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Incorporating the Loss Function into Discriminative
Clustering of Structured Outputs
Wenliang Zhong, Weike Pan, James T. Kwok, and Ivor W. Tsang

Abstract— Clustering using the Hilbert Schmidt independence
criterion (CLUHSIC) is a recent clustering algorithm that
maximizes the dependence between cluster labels and data
observations according to the Hilbert Schmidt independence
criterion (HSIC). It is unique in that structure information on the
cluster outputs can be easily utilized in the clustering process.
However, while the choice of the loss function is known to be
very important in supervised learning with structured outputs,
we will show in this paper that CLUHSIC is implicitly using
the often inappropriate zero-one loss. We propose an extension
called CLUHSICAL (which stands for “Clustering using HSIC
and loss”) which explicitly considers both the output dependency
and loss function. Its optimization problem has the same form
as CLUHSIC, except that its partition matrix is constructed
in a different manner. Experimental results on a number of
datasets with structured outputs show that CLUHSICAL often
outperforms CLUHSIC in terms of both structured loss and
clustering accuracy.

Index Terms— Clustering methods, dependence Maximization,
Hilbert Schmidt independence criterion, loss, structured cluster-
ing.

I. INTRODUCTION

CLUSTERING aims at grouping examples that are similar
to each other into a small number of classes or clusters.

It is an invaluable data-analysis tool that has been widely
used in diverse domains ranging from engineering, medical
science, earth science, social science to economics [1]. Over
the decades, a battery of clustering approaches has been
developed. In general, these can be considered as representing
three different views of clustering [2]. The first one is the
geometric view, which includes the classic k-means clustering
algorithm [3]. The second one is the statistical view, with
examples including the method of information bottleneck [4]
and mixture models [5]. The last one is the spectral view,
which includes methods such as the normalized cut and
various spectral clustering algorithms [6]. Clustering using the
Hilbert Schmidt independence criterion (CLUHSIC) [2] is a
recent clustering algorithm that unifies these different views
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of clustering. It finds the cluster partitioning such that the
resultant cluster labels are maximally dependent on the data
observations according to the Hilbert Schmidt independence
criterion (HSIC) [7]. It can be shown that all the above views
of clustering are special cases of CLUHSIC [2].

CLUHSIC is also a kernel-based method that can be used on
structured data. While traditional kernel methods are mainly
focused on vectorial inputs and outputs, there is growing
interest in extending them to more complex domains with
structured data. This has been driven in part by the tremen-
dous amount of structured data available online, such as
Internet documents residing in a hierarchy and bioinformatics
databases containing DNA sequences. In general, structure
information may be present in the inputs and/or outputs. For
structured inputs, a variety of kernels have been developed
for strings, trees, and graphs [8]. Traditionally, kernel-based
clustering algorithms focus only on using kernels defined in
the input space [9], [10], On the other hand, CLUHSIC has the
important advantage that kernels can be used on both the input
and output (cluster labels). Thus, it can be used for clustering
data into hierarchies, chains, or even graphs.

Recently, Xu et al. [11] proposed a related discrimina-
tive clustering algorithm for structured outputs. It is based
on the idea of maximum margin clustering [12]–[14] that
trains a support vector machine (SVM) by maximizing the
margin and minimizing the loss over all possible cluster
labels. However, maximum margin clustering is computa-
tionally much harder than maximum margin classification.
Existing methods typically rely on reformulating and relaxing
the non-convex optimization problem as semidefinite programs
(SDPs) that are computationally expensive. To combat this
problem, Xu et al. [11] proposed a heuristic procedure that
avoids SDP entirely. However, as will be shown in Section IV,
its empirical performance is not satisfactory. Very recently,
Bach and Harchaoui [15] proposed a more efficient convex
relaxation which can be solved as a sequence of singular value
decompositions. However, this is designed only for vectorial
data but not structured data. Moreover, loss functions are not
used.

Back to the realm of supervised learning, it is well known
that the popular zero-one loss function is often inappro-
priate for structured prediction [16], [17]. The joint kernel
k((x, y), (x′, y′)) = 〈ϕ(x, y), ϕ(x′, y′)〉 defined over both input
features x and output labels y can be used to measure the
similarity based on the input structure and the output label
structure. However, even with a good joint kernel, prediction
of the structured output may not always be correct due to
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Fig. 1. Example showing that the misclassified patterns are often assigned to faraway clusters by CLUHSIC. A blue dot indicates a correct cluster assignment,
while a red cross indicates an incorrect assignment. (a) Ground truth. (b) CLUHSIC. (c) CLUHSICAL.

insufficient or noisy training examples. Consider, for example,
a document that belongs to the category “apple” in the
hierarchical classification of text documents. Misassigning this
document to a category (say, “orange”) near the true label is
much better than assigning it to a distant unrelated category
(say, “moon”), although the losses in both cases are one
according to the zero-one loss function. Hence, to measure
the severity of different errors during training (or, in other
words, to discourage patterns from being assigned to distant
unrelated categories), the loss function also needs to utilize
the structure information. In particular, one can define a loss
function �(y, u) that penalizes the difference between two
outputs y and u according to the structure of the two objects.
In general, there are many ways to define the loss function
and each structured prediction problem may call for its own
loss function. For example, in hierarchical classification, one
can use the tree loss, which is defined as the height of the
first common ancestor of the true and predicted labels in the
hierarchy [17]. In natural language processing, the loss may
be defined in terms of the underlying grammar.

The above observation also holds for clustering. Con-
sider the example in Fig. 1, in which we show the cluster
assignments for a subset of patterns that all belong to the
same leaf node. Here, a blue dot indicates a correct cluster
assignment while a red cross indicates an incorrect assignment.
As shown in Fig. 1(a), ideally all these patterns should be
clustered to the same leaf. Despite the fact that CLUHSIC is
designed for clustering problems with structured outputs, it
does not explicitly consider the use of a loss function. Indeed,
as will be shown later in this paper, CLUHSIC essentially
uses the often inappropriate zero-one loss function. Fig. 1(b)
shows the clustering result of CLUHSIC. As can be seen, the
misclassified patterns are often assigned to faraway clusters. In
this paper, we extend CLUHSIC so that loss functions can be
explicitly considered. Fig. 1(c) shows the clustering result of
the proposed method CLUHSICAL, which will be described
in more detail in later sections. As can be seen, although the
obtained clustering is still imperfect as compared to the ground
truth, the patterns are only misassigned to nearby categories.

The rest of this paper is organized as follows. Section II first
gives a brief review on the CLUHSIC algorithm. Section III
then proposes a clustering algorithm for structured outputs
based on kernel ridge regression. Motivated by [11] and
[15], we perform discriminative clustering by kernel ridge
regression for structured data, whose optimization problem is
simpler than that of the structural SVM [17]. In particular,
we show that CLUHSIC can be considered as a special case
with the use of a particular joint kernel and the zero-one loss.
Clustering experiments on a number of datasets with structured

outputs are presented in Section IV, and the last section gives
some concluding remarks.

In the sequel, the transpose of vector/matrix is denoted by
the superscript ′, the identity matrix by I, and the vector of all
ones by 1. Moreover, tr(A) denotes the trace of a matrix A,
‖A‖p = supx �=0 ‖Ax‖p/‖x‖p is the matrix p-norm of A, and
◦ the elementwise matrix multiplication.

II. CLUHSIC ALGORITHM

CLUHSIC [2] is a clustering algorithm based on the
dependence maximization view. Given a sample S =
{(x1, y1), . . . , (xm , ym)}, the linear dependence between xi ’s
and yi ’s can be easily estimated by simple statistics such
as linear correlation. However, nonlinear dependencies are
more difficult to measure. A recently proposed depen-
dence (or, more precisely, independence) measure is the
HSIC [7]. Specifically, let φ and λ be the feature maps
on the input and output, respectively. Denote the cor-
responding reproducing kernel Hilbert space (RKHS) by
F and G, and the corresponding kernels by k and l.
The cross-covariance operator Cxy : F �→ G is defined as
[18] Cxy = Exy

[
(φ(x) − E[φ(x)]) ⊗ (λ(y) − E[λ(y)])] where

⊗ is the tensor product. HSIC is then defined as the square of
the Hilbert-Schmidt norm ‖ · ‖H S of Cxy

HSIC(F ,G) = ‖Cxy‖2
H S

= Exx′yy′ [k(x, x′)l(y, y′)] + Exx′ [k(x, x′)]Eyy′ [l(y, y′)]
− 2Exy[Ex′k(x, x′)][Ey′l(y, y′)].

Given the sample S, it can be shown that an empirical estimate
of HSIC is

(m − 1)−2tr(HKHL) (1)

where K = [k(xi , x j )], L = [l(yi , y j )] are kernel matrices
defined on {x1, . . . , xm} and {y1, . . . , ym}, respectively, and
H = I − 1

m 11′ is the so-called centering matrix. In the
sequel, we assume that K is centered, and so (1) reduces to
(m −1)−2tr(KL). Recent studies [7], [19] show that HSIC has
several advantages over other independence measures. First,
its empirical estimate in (1) is easy to compute. Moreover, it
guarantees good uniform convergence and has very little bias
even in high dimensions.

To use HSIC in clustering, one first defines a kernel matrix
A ∈ R

c×c on a set of c clusters. This is used to model the
prior structural relationships and correlation among clusters. In
general, kernel entries for clusters that are structurally close
to each other will be assigned high values. For example, if
the user specifies that the resultant clusters should have a
chain structure as in Fig. 2(a), one can use the output kernel
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(a) (b) (c)

Fig. 2. Some common structures among clusters. (a) Chain. (b) Ring.
(c) Tree.

matrix

[ 2 1 0 0
1 2 1 0
0 1 2 1
0 0 1 2

]
. Here, the leftmost cluster corresponds to the

first row/column of the kernel matrix, the second-left cluster
corresponds to the second row/column of the kernel matrix,
and so on. Similarly, for more complicated structures such
as ring and tree1[Fig. 2(b) and (c)], the corresponding kernel

matrices are

[ 2 1 0 1
1 2 1 0
0 1 2 1
1 0 1 2

]
and

[ 2 1 0 0
1 2 0 0
0 0 2 1
0 0 1 2

]
respectively.

Let � be a partition matrix such that its i th row specifies
the assignment of the i th pattern to one of the c clusters, i.e.,
�i j ∈ {0, 1} and �1 = 1. The kernel matrix L defined on
the yi ’s can then be written as L = �A�′. CLUHSIC aims at
finding the cluster assignment � such that the resultant L is
maximally dependent on the kernel matrix K defined on the
xi ’s according to the HSIC. Mathematically, this is formulated
as the following optimization problem:

max � tr(K�A�′)
s.t. �1 = 1, �i j ∈ {0, 1}. (2)

In [2], this integer programming problem is solved by greedy
local search. Specifically, the partition matrix � is updated
row by row. For the i th row, one assigns the corresponding
i th pattern to the cluster with the largest objective value.
This process is re-iterated until the assignment matrix does
not change. More sophisticated approaches, such as spectral
methods [20] and nonnegative matrix factorization [21], are
also discussed in [19].

As discussed in [2], CLUHSIC is very flexible as one can
use different kernels of K and A in (2). For example, on
setting A = I, one recovers standard (kernel) k-means, which
implicitly assumes that there is no relationship between the
clusters. Alternatively, on setting

A = diag

⎛

⎝

⎡

⎣
∑

i∈�·1

wi ,
∑

i∈�·2

wi , . . . ,
∑

i∈�·k

wk

⎤

⎦

⎞

⎠

one recovers the weighted k-means where the i th pattern is
associated with a weight wi representing its importance. In
general, CLUHSIC can be considered as a family of clustering
algorithms that unify the traditional geometric, spectral, and
statistical dependence views of clustering. Interested readers
are referred to [2] for further details.

III. CLUSTERING FOR STRUCTURED OUTPUTS

In Section III-A, we first consider the easier setting of
supervised learning for structured outputs. Instead of using
the SVM as in [16], [17], we consider a related method called

1Note that for the tree structure in Fig. 2(c), only the four leaves are the
observed clusters. The internal nodes and root node are latent and so not
involved in defining the output kernel matrix.

kernel ridge regression (KRR) [22], which is also known as the
least squares SVM [23]. KRR uses the square loss instead of
the hinge loss, and leads to a simpler optimization problem
than the SVM. This is then extended to the unsupervised
learning setting in Section III-B.

A. Kernel Ridge Regression for Structured Outputs

For learning with structured outputs (such as sequences,
trees, or graphs), it is often more convenient to use a joint
feature representation ϕ that is defined on both the input X
and output Y [17]. This allows the many-sided dependencies
between X and Y to be captured. As in other kernel meth-
ods, this joint feature map is related to a joint kernel k as
k((x, y), (x′, y′)) = 〈ϕ(x, y), ϕ(x′, y′)〉. Given a set of training
patterns {(xi , yi )}m

i=1, KRR then obtains the classification
function 〈w, ϕ(x, y)〉 by solving the following optimization
problem:

min
w,ξiy

1

2
‖w‖2 + C

m

∑

i,y �=yi

ξ2
iy

s.t. 〈w, δϕi (y)〉 = 1 − ξiy√
�(yi , y)

, ∀i,∀y �= yi (3)

where ξiy’s are slack variables for the errors, δϕi (y) ≡
ϕ(xi , yi )−ϕ(xi , y) is the feature map for structured prediction,
�(yi , y) is a loss function penalizing the difference between
yi and y, and C is a user-defined regularization parameter.
Its main difference with the SVMs primal is that we now
have equality constraints instead of inequality constraints.
Moreover, note that the slack variables in (3) are scaled with
the inverse loss, and this is often called slack re-scaling.
Another approach, called margin re-scaling [16], scales the
margin by the loss. In this paper, we will focus on slack re-
scaling, and extension to margin re-scaling is straightforward.
Besides, unlike the SVM-struct [17] that uses only one slack
variable for each training instance, here we use one slack
variable for each (i, y) pair. The following proposition shows
that this leads to an efficient optimization problem.

Proposition 1: The dual of (3) can be written as

max
α

α′1 − 1

2
α′Qα (4)

where α = [αiy] is the vector of Lagrange multipliers, Q =
[Qiy, j ȳ] is a positive definite matrix with entries

Qiy, j ȳ = 〈δϕ i (y), δϕ j (ȳ)〉 + m

2C

δiy j ȳ√
�(yi , y)

√
�(y j , ȳ)

.

The proof is in Appendix I. Later on, it will be more
convenient to write Q as J + S, where

J = [〈δϕ i (y), δϕ j (ȳ)〉] (5)

and S is a diagonal matrix with the (iy)th entry (∀i, y �= yi )

Siy = m

2C

1

�(yi , y)
. (6)

Since the objective function in (4) is a quadratic function with
variable α, it is an unconstrained quadratic programming (QP)
problem. Its optimum α can be easily obtained as α∗ = (J +
S)−11. Plugging this back in (4), the corresponding optimal
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primal/dual objective value (which are equal as convex QPs
have zero duality gap) is then equal to

1

2
1′(J + S)−11. (7)

In general, there can be different ways of defining the joint
kernel and the corresponding joint feature map ϕ. In this paper,
we focus on the construction via the tensor product

ϕ(x, y) = φ(x) ⊗ λ(y) (8)

where φ and λ are feature maps defined on X and Y ,
respectively. This feature map has been popularly used in
classification with taxonomies [17]. Moreover, it can be shown
that its joint kernel 〈ϕ(x, y), ϕ(x̄, ȳ)〉 is simply a product of the
corresponding input kernel κ(x, x̄) = 〈φ(x), φ(x̄)〉 and output
kernel 
(y, ȳ) = 〈λ(y), λ(ȳ)〉 [17].

B. CLUHSICAL Algorithm

While the training outputs yi ’s are known in classification,
they are missing in clustering. Hence, as in maximum margin
clustering [13], we want to find {y1, . . . , ym} such that the
objective in (7) is minimized

min
y1,...,ym

1′(J + S)−11. (9)

However, because of the rather complicated definition of
J + S, a direct minimization of 1′(J + S)−11 is difficult.
With the use of the tensor-product feature map in (8), the
following proposition shows that this optimization problem
can be simplified by using first-order approximation (the proof
is in Appendix II).

Proposition 2: Suppose that the tensor-product feature map
in (8) is used, and the corresponding joint kernel k(·, ·) is
scaled by a factor γ > 0 to γ k(·, ·), where

γ <
1

‖S−1‖p‖J‖p
(10)

w.r.t. some matrix p-norm ‖ · ‖p . Then, as a first-order
approximation, (9) can be formulated as

max�̃ C̃ tr(K�̃A�̃
′
) − C

m
‖�̃‖1 (11)

s.t �̃i· is as defined in (12)

where K = [κ(xi , x j )] ∈ R
m×m is the kernel matrix defined

on the input A = [
(yi , y j )] ∈ R
|Y |×|Y | is the kernel matrix

defined on the output C̃ = 4C2γ /m2, and �̃ is a matrix such
that its i th row (corresponding to pattern i ) is defined as

�̃i· =
[

− �(yi , y1), · · · − �(yi , y�−1),
∑

y �=yi

�(yi , y),

−�(yi , y�+1), · · · − �(yi , y|Y |)
]

(12)

where Y = {y1, . . . , y|Y |} and output yi of the i th pattern is
equal to some y� ∈ Y .

Problem (11) involves an additional scaling parameter γ
(hidden in the parameter C̃), and this may appear cumbersome
in practical applications. Interestingly, it will be shown in the

following that γ can be removed from the optimization with a
proper normalization of the partition matrix �̃. In CLUHSIC
[2], each column of � is often normalized to have unit
�2-norm [i.e., ‖�· j‖2 = 1] before aligning �′K� with A.
This ensures that the solution is not biased toward clusters
having more samples. A similar normalization can also be
performed on the �̃ in (11). However, here, it is more
convenient to normalize each column of �̃ with the �1-
norm, because ‖�̃‖1 in (11) is then a constant and can be
dropped, along with the associated C̃ parameter (and thus also
the γ parameter). Denote the �1-normalized �̃ by �̄. The
optimization problem (11) then simplifies to

max
�̄

tr(K�̄A�̄
′
). (13)

This is of the same form as CLUHSIC, except that the
loss function is now explicitly considered in �̃ (12). In the
sequel, this will be called “CLUstering using HSIC And Loss”
(CLUHSICAL).

C. Relationship with CLUHSIC

Unlike the CLUHSIC algorithm, CLUHSICAL allows the
explicit specification of a loss function. In particular, when
the zero-one loss is used (i.e., �(yi , y j ) = 1 for yi �= y j ),
the following corollary shows that the unnormalized version
of CLUHSIC and CLUHSICAL in (11) will yield the same
clustering solution. The proof is in Appendix III.

Corollary 1: With the zero-one loss, (11) without normal-
ization reduces to CLUHSIC.

While CLUHSIC and CLUHSICAL are equivalent under
the zero-one loss before normalization (which is also verified
experimentally), they can have different results after normal-
ization. Recall that the main difference between CLUHSIC
and CLUHSICAL lies in the definition of the partition matrix.
In the following, we illustrate that the partition matrix in (12)
is more advantageous than the one in CLUHSIC by studying
the simplest clustering algorithm in the CLUHSIC family,
namely (kernel) k-means clustering. Experimental results in
Section IV-C also show that CLUHSICAL often performs
better than CLUHSIC even when both are trained with the
zero-one loss.

Consider the objective

|Y |∑

c=1

m∑

i=1

|�ic|‖sgn(�ic)φ(xi ) − µc‖2
F (14)

where � is an unnormalized partition matrix and F is the
feature space induced by the kernel k. Let mc be the number
of patterns belonging to the cth cluster and assume that
all clusters are of the same size, i.e., mc = m/|Y|. The
following lemmas show that the optimization problems of the
�1-normalized CLUHSIC and CLUHSICAL are of the form
in (14) (proofs are in Appendix III).

Lemma 1: The optimization problem of the �1-normalized
CLUHSIC with A = (m/|Y|)I is of the form (14) with

�ic =
{

1 φ(xi ) ∈ c,
0 φ(xi ) /∈ c

(15)



1568 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 21, NO. 10, OCTOBER 2010

and the corresponding centers can be obtained as

µc = 1

mc

∑

φ(xi )∈c

φ(xi ), c = 1, . . . , |Y|. (16)

Lemma 2: The optimization problem of the �1-normalized
CLUHSICAL with A = ((2|Y| − 1)m/|Y|)I is of the form
(14) with

�ic =
{ |Y| − 1 φ(xi ) ∈ c,

−1 φ(xi ) /∈ c
(17)

and the corresponding centers can be obtained as

µc =
m∑

i=1

�ic∑m
j=1 |� j c|φ(xi ), c = 1, . . . , |Y|. (18)

Note that the As in the two lemmas differ only by the
constant 2(|Y| − 1), which is immaterial. Hence, we can
examine the difference between the �1-normalized versions of
CLUHSIC and CLUHSICAL by considering the two different
settings of �ic’s in (14). Note that, for CLUHSIC, �ic

is nonzero only when φ(xi ) is in cluster c. On the other
hand, for CLUHSICAL, �ic in (17) is positive when φ(xi )
belongs to cluster c, and negative otherwise. Hence, from
(14), µc will be drawn close to φ(xi ) if φ(xi ) belongs to
cluster c, otherwise, µc will be pushed away from φ(xi ).
This thus resembles the effect of a margin and is also
similar to the rival penalized competitive learning algorithm
[24], which has better performance than standard k-means
clustering.

IV. EXPERIMENTS

In this section, we perform experiments on a number of
datasets, whose outputs have the structure of a hierarchy
(Section IV-A) or a ring (Section IV-B). All these patterns have
been manually grouped into different categories, and these will
be used as the ground truth cluster labels in the performance
evaluation.

A. Hierarchy-Structured Datasets

1) Data Sets and Input Kernels: Structural classification of
proteins (SCOP) data: The SCOP database [25] provides a
detailed description of the structural relationships of all the
known proteins. Here, we use the subset extracted in [26] with
15 superfamilies. Ten proteins are selected for each superfam-
ily, leading to a total of 150 patterns. The classification of
the proteins is based on a hierarchical structure. The lowest
level consists of 15 superfamilies, the next higher level is the
fold, then the class, and finally the root [Fig. 3(a)]. We use the
three alignment kernels (KAl

1 , KAl
2 , and KAl

3 ) proposed in [26]
as input kernels. These alignment kernels are inspired from
the convolution kernel in [27], and are constructed based on
kernels defined on the protein’s constituent substructures.

World Intellectual Property Organization (WIPO) data: This
is a set of patent documents from the WIPO and has been
popularly used [17], [28], [29]. We use the six largest cat-
egories in Section D (each category contains at least 50
documents), with a total of 354 documents. The corresponding
hierarchical structure is shown in Fig. 3(b). The linear kernel,

Level 3

Level 2

Level 1gcba

Level 3

Level 2

Level 1

(a) (b)

Level 2

Level 1

(c)

Fig. 3. Hierarchically structured datasets. (a) SCOP. (b) WIPO. (c) Facial
expression.

which is often appropriate for text classification, is used on
the input.

Facial expression data: This data set2 has been used in the
CLUHSIC paper [2]. It consists of 185 images (each of size
217 × 308) of three types of facial expressions from three
subjects. The facial expressions of the same person are first
grouped together in the hierarchy [Fig. 3(c)]. As in [2], each
pixel of the face image is normalized in each dimension and
the Gaussian kernel is used as the input kernel.

2) Experimental Setup: We follow [17] to construct the
output feature map for these hierarchically structured data sets.
Let Z be the set of nodes in the hierarchy, and let the hierarchy
structure be represented by the partial order ≺, where z ≺ y
means that node z is an ancestor of node y. A feature λz is then

defined with every node z, as λz(y) =
{

1 z ≺ y or z = y
0 otherwise

.

By excluding the feature associated with the root node (which
is shared by all the classes), it can be easily seen that this
feature map is also the same as the one used in [2].

We will compare CLUHSICAL with two existing clustering
algorithms for structured data.

1) CLUHSIC in [2].
2) Discriminative unsupervised training algorithm (labeled

“XWSS” in the sequel) in [11]. Since XWSS is based
on SDP and so can only be used on very small datasets,
we will adopt the heuristic iterative procedure proposed
in [11].

The optimization of both CLUHSIC and CLUHSICAL involve
integer programming. Since the focus of this paper is not
on how to solve this integer program, we will simply follow
CLUHSIC in [2] and obtain an approximate solution by greedy
local optimization. Its time complexity per iteration is O(mk),
and the procedure often converges in fewer than 20 iterations.
More sophisticated approaches, such as spectral methods [20]
and nonnegative matrix factorization [21] are also discussed
in [19].

For further benchmarking, we also report results of
kernelized versions (using the same kernel as CLUHSICAL)
of several agglomerative hierarchical clustering methods [30],
including the following.

2http ://www.it.usyd.edu.au/∼/lesong/cluhsic_datasets.html
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Fig. 4. Example of the dendrogram and clustering result obtained on the facial
expression data. Each color corresponds to a level-1 cluster, and each rectangle
is a level-2 cluster. Since the dataset has 185 samples, the whole dendrogram
has 185 leaves. To reduce clutter, we only show the top 30 clusters.

1) Average linkage, which defines the dissimilarity
between two clusters A and B as D(A, B) =
(1/n AnB)

∑
i∈A, j∈B d(ai , b j ). Here, n A and nB are the

numbers of instances in clusters A and B , respectively,
and d(ai , b j ) is the distance (induced by the same kernel
used in CLUHSICAL) between instances ai and b j .

2) Complete linkage, with D(A, B) = maxi∈A, j∈B

d(ai , b j ).
3) Ward’s linkage [31], with D(A, B) =√

n AnB
n A+nB

d(Am, Bm)2, where Am, BM are the cluster
means of A and B , respectively,

and hierarchical k-means algorithm. Since standard agglomer-
ative hierarchical clustering and k-means do not utilize struc-
ture information, we implement a structure-sensitive variant
as follows. Take as an example the facial expression data
[Fig. 3(c)], which has three level-1 clusters and three level-
2 sub-clusters under each cluster. For hierarchical clustering,
we first run the standard algorithm and obtain the complete
dendrogram. By going down the root using the dendrogram,
we can obtain the three level-1 clusters. For each of these, we
further trace down the corresponding branch of the dendro-
gram and obtain the three sub-clusters (Fig. 4). For the more
complex hierarchies in Fig. 3(a) and (b), we align the obtained
clusters so that the one with the largest variance corresponds
to the tree node having the largest subtree. The hierarchical k-
means procedure is similar, except that instead of going down
the dendrogram, we perform kernel k-means to divide a node
into several sub-clusters.

In general, since hierarchical clustering does not utilize
structure information in constructing the dendrogram, there
is no guarantee that the variants used in our experiments
(average linkage, complete linkage, and Ward’s linkage) can
always produce clustering results that conform to the given
structure. Nevertheless, empirically, they are able to do so in
our experiments.

For performance evaluation, we will use the accuracy and
tree loss, which is defined as the height of the first common
ancestor of the true and predicted labels in the hierarchy [17].
Note that the tree loss is the same as the zero-one loss when
measured at the first level of the hierarchy, and so will not
be reported in the sequel. Moreover, since the positions of
some of the clusters can be permuted [e.g., the leaves under
each level-1 cluster in Fig. 3, and the three level-1 clusters in
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(a)

(88.7%, 43.3%, 43.3%; 0.68, 1.25)

(c)

(62.0%, 42.0%, 42.0%; 0.960, 1.540)

(e)

(82.0%, 48.7%, 48.7%; 0.693, 1.207)

(b)

(62.0%, 42.0%, 42.0%; 0.960, 1.540)

(d)

(70.0%, 47.3%, 47.3%; 0.827, 1.353)

(f)

(94.7%, 58.7%, 58.7%; 0.467, 0.880)

Fig. 5. Confusion matrices on the SCOP data for a typical run. Shown inside
the brackets are the accuracies at the first, second, and third levels, and the
tree losses at the second and third levels. (a) Complete-linkage. (b) Kernel
hierarchical k-means. (c) XWSS. (d) CLUHSIC. (e) CLUHSICAL (0–1 loss).
(f) CLUHSICAL (tree loss).

Fig. 3(c)], we will report the performance based on the best
permutation of the clustering result.

The kernel hierarchical k-means clustering result is used to
initialize CLUHSICAL, CLUHSIC, and XWSS (except for the
teapot data where kernel hierarchical k-means produces a very
poor initialization and so random initialization is used instead).
To reduce statistical variability, results for all the methods
(except for agglomerative hierarchical clustering, which is
deterministic) are averaged over 10 repetitions with 10 random
restarts in each repetition. In the �2-normalized version of
CLUHSICAL, we fix C = 0.1m and γ = 1.

3) Importance of the Loss Function: We first illustrate the
importance of the loss function. Fig. 5 shows the confusion
matrices obtained on the SCOP data for a typical run.

The four squares lying along the diagonal correspond to
the four subtrees rooted at nodes a, b, c, and g in Fig. 3(a).
The small square inside the largest square corresponds to the
leftmost subtree under node c. The gray level represents the
number of patterns in the cluster (darker color indicates more
patterns). In the ideal case, the confusion matrix is diagonal
and all the patterns are correctly clustered, resulting in zero
error and zero loss. As can be seen from Fig. 5, while all
the methods are not perfect, CLUHSICAL, when trained with
the tree loss, assigns the mis-clustered patterns to clusters
that are still within the target subtree. On the other hand, the
other methods may assign the mis-clustered patterns to distant
unrelated categories.

Fig. 6 illustrates this effect in more detail. For clarity,
we only show the assignments for patterns belonging to a
particular leaf node. Here, a (blue) dot indicates a correct
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TABLE I

CLUSTERING PERFORMANCE ON THE SCOP DATA

accuracy (%) tree loss
kernel matrix method level 1 level 2 level 3 level 2 level 3

KAl
1

hierarchical
clustering

average-linkage 75.3 34.7 32.7 0.90 1.57
complete-linkage 88.7 43.3 43.3 0.68 1.25
Ward’s linkage 55.3 32.7 30.7 1.12 1.81

kernel hierarchical k-means 55.2 35.2 35.2 1.10 1.74
XWSS 55.2 35.2 35.2 1.10 1.74

CLUHSIC 40.9 31.9 31.9 1.27 1.95
CLUHSICAL 0-1 loss 71.0 47.7 47.6 0.81 1.34

(�1-normalized) tree loss 84.9 54.1 53.9 0.61 1.07
CLUHSICAL 0-1 loss 65.9 44.4 44.1 0.90 1.46

(�2-normalized) tree loss 86.6 53.7 53.7 0.60 1.06

KAl
2

hierarchical
clustering

average-linkage 54.7 14.0 12.0 1.31 2.19
complete-linkage 54.0 12.0 10.0 1.34 2.24
Ward’s linkage 72.0 41.3 38.0 0.87 1.49

kernel hierarchical k-means 51.9 32.1 32.1 1.17 1.84
XWSS 51.8 32.1 32.1 1.17 1.84

CLUHSIC 50.1 29.6 29.6 1.20 1.91
CLUHSICAL 0-1 loss 69.1 39.0 39.0 0.92 1.53

(�1-normalized) tree loss 80.0 45.5 45.3 0.75 1.29
CLUHSICAL 0-1 loss 66.7 39.3 38.5 0.94 1.56

(�2-normalized) tree loss 69.4 40.1 39.6 0.91 1.51

KAl
3

hierarchical
clustering

average-linkage 74.0 29.3 25.3 0.97 1.71
complete-linkage 51.3 28.0 28.0 1.21 1.93
Ward’s linkage 64.7 34.7 32.7 1.01 1.68

kernel hierarchical k-means 53.2 35.7 35.7 1.12 1.76
XWSS 53.2 35.7 35.7 1.12 1.76

CLUHSIC 36.6 25.5 25.5 1.38 2.12
CLUHSICAL 0-1 loss 58.6 38.0 38.0 1.03 1.65

(�1-normalized) tree loss 71.3 43.3 43.2 0.86 1.42
CLUHSICAL 0-1 loss 75.5 51.3 50.9 0.73 1.22

(�2-normalized) tree loss 76.9 47.5 47.1 0.76 1.29

(a)

Level 3

Level 2

Level 1

Level 3

Level 2

Level 1 gcbagcba

(b)

Level 3

Level 2

Level 1gcba

(c)

Level 3

Level 2

Level 1gcba

(d)

Level 3

Level 2

Level 1gcba

(e)

Level 3

Level 2

Level 1gcba

(f)

Fig. 6. Cluster assignments for patterns coming from a specific cluster. (a)–(f)
Results obtained by agglomerative hierarchical clustering with complete-
linkage, kernel hierarchical k-means, XWSS, CLUHSIC, CLUHSICAL
(0–1 loss) and CLUHSICAL (tree loss), respectively.

cluster assignment while a (red) cross indicates an incorrect
assignment. As can be seen, CLUHSICAL, when used with
the tree loss, tries to avoid assigning mis-clustered patterns to
faraway clusters. Hence, incorporation of the loss function is
beneficial in clustering structured data.

4) Clustering Performance: Detailed clustering perfor-
mance results on the various datasets are shown in Tables I–III.
The best results and those that are not significantly worse
(according to the t-test with a p-value less than 0.05) are
printed in bold. As can be seen, CLUHSICAL trained with the
structured loss performs well on the SCOP and WIPO datasets,

and is comparable to the best result (attained by CLUHSICAL
trained with the 0-1 loss) on the facial expression data. In
particular, CLUHSICAL performs much better than kernel
hierarchical k-means. This is because our kernel hierarchical
k-means variant can only consider the sub-structure informa-
tion separately, but not as a whole, whereas CLUHSICAL
considers both the output structure and loss function in a more
principled way. Results of the various hierarchical clustering
variants are also inferior because the structure information
cannot be utilized while constructing the dendrogram. Besides,
both versions of CLUHSICAL are often better than CLUHSIC.
CLUHSICAL trained with the structured loss is often better
than that trained with the zero-one loss. Moreover, as discussed
in Section III-C, CLUHSICAL often performs better than
CLUHSIC even when both are trained with the zero-one loss.
The �2-normalized version also outperforms CLUHSIC, but is
sometimes slightly inferior to its �1-normalized version.

B. Ring-Structured Dataset

The datasets used in the previous section are all hierarchical
in structure. In this section, we will experiment with the teapot
data set3 [2], [32] which has a ring structure. It contains 400
teapot images (each of size 76 × 101) rotated from 1°–360°.
The Gaussian kernel is used on the input. As for the output,
we follow [2] and set A(yi , y j ) to 2 if i = j , 1 if i and j are
neighbors, and 0 otherwise.

In the first experiment, we use (standard) kernel k-means,
CLUHSIC, and CLUHSICAL to cluster the full dataset into 10

3http ://www.it.usyd.edu.au/∼/lesong/cluhsic_datasets.html
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TABLE II

CLUSTERING PERFORMANCE ON THE WIPO DATA

accuracy (%) tree loss
method lvl 1 lvl 2 lvl 3 lvl 2 lvl 3

hierarchical
clustering

average 32.5 18.4 18.4 1.49 2.31
complete 24.9 24.9 20.3 1.50 2.30
Ward’s 27.1 27.1 22.9 1.46 2.23

kernel hierarchical k-means 26.0 23.5 20.9 1.51 2.30
XWSS 26.0 23.5 20.9 1.51 2.30

CLUHSIC 26.4 24.7 21.8 1.49 2.27
CLUHSICAL 0-1 loss 30.6 27.0 25.7 1.42 2.17

(�1-normalized) tree loss 33.0 29.6 27.3 1.37 2.10
CLUHSICAL 0-1 loss 31.4 27.7 26.1 1.41 2.15

(�2-normalized) tree loss 35.1 32.1 29.3 1.33 2.04

TABLE III

CLUSTERING PERFORMANCE ON THE FACIAL EXPRESSION DATA

accuracy (%) tree loss
method level 1 level 2 level 2

hierarchical
clustering

average 78.4 42.7 0.79
complete 78.4 42.7 0.79
Ward’s 88.7 71.9 0.39

kernel hierarchical k-means 70.1 54.6 0.75
XWSS 70.1 55.0 0.75

CLUHSIC 89.0 80.8 0.30
CLUHSICAL 0-1 loss 96.5 94.8 0.09

(�1-normalized) tree loss 92.3 90.2 0.18
CLUHSICAL 0-1 loss 94.3 90.8 0.15

(�2-normalized) tree loss 93.4 91.8 0.15

(a) (b)

(c) (d) (e)

Fig. 7. Clusters (separated by strokes) obtained on the full teapot dataset
in a typical run. Note that the ordering of the grayscales in the k-means
solution does not align with those of the ground truth. (a) Ring structure. (b)
Kernel k-means. (c) CLUHSIC. (d) CLUHSICAL (0–1 loss). (e) CLUHSICAL
(tree loss).

clusters. Fig. 7 shows the clusters obtained for a typical run.
Here, the positions of the clusters on the chain are color-coded
by the grayscale [Fig. 7(a)]. As can be seen, all the methods
can group the patterns into reasonable clusters. However, the
ordering of the clusters in the kernel k-means solution does
not align with the given ring structure. This is not surprising
as structure information is not used in kernel k-means. As for
the solutions produced by CLUHSIC and CLUHSICAL, they
are very similar and differ only in the slight variations for the
sizes of the clusters obtained.

However, a quantitative comparison is difficult. Recall that
the images are obtained by continuously rotating the teapot
from 1°–360°. Hence, there is no natural ground truth on the
number of clusters and the size of each cluster. Even if these

TABLE IV

CLUSTERING PERFORMANCE ON THE TEAPOT SUBSET

method accuracy (%) ring loss
kernel k-means 32.32 1.16

XWSS [11] 13.06 1.54
CLUHSIC [2] 65.51 0.39

CLUHSICAL 0-1 loss 93.83 0.06
(�1-normalized) ring loss 98.20 0.02
CLUHSICAL 0-1 loss 55.29 0.85

(�2-normalized) ring loss 54.71 0.85

TABLE V

CLUSTERING PERFORMANCE IN THE SPECIAL CASE OF A = I. NUMBER

IN BRACKETS IS THE STANDARD DEVIATION

data set method accuracy (%)

SCOP (KAl
1 )

CLUHSIC 66.4 (3.6)
CLUHSICAL 72.8 (4.6)

SCOP (KAl
2 )

CLUHSIC 64.3 (3.7)
CLUHSICAL 69.4 (4.1)

SCOP (KAl
3 )

CLUHSIC 66.3 (4.3)
CLUHSICAL 71.7 (4.1)

WIPO CLUHSIC 43.0 (4.4)
CLUHSICAL 51.5 (4.3)

face CLUHSIC 77.0 (7.6)
CLUHSICAL 90.9 (5.9)

teapot CLUHSIC 32.7 (5.3)
CLUHSICAL 35.1 (9.4)

were known, it would still be difficult to have a fair perfor-
mance comparison because of the continuous ring structure.

To avoid this problem, we perform a second experiment in
which 5 images are removed from every 40 images. Thus, in
this ground truth solution, we have a total of 10 well-separated
clusters each with 35 images. Besides reporting the zero-one
loss, we will also show the ring loss, which is defined as zero
if the predicted position is correct, 1 if the predicted position
and ground truth position are neighbors, and 2 otherwise.
Moreover, as in Section IV-A, the positions of the clusters
can be permuted4, and so the reported performance will be
based on the best permutation. Results are shown in Table IV.
Again, CLUHSICAL trained with the structured loss performs
best on both metrics.

C. Special Case of A = I and Zero-One Loss

In this section, we consider the special case where there
is no output structure (i.e., A = I). In this case, CLUHSIC
is equivalent to standard kernel k-means. As can be seen
from Table V, although CLUHSIC and CLUHSICAL are
equivalent under the zero-one loss before normalization (which
is also experimentally verified), CLUHSICAL outperforms
CLUHSIC after normalization.

D. Equation (20) as a Good Approximation of (γ J + S)−1

Finally, we provide empirical evidence that (20) is a
good approximation of (γ J + S)−1. We study the rela-
tive difference |t1 − t2|/t1 in approximating the objective

4For example, for a ring with c clusters, there are 2c possible permutations
obtained by starting from each of the c clusters and then visiting them in
either clockwise or anticlockwise manner.
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TABLE VI

RELATIVE APPROXIMATION ERRORS USING THE ZERO-ONE LOSS AND STRUCTURED LOSS

γ data set C
m 0.1m 0.01m 0.001m 0.0001m 0.00001m

1

0-1
loss

face 2.82 3.77e-02 3.94e-04 3.95e-06 3.96e-08 3.96e-10
WIPO 1.26e-02 1.29e-04 1.29e-06 1.29e-08 1.29e-10 1.29e-12
teapot 4.36e-01 4.69e-03 4.74e-05 4.74e-07 4.74e-09 4.74e-11

SCOP (KAl
1 ) 2.75e-01 3.04e-03 3.09e-05 3.09e-07 3.09e-09 3.09e-11

SCOP (KAl
2 ) 5.27e-01 6.47e-03 6.67e-05 6.70e-07 6.70e-09 6.70e-11

SCOP (KAl
3 ) 2.95e-01 3.32e-03 3.38e-05 3.39e-07 3.39e-09 3.39e-11

structured
loss

face 4.26 5.40e-02 5.60e-04 5.62e-06 5.62e-08 5.62e-10
WIPO 1.48e-02 1.52e-04 1.52e-06 1.52e-08 1.52e-10 1.52e-12
teapot 5.53e-01 5.88e-03 5.93e-05 5.93e-07 5.93e-9 5.93e-11

SCOP (KAl
1 ) 3.47e-01 3.92e-03 3.99e-05 4.00e-07 4.00e-09 4.00e-11

SCOP (KAl
2 ) 6.84e-01 8.64e-03 8.95e-05 8.99e-07 8.99e-09 8.99e-11

SCOP (KAl
3 ) 3.74e-01 4.32e-03 4.41e-05 4.43e-07 4.43e-09 4.43e-11

0.1

0-1
loss

face 3.77e-02 3.94e-04 3.95e-06 3.96e-08 3.96e-10 3.96e-12
WIPO 1.29e-04 1.29e-06 1.29e-08 1.29e-10 1.29e-12 1.40e-14
teapot 4.69e-03 4.73e-05 4.74e-07 4.74e-09 4.74e-11 4.72e-13

SCOP (KAl
1 ) 3.04e-03 3.09e-05 3.09e-07 3.09e-09 3.09e-11 3.07e-13

SCOP (KAl
2 ) 6.47e-03 6.67e-05 6.70e-07 6.70e-09 6.70e-11 6.69e-13

SCOP (KAl
3 ) 3.32e-03 3.38e-05 3.39e-07 3.39e-09 3.39e-11 3.38e-13

structured
loss

face 5.40e-02 5.58e-04 5.62e-06 5.62e-08 5.62e-10 5.62e-12
WIPO 1.52e-04 1.52e-06 1.52e-08 1.52e-10 1.52e-12 1.48e-14
teapot 5.88e-03 5.92e-05 5.93e-07 5.93e-09 5.94e-11 7.49e-13

SCOP (KAl
1 ) 3.92e-03 3.99e-05 4.00e-07 4.00e-09 4.00e-11 3.99e-13

SCOP (KAl
2 ) 8.64e-03 8.95e-05 8.99e-07 8.99e-09 8.99e-11 8.97e-13

SCOP (KAl
3 ) 4.32e-03 4.41e-05 4.43e-07 4.43e-09 4.43e-11 4.39e-13

0.01

0-1
loss

face 3.94e-04 3.95e-06 3.96e-08 3.96e-10 3.96e-12 3.76e-14
WIPO 1.29e-06 1.29e-08 1.29e-10 1.29e-12 1.33e-14 1.13e-16
teapot 4.73e-05 4.74e-07 4.74e-09 4.74e-11 4.72e-13 4.20e-15

SCOP (KAl
1 ) 3.09e-05 3.09e-07 3.09e-09 3.09e-11 3.06e-13 2.89e-15

SCOP (KAl
2 ) 6.67e-05 6.70e-07 6.70e-09 6.70e-11 6.69e-13 6.51e-15

SCOP (KAl
3 ) 3.38e-05 3.39e-07 3.39e-09 3.39e-11 3.39e-13 3.79e-15

structured
loss

face 5.60e-04 5.62e-06 5.62e-08 5.62e-10 5.62e-12 5.53e-14
WIPO 1.52e-06 1.52e-08 1.52e-10 1.51e-12 1.60e-14 3.38e-16
teapot 5.93e-05 5.93e-07 5.93e-09 5.93e-11 5.88e-13 5.42e-15

SCOP (KAl
1 ) 3.99e-05 4.00e-07 4.00e-09 4.00e-11 3.97e-13 4.52e-15

SCOP (KAl
2 ) 8.95e-05 8.99e-07 8.99e-09 8.99e-11 8.97e-13 9.40e-15

SCOP (KAl
3 ) 4.41e-05 4.43e-07 4.43e-09 4.43e-11 4.41e-13 3.61e-15

t1 = 1′(γ J + S)−11 in (7) by its first-order approximation
t2 = 1′S−11 − γ 1′S−1JS−11 in (20). The labels yi ’s required
in the definition of S are set to the ground truths. We vary γ
from 1, 0.1 to 0.01, and C from 0.00001m to m (where m is
the number of samples). As can be seen from Table VI, the
approximation error, depending on C and γ , is usually very
small.

V. CONCLUSION

In this paper, we studied the problem of clustering structured
outputs. We showed that the loss function, which is known
to be very important in the supervised structured prediction
problems, can also be incorporated into unsupervised learning.
In particular, we showed that CLUHSIC is implicitly using
the often inappropriate zero-one loss. We provided detailed
derivations and proposed an extension called CLUHSICAL
that explicitly considers both the output dependency and loss
function. Experimental results on a number of datasets show
that CLUHSICAL (with structured loss) often outperforms
CLUHSIC, XWSS, and kernel hierarchical k-means, and thus
confirm the importance of the loss function in clustering
structured data.

APPENDIX I
PROOF OF PROPOSITION 1

Introducing Lagrange multipliers αiy’s for the equality
constraints in (3) and denoting δi = δϕi (y), δ̄i = δϕ i (ȳ),
�i, j = �(yi , y j ), �i. = �(yi , y), and �i .̄ = �(yi , ȳ),
then the Lagrangian is L = 1/2‖w‖2 + (C/m)

∑
i,y �=yi

ξ2
iy −∑

i,y �=yi
αiy

(〈w, δi 〉 − 1 + ξiy/
√

�i.
)
. Setting its derivatives

w.r.t. the primal variables to zero, and plugging these back
into L, we obtain

L = 1

2

∥
∥
∥
∥
∥∥

∑

i,y �=yi

αiyδi

∥
∥
∥
∥
∥∥

2

+ C

m

∑

i,y �=yi

[
m

2C

αiy√
�i.

]2

−
∑

i,y �=yi

αiy

⎛

⎝
〈

∑

j,ȳ �=y j

α j ȳδ̄ j , δi

〉

− 1 + m

2C

αiy

�i.

⎞

⎠

= 1

2

∑

i,y �=yi
j,ȳ �=y j

αiyα j ȳ〈δi , δ̄ j 〉 + C

m

∑

i,y �=yi

[
m

2C

αiy√
�i.

]2
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−
∑

i,y �=yi
j,ȳ�=y j

αiyα j ȳ〈δi , δ̄ j 〉 +
∑

i,y �=yi

αiy −
∑

i,y �=yi

m

2C

α2
iy

�i.

=
∑

i,y �=yi

αiy − 1

2

∑

i,y �=yi
j,ȳ �=y j

αiyα j ȳ〈δi , δ̄ j 〉 − m

4C

∑

i,y �=yi

α2
iy

�i.

=
∑

i,y �=yi

αiy − 1

2

∑

i,y �=yi
j,ȳ �=y j

αiyα j ȳ

[

〈δi , δ̄ j 〉 + m

2C

δiy j ȳ√
�i.

√
� j .̄

]

where δiy j ȳ is 1 if i = j and y = ȳ, and 0 otherwise.
This can then be rewritten as the form in (4).

APPENDIX II
PROOF OF PROPOSITION 2

Note that, when the kernel k is scaled to γ k as in Propo-
sition 2, the J in (5) will be scaled accordingly as γ J. First,
we introduce a few lemmas.

Lemma 3: As a first-order approximation, minimizing
1′(γ J + S)−11 in (9) for the scaled kernel γ k is the same
as maximizing

C̃1′�J�1 − 2C

m
1′�1 (19)

where � = diag([�i.]i,y �=yi ) and γ, C̃ are as defined in
Proposition 2.

Proof: Note that (γ J + S)−1 = [S(γ S−1J + I)]−1 =[
S−1(γ J) + I

]−1
S−1. On using (10), ‖S−1(γ J)‖p ≤

γ ‖S−1‖p‖J‖p < 1, this can then be expanded into an infinite
series as [33]

(γ J + S)−1 =
( ∞∑

i=0

(
−S−1(γ J)

)i
)

S−1.

Taking the first-order approximation

(γ J + S)−1 � (I − S−1(γ J))S−1 = S−1 − γ S−1JS−1. (20)

Minimizing −1′(γ J + S)−11 in (9) then becomes maximizing

γ 1′S−1JS−11 − 1′S−11 = C̃1′�J�1 − 2C

m
1′�1

on using the definitions of J and S in (5) and (6).
Lemma 4: Using the tensor-product feature map in (8), the

1′�J�1 term in (19) can be simplified as tr(K�̃A�̃
′
), where

K, �̃, A are as defined in Proposition 2.
Proof: Again denote ϕii = ϕ(xi , yi ), ϕi. = ϕ(xi , y) and

ϕi .̄ = ϕ(xi , ȳ). Note that

1′�J�1 =
∑

i,y �=yi

∑

j,ȳ�=y j

〈δi , δ̄ j 〉�i.� j .̄

=
∑

i,y �=yi

∑

j,ȳ�=y j

〈ϕii − ϕi., ϕ j j − ϕ j .̄〉�i.� j .̄

=
∑

i,y �=yi

∑

j,ȳ�=y j

〈
φ(xi ) ⊗ (λ(yi ) − λ(y)) ,

φ(x j ) ⊗ (
λ(y j ) − λ(ȳ)

) 〉
�i.� j .̄

=
∑

i j

κ(xi , x j )
∑

y �=yi ,ȳ �=y j

〈
�i.

(
λ(yi ) − λ(y)

)
,

� j .̄
(
λ(y j ) − λ(ȳ)

)〉

=
∑

i j

κ(xi , x j )

〈
∑

y �=yi

�i.
(
λ(yi ) − λ(y)

)
,

∑

ȳ �=y j

� j .̄
(
λ(y j ) − λ(ȳ)

)
〉

. (21)

Using (12)
∑

y �=yi

�i.
(
λ(yi ) − λ(y)

)

=
⎡

⎣
∑

y �=yi

�i.

⎤

⎦ λ(yi ) +
∑

y �=yi

[−�i.λ(y)
] = (�̃i·λ)′

where λ = [λ(y1), . . . , λ(y|Y |)]′. Therefore, (21) can be
written as

∑

i j

κ(xi , x j )(�̃i·λ)(�̃ j ·λ)′

=
∑

i j

κ(xi , x j )(�̃i·λλ′�̃′
j ·)

= 1′(K ◦ �̃A�̃
′
)1 = tr(K�̃A�̃

′
)

where ◦ denotes the Hadamard (or elementwise) product.
Lemma 5: The 1′�1 term in (19) can be simplified as

(1/2)‖�̃‖1, where �̃ is as defined in Proposition 2.
Proof:

1′�1 =
m∑

i=1

∑

y �=yi

�i. = 1

2

m∑

i=1

|Y |∑

j=1

|�̃i j | = 1

2
‖�̃‖1

Proof: (of Proposition 2). Result follows immediately by
plugging Lemmas 4 and 5 into (19).

APPENDIX III
PROOF OF THE RESULTS IN SECTION III-C

Proof: (of Corollary 1). When the zero-one loss is used,
we have

1′�1 =
m∑

i=1

∑

y �=yi

�i. =
m∑

i=1

(|Y| − 1) = m|Y| − m.

Thus, the second term in (19) is a constant, and (11) reduces to

max
�̃

tr(K�̃A�̃
′
)

s.t �̃i· is as defined in (12). (22)

This is the same as (2) of CLUHSIC, except that the definitions
of the partition matrix are, apparently, different. However,
note that with the zero-one loss, �̃i· in (12) reduces to

�i· = [−1, . . . ,−1︸ ︷︷ ︸
(yi−1) times

, |Y| − 1, −1, . . . ,−1︸ ︷︷ ︸
(|Y |−yi ) times

]. (23)
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We can add 1 to each of its entries, and obtain

�̂i· = [0, . . . , 0, |Y|, 0, . . . , 0].
Note that �̂ is essentially the same as the partition matrix �

in CLUHSIC, except that the only nonzero entry is changed
from 1 to the constant |Y|. Using the fact that K is always
centered (i.e., K1 = 0) in CLUHSIC

tr(K�̂A�̂
′
) = tr(K(� + 11′)A(� + 11′)′)
= tr(K�A�′) + tr(K�A11′)

+ tr(K11′A�′) + tr(K11′A11′)
= tr(K�A�′).

Hence

max
�̂

tr(K�̂A�̂
′
) ⇔ max

�
tr(K�A�′).

and (19) leads to the same partitioning as CLUHSIC.
Proof: (of Lemma 1). Setting � as in (15), objective (14)

reduces to
|Y |∑

c=1

∑

xi∈c

‖φ(xi ) − µc‖2
F (24)

which is the standard k-means objective. The cluster center can
be easily obtained as in (16). Moreover, note that (24) can be
written as

∑|Y |
c=1

∑
xi∈c

(
κ(xi , xi ) − 2〈φ(xi ),µc〉 + 〈µc,µc〉

)
.

Substituting in (16), we have

|Y |∑

c=1

∑

xi∈c

κ(xi , xi ) −
|Y |∑

c=1

⎛

⎝
∑

xi ,x j ∈c

1

mc
κ(xi , x j )

⎞

⎠

=
m∑

i=1

κ(xi , xi ) −
|Y |∑

c=1

⎛

⎝mc

∑

xi ,x j ∈c

1

m2
c
κ(xi , x j )

⎞

⎠ .

Now the first term is constant, so this can be dropped from the
optimization. When mc = m/|Y|, the objective reduces to the
CLUHSIC objective with A = (m/|Y|)I and its �1-normalized

partition matrix has elements �̄ic =
{ 1

mc
φ(xi ) ∈ c,

0 φ(xi ) /∈ c.
Proof: (of Lemma 2). With the setting of �, (14) reduces

to

|Y |∑

c=1

⎛

⎝(|Y| − 1)
∑

xi∈c

‖µc − φ(xi )‖2
F +

∑

xi /∈c

‖µc + φ(xi )‖2
F

⎞

⎠

(25)
and the cluster center can be obtained by (18) as

µc =
(
(|Y| − 1)

∑
xi∈c φ(xi ) − ∑

xi /∈c φ(xi )
)

mc(|Y| − 1) + m − mc

=
m∑

i=1

�ic∑m
j=1 |� j c|φ(xi )

where
m∑

j=1

|� j c| = mc(|Y| − 1) + m − mc = mc(|Y| − 2) + m.

Substituting (18) back into (25), we have

|Y |∑

c=1

⎛

⎝(|Y| − 1)
∑

xi∈c

κ(xi , xi ) +
∑

xi /∈c

κ(xi , xi )

⎞

⎠

−
|Y |∑

c=1

⎛

⎝ 1
∑m

j=1 |� j c|
m∑

i=1,k=1

�ic�kcκ(xi , xk)

⎞

⎠

=
m∑

i=1

2(|Y| − 1)κ(xi , xi )

−
|Y |∑

c=1

⎛

⎝
m∑

j=1

|� j c|
m∑

i=1,k=1

�ic∑m
j=1 |� j c|

�kc∑m
j=1 |� j c|κ(xi , xk)

⎞

⎠ .

Since the first term is also constant and can be ignored, the
objective then reduces to the CLUHSICAL objective with A =
(2(|Y| − 1)m)/|Y| when mc = m/|Y|, and its �1-normalized
partition matrix has elements �̄ic = (�ic)/

∑m
j=1 |� j c|.
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