the improvement can sometimes be of two
orders of magnitude. In addition, on the three largest data sets,
the original MMDA implementation cannot even converge in
24 h, while MMDA(CVM) successfully extract good features
in just several hundreds of thousands seconds. MMDA(CVM)
is also often faster than KPCA and KFD on the small data
sets. On the larger data sets, recall that we have used random

sampling for KPCA and KFD and this explains why MMDA
appears slower. However, we should also not forget to say
that such a random sampling scheme always leads to a poor
generalization performance of KPCA/KFD in our experiments.

Table IV gives a comparison of the average numbers of
kernel evaluations for each extracted feature. As can be seen,
the MMDA(CVM) features are much sparser than the others,
including the original MMDA features. As kernel evaluations
dominate the computational cost in testing, MMDA(CVM)
is thus much faster and offers clear benefits over the usual
approaches.

C. MMDA Features Lead to Smaller Decision Trees

In this section, we feed the extracted features to the C4.5 de-
cision tree classifier [31]. Intuitively, we expect that the “better”
features extracted by MMDA(CVM) can lead to smaller decision
trees. This is confirmed by the results in Table V. As can be seen,
MMDA(CVM) often leads to smaller decision trees for a com-
parable performance. Moreover, in line with the results reported
in the previous sections, the features extracted by MMDA(CVM)
lead to better testing accuracy. Note again that KPCA and KFD
perform poorly on , and because of the
random sampling problem mentioned in Section V-B.
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Fig. 4. Total number of kernel evaluations required for different numbers of extracted features: (a) , (b) , and (c) .

VI. CONCLUSION

In this paper, we investigated the problem of kernel feature
extraction in large-scale classification tasks. A good feature ex-
tractor should, ideally, do the following: 1) produce features
that can lead to high classification accuracy and 2) be com-
putationally efficient during both training and testing. MMDA
was recently proposed to use large margin for feature extrac-
tion and has shown promising results over KFD. However, it
is computationally inefficient on large data sets. In this paper,
by introducing a new constrained MEB problem, we extended
the CVM algorithm in [15] and proposed an -approxi-
mation algorithm for extracting MMDA features. We examined
the theoretical aspects of the method and demonstrated its ef-
ficiency through various experiments. In practice, it is 10–100
times faster than the original MMDA implementation. The fea-
tures extracted by the proposed method are also sparser, and in-
volve fewer kernel evaluations. This in turn allows new features
to be computed much faster during testing.

Instead of using the orthogonality constraints, one might also
consider using uncorrelated constraints as suggested in [32].
The primal of MMDA in (2) can then be changed to

s.t.

It can be shown that the corresponding dual has the same form
as in (3). The possibilities it offers together with the possible use
of other types of constraints for MMDA feature extraction will
be investigated in the future.

APPENDIX I
PROOF OF PROPERTY 1

First, we introduce two lemmas.
Lemma 1: .

Proof: From the definition of in (6), for any nonzero
vector , we have

as and

as
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TABLE II
TESTING ACCURACIES ON THE VARIOUS DATA SETS. METHODS THAT DID NOT FINISH IN 24 h ARE INDICATED BY “—”

TABLE III
CPU TIME (IN SECONDS) REQUIRED IN THE FEATURE EXTRACTION PROCESS

TABLE IV
AVERAGE NUMBER OF KERNEL EVALUATIONS INVOLVED IN EACH EXTRACTED FEATURE

Lemma 2: The Schur complement of , i.e.,
, is pd.

Proof: Recall that in (4); so
as the ’s are orthonormal. From the definition of in (6), we
have Now, for any nonzero

where is the projection of in the subspace orthog-
onal to the span of . In other words,
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TABLE V
TESTING ACCURACIES (IN PERCENT) AND SIZES OF THE RESULTANT DECISION TREES (IN BRACKETS) WHEN C4.5 IS USED AS THE CLASSIFIER. THE NUMBERS OF

EXTRACTED FEATURES FOR BOTH KPCA AND MMDA ARE ALWAYS FIXED AT 5N . METHODS THAT DO NOT FINISH IN 24 h ARE INDICATED BY “—”

and so . Moreover, ,
while . Combining all these, we thus have

.
Using [33, Fact 11], we thus have .

APPENDIX II
OBTAINING THE OPTIMAL FROM THE OPTIMAL

By equating the optimal objective values of the primal in (2)
and the dual in (3), and by using (8), it is easy to show that

(42)

since

[from (30)]

[from (35)]

[from (42)] (43)

From (35) and (43), we then have the following relation:

APPENDIX III
TIME AND SPACE COMPLEXITIES

The time and space complexities can be computed in a
manner similar to that in [15]. In the following, we assume that
a simple QP implementation, which takes time
and space for st projection, is used for
the QP subproblem in step 3. We first consider the case where
probabilistic speedup is not used in step 3. From Theorem 1, the
algorithm converges in at most iterations. Consequently,
the size of the final core set is , though in practice it has
often been observed to be much smaller than this worst-case
upper bound [34]. As only one core vector is added at each
iteration, . Distance computations in steps 2 and 3
take time.
Finding the MEB in step 3 takes
time, and the other operations take constant time. Hence, the

th iteration takes a total of time. The
overall time required for computing the st projection in

iterations is

which is linear in for a fixed .
When probabilistic speedup is used, distance computations in

steps 2 and 3 take time. The
number of iterations may be larger than , though it can still
be bounded by [35]. Thus, the overall time changes to

, which is even independent of for a
fixed .

For the space complexity, the whole algorithm requires a
space of , independent of for a fixed . Here, we
ignore the space requirements for storing the training
patterns, as they may be stored outside the core memory.

APPENDIX IV
PROOF OF THEOREM 1

Our Theorem 1 here is identical to [17, Th. 1] and the proofs
are also the same, except that we have to reestablish [17, Th.
1, Lemma 1]. Its proof in our new context is shown in the fol-
lowing. Note that as the ball’s center is constrained in (19) to

be of the form ; this is equivalent to requiring that

. Moreover, the constraint in (19) is also
the same as . Thus, the constrained MEB problem in
(19) is the same as an MEB problem with multiple projection
constraints on the center. In the following, we will denote the
ball’s center simply as .

Lemma 3: There exists a point on the boundary of the con-
strained MEB such that the angle between the two vectors

and is 90 .
Proof: Let be the point inside the constrained MEB

that is furthest away from . First, consider the special case
where this for not all ’s are zeros, such that

lies on the span of . Since
for all , then , and so is orthogonal
to . In other words, the angle between these
two vectors is 90 .
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On the other hand, if is not lying on the , then,
as in [34, Proof of Lemma 2], any closed half-space bounded
by a hyperplane that contains and orthogonal to the normal
vector of the plane , must also contain a point at
the boundary. Otherwise, we can shift the center , and con-
struct a smaller constrained MEB , leading to a contradic-
tion. Therefore, we can choose this point in the half-space that
does not contain and the angle between and
is 90 .

APPENDIX V
PROOF OF THEOREM 2

Proof: When , as the number of core vectors in-
creases in each iteration and the training set size is finite, the
algorithm must terminate in a finite number (say, ) of itera-
tions. Using the same argument as in [15], MEB must be the
exact MEB enclosing all the whole training set on termination.
Thus, Algorithm 1 finds the exact solution of the center-con-
strained MEB problem in (19). On the other hand, when ,
and the algorithm terminates at the th iteration, we have

by definition.
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