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Abstract—As the development of a software project progresses,
its complexity grows accordingly, making it difficult to under-
stand and maintain. During software maintenance and evolution,
software developers and stakeholders constantly shift their focus
between different tasks and topics. They need to investigate into
software repositories (e.g., revision control systems) to know what
tasks have recently been worked on and how much effort has
been devoted to them. For example, if an important new feature
request is received, an amount of work that developers perform
on ought to be relevant to the addition of the incoming feature.
If this does not happen, project managers might wonder what
kind of work developers are currently working on.

Several topic analysis tools based on Latent Dirichlet Alloca-
tion (LDA) have been proposed to analyze information stored in
software repositories to model software evolution, thus helping
software stakeholders to be aware of the focus of development
efforts at various time during software evolution. Previous LDA-
based topic analysis tools can capture either changes on the
strengths of various development topics over time (i.e., strength
evolution) or changes in the content of existing topics over
time (i.e., content evolution). Unfortunately, none of the existing
techniques can capture both strength and content evolution. In
this paper, we use Dynamic Topic Models (DTM) to analyze
commit messages within a project’s lifetime to capture both
strength and content evolution simultaneously. We evaluate our
approach by conducting a case study on commit messages of two
well-known open source software systems, jEdit and PostgreSQL.
The results show that our approach could capture not only how
the strengths of various development topics change over time,
but also how the content of each topic (i.e., words that form the
topic) changes over time. Compared with existing topic analysis
approaches, our approach can provide a more complete and
valuable view of software evolution to help developers better
understand the evolution of their projects.

I. INTRODUCTION

Mining unstructured software repositories (e.g., bug reports,
mailing lists, commit messages, etc.) has emerged as a research
direction over the past decade, which has achieved substantial
success in both research and practice to support software
maintenance [1]–[3]. These studies have shown that interesting
and practical results can be obtained from mining these software
repositories, thus allowing maintainers or managers to better
understand how software evolves.

Unlike structured contents in software repositories (e.g.,
source code, execution traces, change logs, etc.), unstructured
contents are often harder to analyze because the data is often
vague and noisy [4], making it time-consuming for project

stakeholders to manually analyze software repositories. One of
recent advanced techniques is to use topic analysis tools (topic
models), such as Latent Dirichlet Allocation (LDA) [5], to
automatically extract topics from textual repositories to explore
and organize the underlying structure of software documents
[6]–[16]. Topic models can be used to discover a set of ideas or
themes (aka., topics) that well describe the entire corpus. Topics
are collections of words that co-occur frequently in the entire
corpus and usually have a close semantic relationship. More
specifically, a topic model can represent a set of documents
as a set of topics, where each document contains one or more
of these topics, and each topic is composed of a set of words
that appear in the repository.

Understanding how development topics evolve, i.e., change,
in a software repository over time can help project stakeholders
to understand and monitor activities performed in their project
at various time points during project’s lifetime. For example,
project managers can understand what tasks have recently been
worked on and how much effort has been devoted to each task
by retrieving revision control systems [10], while developers
can understand the evolution of certain features of source code
by mining source code repository [6], [9].

To help developers understand software evolution, a number
of LDA-based approaches have been proposed. Thomas et
al. applied the Hall model [17] to analyze the entire history
of source code documents to recover information on how
the strengths (i.e., popularity) of various topics change over
time [6], [9]. They ran LDA once on all versions of a software
project to get a set of topics, and then computed several metrics
to represent the strength of a topic for each of the version. In
such a way, their approach can capture the strength evolution
of the development topics. However, the content of a topic
(i.e., the set of words that form a topic), never changes across
the versions. On the other hand, Hindle et al. applied the Link
model [18] which runs LDA for each time window separately
and then used a post-processing phase to link topics which
are similar enough across successive time windows [10]. Their
approach can capture changes in the content of each topic over
time (i.e., content evolution). Unfortunately, it cannot recover
the strength of a topic across all time windows – for some
time windows, some topics do not exist and are expressed as
combinations of other topics. Thus, none of existing approaches
can capture both strength and content evolution.
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As discussed above, existing work on understanding software
evolution focused on either topic strength evolution or topic
content evolution. But both pieces of information are necessary
for developers to fully understand how software evolves. For
example, project managers may hope to know how much work
was related to feature A at a certain time period, which can be
obtained by computing the corresponding topic strength at that
time. They might also want to know what kind of work was
done for feature A at a particular time point. Topic strength will
not help project managers with this information. Rather, the
content of the corresponding topic can shed light on activities
that are performed for feature A at that time point.

In this paper, we propose a novel approach to capture both
topic strength and content evolution simultaneously. We use
Dynamic Topic Models (DTM) [19] on the commit messages of
a software repository. Then, we capture topic strength evolution
by computing the Normalized-Assignment metric at each time
window to represent the strength of a topic for that time. We
capture topic content evolution by extracting the top 10 words
that characterize a topic for each time window.

We conduct a case study on the commit messages of two well-
known open source software systems, jEdit1 and PostgreSQL2.
Moreover, we also empirically compare our approach with the
state-of-the-art approaches (the link model and hall model).
The results show that our approach can capture the evolution of
both strength and contents of various development topics over
time which corresponds to meaningful description of the whole
development iteration. In addition, compared with existing
topic analysis approaches, our approach can provide a more
complete view of software evolution.

The rest of the paper is organized as follows. Section 2
provides background of unstructured contents in software
repositories and several existing topic analysis approaches.
Sections 3 presents our approach. Section 4 and Section 5
present our case study setup and the results, respectively.
Section 6 enumerates the threats to the validity in our case
study. Finally, we present the conclusion and future work in
Section 7.

II. BACKGROUND

In this section, we introduce unstructured software reposito-
ries and several topic evolution models.

A. Unstructured Software Repositories

Unstructured software repositories, such as the comments and
identifier names in source code, mailing lists, bug database and
commit messages, often contain a variety of information about
different facets of software development. For example, the
nature language text embedded in source code (e.g., comments,
identifier names and string literals) [20] often represents
an important source of domain information and can help
determine the high-level functionality of the source code. Due
to its rich (statistical results showed that between 80% and
85% of the data in software repositories is unstructured [21],

1http://www.jEdit.org/
2http://www.postgresql.org/

Fig. 1. An example of commit from jEdit. The text within the box is a
commit message.

[22]) and useful information, mining unstructured software
repositories can uncover interesting and actionable information
(e.g., co-change coupling) about software systems [1], [2]. In
these unstructured repositories, the revision control systems
maintain and record the history of changes in their repositories.
Developers typically use revision control systems to record
various changes that occur on their project, such as bug fixing
on source code and updates of system’s documentation [23].
Most revision control systems (including CVS [24], Subversion
(SVN) [25], and Git [26]) allow developers to enter a commit
message (example commit see Figure 1) when they commit a
change into the repository, describing the change at a high level,
i.e., Who changed what and when. These unstructured commit
messages are of grate value because they record the history of
changes during the iterative development of a software project,
thus describing how the project is evolving over time.

B. Topic Evolution Models

Topic evolution model is a topic model that accounts for
time in some way, allowing documents to have timestamps. It
is useful to detect and analyze how topics change and evolve
over time. Given a topic, the strength of which may experience
spikes or drops several times during the corpus’s lifetime,
indicating its dynamic contribution to the underlying corpus.
What’s more, the content of a topic may also experience
changes with time forwarding, indicating the evolution of
different aspects within a topic. So far, several popular topic
evolution models have been introduced.

1) The Link Model: The Link Model, proposed by Mei et
al. [18], was first applied to software repositories (i.e., commit
messages) by Hindle et al. [10]. They used LDA for each time
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of the corpus separately to model the evolution of development
topics. Since the topic in time T may be the same as the topic
in time T +1, a post-processing phase is required to link topics
which are similar enough (for example, they share 8 out of 10
words) across successive time interval.

2) The Hall Model: The Hall Model, proposed by Hall et
al. [17], was first applied to software repositories (i.e., source
code) by Linstead et al. [27] and validated by Thomas et al.
to describe source code changes [6]. The Hall Model applied
LDA to the whole versions of the software corpus at a time.
A post-processing phase is also required to separate corpus at
different versions and several topic metrics (such as weight
and assignment [13]) are computed in a particular version to
represent the contribution of that topic in this version.

3) Dynamic Topic Models: Dynamic Topic Models (DTM)
[19], proposed by Blei et al., is the model we study in this
paper. DTM models the evolution of a topic as a discrete
Markov process with normally distributed changes between
time periods, which allows only gradual changes over time. It
captures the evolution of topics in a time-sequentially organized
corpus of documents and produces a doc-topic matrix and
topic-term matrix at each time. Doc-topic matrix represents
that each document is a multi-membership mixture of topics,
based on which we can compute topic metrics at each time
and link them on the timestamps to represent topic strength
evolution. Topic-term matrix represents that each topic is a
multi-membership mixture of terms, based on which we can
represent topic content evolution by inspecting the trends of
word usage and its frequency within a topic.

In the next section, we will illustrate the usage of DTM on
commit messages in detail.

III. APPROACH

Figure 2 depicts the general process of our approach. We
first extract commit messages from a project’s revision control
system. Second, we apply several data preprocessing operations
on the whole corpus to filter out noisy data. Third, we process
each commit messages into word distributions and the time
windows into time sequences. These word distributions and
time sequences are then used as input for DTM to produce
doc-topic matrix and topic-term matrix at each time window.
Finally, we post-process the extracted topics by computing
two topic metrics and mapping the results on timestamps to
visualize the strength evolution and content evolution.

A. Data Preprocessing

There does exist some noise in the unstructured commit
messages, which will confuse and distract the topic analysis
tools. So the commit messages need to be preprocessed. Natural
language preprocessing (NLP) techniques are usually used to
perform one or more preprocessing operations before applying
topic models to reduce noise and improve the quality of the
resulting text [28].

We preprocess the commit messages by applying typical
natural language preprocessing operations [28]. We first split the
original commit messages into tokens and remove unrelated and

TABLE I
THE NOTATIONS USED IN OUR STUDY

Notation Description
z1, z2, · · · , zk k topics
w1, w2, · · · , wn n unique words
T1, T2, · · · , Tt t time intervals

dij The message with index j in Ti
|Ti| The total number of messages in Ti
θdij The topic distribution of message with index j in Ti
zik The topic with index k in Ti
φzik The word distribution of topic with index k in Ti

unimportant words, such as the punctuation, numeric characters
and others (e.g., @, *, !). We also remove common English
language stop words (e.g., the, it, in) to reduce noise. Then,
we stem each word to its original format (e.g., "replaced"
becomes "replac") to reduce vocabulary size. Finally, we prune
the vocabulary by removing overly rare words (those that occur
in less than ω times, which is a threshold relying on the size
and type of the corpus) because these words are of little use
for topic analysis.

B. Applying Dynamic Topic Models

After the preprocessing step, we first analyze each commit
message’s word counts (i.e., word distributions). For each
commit message, we count the occurrence of each word and
their total number in the message, thus producing the word
distributions for that message. Second, we group the messages
into time windows based on their commit dates and count the
total number of time windows and the number of messages
in each window, which we call time sequences for the whole
corpus.

With the word distributions for each message and time
sequences for the whole corpus, we use DTM to produce the
doc-topic matrix and topic-term matrix at each time window.

C. Post-Processing and Visualization

After applying the DTM model, we post-process the doc-
topic matrix and topic-term matrix by computing several topic
metrics to represent topic strength evolution and topic content
evolution. To compute these topic metrics, there are some
notations as shown in Table I. First, we measure how the
topic strength changes over time by computing a Normalized-
Assignment (NA) metric at each time point. The NA of a topic
is the average value of the topic memberships of all documents
in that topic at a time, which indicates the total presence of
the topic throughout the messages in that time. A higher NA
means that a large portion of the messages is relevant to that
topic. We define the Normalized-Assignment of topic zk at
time Ti as

NA(Zk, Ti) =

∑|Ti|
j=1 θdij

[k]

|Ti|
(1)

The strength evolution (SE) of a topic zk is a time-indexed
vector of NA values for that topic:

SE(zk) = [NA(zk, T1), · · · , NA(zk, Tt)]. (2)
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Fig. 2. The general steps for our approach

Then, for the topic content which includes the words and their
distributions, it contains two parts: the word and its frequency
within a topic. We choose the top 10 most frequent words (i.e.,
terms) to illustrate a topic and measure how the topic content
changes over time by computing Term-Frequency (TF) at
each time point. The TF of a term is the probability of the
term memberships of a topic at a given time, indicating the
contribution of different aspects within this topic. A higher TF
means that this topic has a strong relationship with that term.
We define the Term-Frequency of a word wn in topic zk at
time Ti as:

TF (wn, zk, Ti) = φzik [n] (3)

The content evolution (CE) of a topic zk is a time-indexed
vector of TF values for terms used in that topic.

CE(zk) =


[TF (w1, zk, T1), · · · , TF (w1, zk, Tt)]
[TF (w2, zk, T1), · · · , TF (w2, zk, Tt)]

...
[TF (wn, zk, T1), · · · , TF (wn, zk, Tt)]

(4)

We notice that not all the words in the vocabulary should
be taken into account. Normally, we only choose the top 10
most frequent words to illustrate content evolution.

Finally, to better understand the topic evolutions, we map
NA and TF values to timestamps and use line chart to visualize
the results.

Example results are illustrated in Figure 3 and Figure 4.
They show several top words from those topics in each time
period based on the TF value of each word in that topic. From
the results, we see the topic strength evolution by mapping NA
value of topics to timestamps as well as the topic content
evolution by mapping TF values of several top words to
timestamps.

IV. CASE STUDY

A. Studied Systems
To validate our technique, we perform in-depth case studies

on the commit messages of two well-known open source soft-

TABLE II
CHARACTERISTICS OF THE SUBJECT SYSTEMS

Characteristics jEdit PostgreSQL
Purpose Text editor Relational database

Implementation language Java C
Time period considered 2006.1-2010.12 2002.1-2008.12

Number of commit messages 12116 15990
Number of words before Pre-processing 152149 456839
Number of words after Pre-processing 74604 196096

Number of unique-words 889 1763

ware systems, jEdit and PostgreSQL. jEdit is a medium-sized,
mature open source text editor written in Java programming
language. It provides rich features for developers, including
built-in macro language, extensible plugin architecture and
syntax highlighting. PostgreSQL is a powerful, open source
object-relational database system written in C programming
language. It has more than 15 years of active development and
a proven architecture that has earned it a strong reputation for
reliability, data integrity, and correctness. Both of them are
well organized, have extensive documentation which can be
extracted from sourceForge3 and Git4. They have been widely
used as case studies in the context of software maintenance
and evolution [9], [10]. In our case study, we extracted commit
messages from Jan. 2006 to Dec. 2010 in jEdit cvs-repositories.
We also extracted commit messages from Jan. 2002 to Dec.
2008 in PostgreSQL git-repositories. For more details please
refer to Table II.

B. Study Setup

We preprocessed the commit messages of each system
using the steps described in Section III-A. We set ω as 9
and 10 for jEdit and PostgreSQL respectively to prune the
vocabulary because we found these settings could produce
more meaningful topics according to our experimental results.
We set the number of topics as 20 for both the systems
because existing experimentation showed that fewer topics

3http://sourceforge.net/p/jEdit/mailman/jEdit-cvs/
4http://git.postgresql.org/gitweb/?p=postgresql.git;a=log

6



might aggregate multiple unique topics while more topics
seemed to duplicate results and create indistinct topics [10]. We
choose the time interval as one month because it is smaller than
the time between minor releases but large enough for enough
number of commits to be analyzed. Then, we applied DTM5 to
produce doc-topic matrix and topic-term matrix at each time
period. Finally, we compared the results produced by DTM
with the results produced by the Hall Model and Link Model to
figure out whether the combination of the strength and content
evolution can describe more complete and comprehensive view
of software evolution. Since the Link Model and Hall Model
are all based on LDA, we used MALLET6 to carry out topic
analysis. For the Link Model, we linked topics that shared 5
out of 10 words between successive time intervals because we
found higher threshold could produce tiny or even zero trends.

C. A Preliminary Experiment

In our first exploratory pass, we performed a preliminary
case study to know what kind of information is contained in
the large amount of commits and whether DTM can capture
them as much as possible. Since information contained in
revision control systems has been frequently used to support
software evolution research, many taxonomical studies have
been performed on commits to extract the general focus of
them. Swanson [29] proposed a classification of maintenance
activities as corrective, adaptive and perfective. Hindle et
al. [23] created Extended Swanson Categories of Changes,
which are the taxonomical standard we refer to in this paper and
are shown in Table III. Based on these categories of changes,
we performed a preliminary case study to see whether DTM
can capture these notable types of changes (but not limited to
them) from a real system.

We applied our approach to the repository of jEdit from Jan.
2006 to Dec. 2010 to produce results. We investigated into all
topics and messages related to the topics in detail to manually
decide which categories of changes these topics captured. We
show the example topics and the captured information of jEdit
in Jul. 2007 in Table IV. By investigating into the topics and
the top related messages, we found that most types of changes
can be captured by DTM (about 73%). In addition, the potential
information provided by extracted topics is obviously not
limited to traditional categories, for example, topic 2 includes
the information related to database, topic 14 is partly about
regex and topic 3 and 15 have a strong relationship with GUI.

V. RESULTS

In this section, we applied our approach as well as the
Link Model and Hall Model to the repository of jEdit and
PostgreSQL. We discussed our results in detail and compared
the results with these two models. All the empirical data and
results are available online7.

5http://code.google.com/p/princeton-statistical-learning/downloads/list
6http://mallet.cs.umass.edu/
7http://www.risame.net/sun/Experiment%20Data%20and%20Results.zip

A. Results of Our Approach

1) jEdit: We applied our approach to jEdit from 2006 to
2010, which includes over 12K commits. We found that most
topics’ strength evolution fluctuated violently during the entire
time period, which means that various development topics
are distributed in each time and no one can dominate the
development iteration across successive time intervals. We also
found that the most common words across multiple topics
are add and plugin, indicating the overall active growth of
the project and large collection of plugins, which is one of
the most core features of jEdit. We examined each topic’s
strength and content evolution and investigated into the commit
messages related to that topic (where θdij

[k] > 80%) in detail
to understand the purpose of each topic. We notice that there
were several notable topics:

Sort and Search. Topic 2 has a strong relationship with sort
and search. We found that the most frequent words contained
in this topic were search, sort, query, result and tag. The
topic’s strength reaches to peak (15%-16%) after May. 2010,
and before that time it varies from 2% to 8% and fluctuates
violently. We looked at the top matching commits and found
that 46% of them come after May. 2010. Then, we turned
our attention to different aspects within this topic and found
that the TF of sort seems to decline after Oct. 2006 while
query seems to rise obviously since 2009. This was the real
content evolution trend of this topic because we found that
the sentences like "quick search tag query", "DB queries" and
"query results" appeared so often during the late period while
the sentences like "sort the list" and "quick search sorted"
appeared frequently around Oct. 2006 but rarely after that
time.

Module Adding and Removing. In topic 6, tokens such as
ad, file, method, mode and task are common during the whole
time, which clearly implicate the activities of adding modules
(e.g., javacc edit mode, jflex edit mode) or new features. The
topic’s strength varies from 1% to 10% and also experiences
violent fluctuation. The TF of method seems to decline since
Sep. 2006 while file seems to be stable consistently, indicating
that work related to adding method is becoming lower and
lower but adding file is an on-going development job from the
beginning to the end. On the other hand, topic 13 includes
common words such as remov, deprec, rid, redund and unus,
which holds the opposite activity of Module Add. This topic
has a strong relationship with removing unused class, method,
icon and api and the topic’s strength varies from 2% to 16%
and also fluctuates violently (details see Figure 3).

Fixing Bug and Error. We extracted two topics related to
bug fix but they represent different facets respectively. Topic 7
includes common tokens such as fix, error, gdb, typo, issu and
compil which tend to be about fixing error (such as compilation
error or encoding error) while topic 16 includes common tokens
such as fix, bug, npe, except, wrong, null and problem which
tend to be about fixing runtime bug or the bug recorded in bug
database. Since these two topics are similar to some extent, we
put them together and sum up their NA values at each time to
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TABLE III
EXTENDED SWANSON CATEGORIES OF CHANGES

Categories of Change Issues addressed Type and abbreviation
Corrective Processing failure bug fix (bug)

Performance failure debug (dbg)
Implementation failure

Adaptive Change in data environment platform specific (plat), testing (tst)
Change in processing environment build (bld), documentation (doc), data

Perfective Processing inefficiency clean up (cln), indentation (ind), maintenance (mntn)
Performance enhancement refactoring (rfact), module move (mmod), module remove (rmod)
maintainability

Implementation New requirements initialization (init), module add (add), feature add (fea)
external (ext), internationalization (ind)

Non functional Legal legal (lic), rename (ren), token replace (trpl)
Source control system management source control (scs), merge (mrg), versioning (ver)
Code clean-up

other other cross, branch (brch)

TABLE IV
EXAMPLE TOPICS AND THE CAPTURED TYPES OF CHANGES FROM JEDIT IN JUL. 2007

Index Topic (illustrated by top 10 words) Captured types of changes

1 line work comment fold commit import command ad javadoc fix init bug doc fea

2 properti search ad result string word sort databas queri tabl fea

3 view textarea set parser sidekick dialog posit locat default jEdit null

4 ad menu class action add list context descript filter macro fea doc

5 file code style clean ad path fix directori vf sourc bug fea data ind

6 mode ad miss edit file thread index method task name add fea

7 fix error complet compil handl warn better variabl function issu bug mntn dbg

8 plugin jEdit directori packag instal ad depend org dir repository add

9 project save move load svn trunk file layout merg branch brch mrg mmod

10 buffer close replac bufferset editpan except view user current method null

11 option doc pane tree ad select set node configur color fea bug mntn doc

12 chang updat document minor small changelog log pre prop list doc cross

13 remov icon method api deprec call unus rid redund import rmod

14 java chang html label regex beanshel txt window remov regexp rmod doc

15 dockabl ad dock button action window featur area show framework fea

16 fix bug npe pars indent wrong null except small match bug

17 tag releas patch test initi appli creat explicit ad fold scs init fea bug tst

18 version updat number depend bump pre jEdit requir oop ad ver

19 build xml support file ad plugin script jar target php bld

20 make code diff cleanup check chang log messag pv data cln doc

produce the total strength evolution of two topics. We found
that the total strength varies from 6% to 21% with an average
of 12%, which is very high compared with other topics. Thus
fixing bug and error is a general topic which makes up a large
portion of the development work.

New Directory for Plugins. When looking at the commit
messages related to topic 8, we found that most of the messages
have a fixed format during the early time (before 2007),
which is Directory /cvsroot /jEdit /plugins / . . . added to the
repository, such as Directory /cvsroot /jEdit /plugins /minitools
/src /gatchan /jEdit /minitools /autosave added to the repository
committed by Matthieu Casanova at 20:08:22, 05-28-2006 .
The common tokens included in this topic during that time
are plugin, jEdit, directori, repositori and ad and the topic’s
strength reaches to top (about 17%), indicating that the topic

has a strong relationship with creating new directory for a
plugin and occupies a large portion of the work before 2007.
However, after 2006, the topic’s strength becomes lower (2%-
8%) and in addition to creating new directory for plugins, other
types of commits related to plugin, such as add plugins and
install package in plugins, are also clustered into this topic.

GUI. In topic 15, tokens such as dockabl, dock, action,
button, panel, area and window are common during the whole
time, indicating different components related to GUI. The
topic’s strength reaches to peak (about 17%) around Sep. 2008
(see Figure 3) and we found that about 20% of the top matching
commits come from this time period. We also found that
dockable window is a notable GUI feature provided by jEdit
because the word dockabl is always the top frequent term
within this topic from the beginning to end. This is consistent

8



Fig. 3. Example topic evolutions estimated from jEdit. For two topics, we illustrate: (a) the top ten most frequent words at seven month lags (b) the strength
evolution by mapping NA values to timestamps (c) the content evolution by mapping TF values of several notable words within the topic to timestamps.

with one of the jEdit features – "docked windows".
There are also some other development topics, which include

sidekick plugin, encoding and code style, branching or merging
the main trunk of the version control system, buffer and
bufferset, update or change of the system’s documentation,
regular expressions, tag release, bumped version numbers, build
system files and code cleanup.

2) PostgreSQL: We also applied our approach to PostgreSQL
from 2002 to 2008, which includes over 15K commits. Like
what we have found in jEdit, most topics in PostgreSQL also
experienced violent fluctuation during the whole development
time period. But the results are different from that of jEdit.
Specifically, the topics extracted from PostgreSQL reveal
more professional knowledge (about database) than jEdit. This
provides some difficulty for us to understand each topic deeply
because we are lack of the relevant knowledge. So in this
section, we choose several topics that we feel confident for
illustration.

Update. Topic 4 has a strong relationship with update
because we found the common tokens contained in this topic

are updat, faq, releas, note and document. The topic’s strength
varies from 2% to 24% with an average of 8%, which is high
compared with other topics, indicating that the work related to
update release and faq constitutes a large part of the whole
development work. From the perspective of content evolution,
we found that the TF of "releas" and "note" rises steadily from
the beginning to the end. So it seems that more update work
is occupied by release note during the late period.

SQL. We extracted two topics related to SQL but they
represent different aspects. Topic 5 tends to implicate the SQL
statement because common words contained in this topic are
tabl, transact, kei, trigger, lock, constraint, drop and alter (as
shown in Figure 4). While topic 6 tends to implicate a different
aspect from topic 5, i.e., SQL function. Words such as function,
sql, type, return, paramet, argument and call occur frequently
during the whole time period. From our manual analysis in the
original corpus, we found much work related to SQL function
concentrated on function’s arguments and return types, which
is consistent with the extracted topic.

Bug Fixing. Like jEdit, we also extracted two topics related
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Fig. 4. Example topic evolutions estimated from PostgreSQL. For two topics, we illustrate: (a) the top ten most frequent words at eight month lags (b)
the strength evolution by mapping NA values to timestamps (c) the content evolution by mapping TF values of several notable words within the topic to
timestamps.

to bug fix from PostgreSQL’s repository. Topic 3 contains
common words such as fix, bug, patch, problem, typo and
broken, while topic 14 contains common words such as error,
messag, report, fix, elog, failur and log. We investigated the
top matching messages related to these two topics respectively
to identify the differences between them. We found that topic
3 emphasized on fixing a bug and resolving it immediately
while topic 14 emphasized on recording an error message in
bug reports when meeting a bug or error, with developers
sometimes trying to fix it, sometimes just recording it. Finally,
we put these two topics together as we did in jEdit. We found
the the total strength varies from 7% to 21% with an average
of 12%, which is very high compared with other topics. So it
seems that the development work related to bug fixing makes
up a big part of the whole work in PostgreSQL’s development
iteration.

Building and Configuration. The focus of topic 6 is on the
building or configuration of system files (such as Makefiles)
because the common words contained in it are make, build,

makefil, thread, configur, instal and win (as shown in Figure 4).
We found that the topic’s strength reached to peak around Mar.
2004, and meanwhile the TF of thread became obviously high
around this time. So it seems that much effort was devoted to
this topic and to some degree the topic may be more relevant to
thread than any other time. To figure out whether we are correct,
we investigated into the commits related to this topic around
2004. As a result, we found that thread compile is requested
during this time as some messages such as the enabling of
threads for the OS or letting configure enable threads occurred
frequently.

There are also some other development topics, which
include interval style and date format, database connection,
documentation, regression test, module add, data types and
file.

B. Comparison with the Link Model and Hall Model

In our last exploratory pass, we compared the results
produced by the Link Model, which provides content evolution,
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and the Hall Model, which provides strength evolution, with
the results produced by our approach to figure out whether both
the information of strength evolution and content evolution can
provide more complete and comprehensive view of software
evolution.

Comparison with the Hall Model. The Hall Model only
provides strength evolution for the extracted topics. Instead,
DTM can provide strength evolution as well as the content
evolution, which helps developers understand more detailed
information of development iteration. For example, we found
that the strength evolution of topic Module Remove reached
peak around the middle time of 2008 for both the DTM and
the Hall Model. However, from the content evolution provided
by DTM, we could get additional information, i.e., remove icon
and remove method which make a strong contribution to this
topic at that time. The top word of this topic extracted by the
Hall Model was always the method even the part of the work
related to remove method was declining during the later time.
Without the information provided by the content evolution, we
may think this topic is dominated by remove method during
the whole development iteration but it is not the real trend.
What’s more, we found that the topics extracted by the Hall
Model could be dominated by the commit messages from a
short time period. For example, we extracted a topic formed by
words jedit, ad, directori, repositori, pluguin, cvsroot, src, doc,
api and org. However, by investigating the messages related to
this topic, we found that most of them belonged to the time
windows before Aug. 2006 and became rare after that time. So
it is more suitable to use this topic to describe the messages
before that time instead of the whole time. Unfortunately, even
the strength of this topic dropped quickly, it is still viewed as
a global topic in the hall model and other topics in the later
time may be ignored. While in DTM, the content of the topic
is allowed to change with the evolution of the corpus, which is
more useful in practical comprehension of software evolution.

Comparison with the Link Model. The Link Model
produced more detailed and local topics to describe the
development activities at different time intervals. However,
it seems incomplete because we can only learn what has been
done in each time but we cannot get the information about
how much effort was devoted to each topic. For example, is
the effort devoted to GUI much greater than the effort devoted
to remove API? We cannot answer it if we only rely on the
content evolution of these topics. What’s more, the linking
phase requires the use of a similarity threshold to determine if
a topic found in one time is similar to another topic in the next
time. In our topic analysis for jEdit repository during 2008,
we varied the similarity threshold from 3 to 7 out of ten words
and the number of trends are 17, 7, 2, 1 and 0 respectively.
The selected time interval lasted at most 3 months. Thus it
is difficult for us to choose an optimal threshold value to use
this model. However, except the number of topics, there is no
other redundant parameters for DTM to choose.

As discussed above, topic content evolution and topic
strength evolution are complementary, and these two types
of information can provide more complete and comprehensive

results to describe the evolution of development topics than
either one of them.

VI. THREATS TO VALIDITY

In this section, we discuss several limitations to our study.
Quality of commit messages. Similar to other software

repository analysis techniques, our results are dependent on the
quality of the commit messages. Because of the poor discipline
and conventions, there are a certain amount of commits with
empty or irrelevant messages which do not have any sematic
values, thus leading to some impacts on our results.

Selected systems. We only conducted our studies on two
open-source systems due to their robust designs and extensive
documentation. Thus we cannot guarantee that the results
obtained in our study can be generalized to other types of
systems, such as close-source systems or the systems with
worse designs. Additional case studies are needed to investigate
the generalization of our approach.

Preprocessing steps. In our study, we performed four
preprocessing steps on the commit messages. There is currently
no guidance or consensus on which steps are actually necessary
or beneficial. What’s more, the case happens that the word
which should be chosen as stop word may be not chosen in
our study, and vice versa. In addition, the choice of ω (the
threshold of pruning) is set as fixed in our study. Other settings
of stop words and ω may produce different results when using
DTM.

Parameter values. In our study, we set the number of
topics to 20, the time interval to one month, and the topic is
represented by top 10 words. Since there is no standard way to
determine optimal values, our choice is based on the previous
work of Hindle et al. [10].

Interpretation on topics. Topics generated by DTM were
interpreted and labelled by our manual analysis. Since we are
lack of expertise on the studied systems, the interpretation and
labelling on the topics may be inaccurate and questionable.
The evaluation should ideally be made by impartial developers,
which will become part of our future work.

Comparison approach. In the last step of our case study, we
only compared the results from the perspective of whether the
combination of the content and strength evolution can provide
more complete and comprehensive results than either one of
them. But we did not compare the results in the perspective
of either the content evolution or the strength evolution. The
occasion may happen that the strength evolution produced by
the Hall Model would provide more accurate and sensitive
trend than DTM, or the content evolution produced by the Link
Model would provide more detailed topics than DTM, which
will become our future work.

VII. CONCLUSION AND FUTURE WORK

Traditional topic evolution models were designed to produce
either the strength evolution or the content evolution of the
unstructured software repositories. In some cases, developers
may have the request to know not only the evolution of
the strength of a topic but also the evolution of different
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aspects within it. In this paper, we applied the Dynamic Topic
Models to the commit messages to represent both their topic
strength and content evolution, respectively. Some studies were
conducted on two well-known and open source projects, jEdit
and PostgreSQL. Moreover, we compared the results with
the state-of-the-art approaches, i.e., the link model and hall
model. We found DTM could produce more complete and
comprehensive view of software evolution, which is useful for
developers and other project stakeholders to understand the
changes of development topics from different aspects in a time
interval.

Our approach can be improved by choosing more optimal
preprocessing steps and parameter values. So in our future
work, we want to perform more case studies to estimate the
threshold of pruning and the set of stop words to be removed.
In addition, the number of topics may be too small or too
large, so we want to find a good estimation of the number
of topics [7]. In our studies, we compare our approach with
the state of the art based on the combination of the content
and strength evolution, we want to conduct more comparative
studies from the perspective of either one of them. Finally, we
want to conduct more experiments on other types of projects
to evaluate the generality of our approach.
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