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Abstract
Efficient Input/Output (I/O) data path between NICs and CPUs/-

DRAMs is critical for supporting datacenter applications with high-

performance network transmission, especially as link speed scales

to 100Gbps and beyond. Traditional I/O acceleration strategies,

such as Data Direct I/O (DDIO) and Remote Direct Memory Ac-

cess (RDMA), perform suboptimally due to the inefficient utilization

of the Last-Level Cache (LLC). This paper presents CEIO, a novel
cache-efficient network I/O architecture that employs proactive

rate control and elastic buffering to achieve zero LLC misses in the

I/O data path while ensuring the effectiveness of DDIO and RDMA

under various network conditions. We have implemented CEIO
on commodity SmartNICs and incorporated it into widely-used

DPDK and RDMA libraries. Experiments with well-optimized RPC

framework and distributed file system under realistic workloads

demonstrate that CEIO achieves up to 2.9× higher throughput and

1.9× lower P99.9 latency over prior work.

CCS Concepts
• Networks→ Data center networks; Network design princi-
ples; • Software and its engineering→ Operating systems.
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1 Introduction
The network I/O system is designed to facilitate data transfer among

host I/O components (e.g., NIC, LLC, DRAM, and CPU), serving as

the network entrance for host applications. A typical I/O process

begins with the NIC receiving a packet from the network, after

which the NIC firmware copies the packet to an I/O buffer in the

host memory. Traditional network I/O architectures predominantly

rely on host CPUs to handle the remaining I/O operations, such as

transport protocol processing and payload processing. However,

as network bandwidth scales to 100/200/400Gbps, CPUs become

a crucial bottleneck in the I/O data path—the processing speed

of CPUs lags significantly behind the network transmission rate—

failing to achieve the expected line-rate throughput and µs-scale

latency [9, 10, 18, 19, 35, 65, 84].

To address the issue, hardware vendors such as Intel, AMD,

and NVIDIA have introduced techniques like DDIO [8, 15] and

RDMA [39, 77]. These techniques aim to accelerate the I/O pro-

cess by enabling NICs to issue direct memory access (DMA) re-

quests to the LLC and offloading critical I/O operations to the

NICs respectively. Although promising, our community has no-

ticed that the inefficient LLC utilization leads to suboptimal I/O

performance [20, 69, 70, 73, 76]. Specifically, LLC misses occur

when the volume of in-flight data within the I/O system exceeds

the LLC capacity, forcing additional data retrieval from DRAM.

https://doi.org/10.1145/3718958.3750488
https://doi.org/10.1145/3718958.3750488
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Figure 1: Design space of optimizing LLC efficiency in CPU-
NIC I/O data paths.

Under such conditions, the benefits of DDIO and RDMA are signif-

icantly diminished due to increased CPU cycle consumption and

memory bandwidth usage (§2.2). Consider a 200Gbps link trans-

mitting 1024B packets, each I/O operation have to complete within

only 41.8 nanoseconds to achieve the line-rate. If an LLC miss

occurs during packet processing, a delay over 100ns will happen

and the desired performance cannot be promised [17, 20]. Even

worse, multi-core parallelization suffers from low efficiency due

to intensified cache contention and poor scalability of concurrent

DRAM accesses, leading to substantial CPU cycle wastage and thus

unacceptable for datacenter applications [65, 73].

To unleash the potential of DDIO and RDMA, recent efforts

have explored two directions to mitigate LLC misses for I/O ef-

ficiency (Figure 1): limiting the I/O upload rate and limiting the

I/O accessible capacity. The first direction, represented by Host

Congestion Control (HostCC) [1] and its RDMA variant RHCC [74],

reactively reduces the NIC’s DMA rate upon detecting I/O con-

gestion signals to mitigate LLC contention. The second direction,

represented by ShRing [61], limits the I/O accessible capacity by

aggregating all I/O buffers into a shared ring, fixing its size smaller

than the LLC capacity to eliminate LLC misses.

However, as revealed in §2.3, directly applying these two ap-

proaches suffers from slow response and packet loss in practice: (1)

the reactive rate control, such as HostCC, is triggered by LLCmisses

because it relies on LLC congestion signals, resulting in slow I/O

processing in CPUs; (2) the fixed buffer, such as ShRing, requires to

frequently trigger network congestion control algorithms (CCAs)

to prevent packet loss, resulting in a slow and unstable network

ingress rate. In our experiments, we observe these limitations cause

up to 1.9× performance degradation in realistic network environ-

ments, such as dynamic flow distribution and network burst (Fig-

ure 4). This motivates us to explore a new I/O architecture that

features proactive I/O rate control and elastic buffering (Figure 1),

thereby enabling optimal LLC utilization and stable performance

under various network conditions.

Guided by this insight, we propose CEIO (§3), an I/O architec-

ture that achieves optimal LLC utilization by developing an I/O

manager in the NIC—the entrance of I/O data path. At its core,

we proactively regulate the producer’s and consumer’s rates of

I/O buffers between the NIC and the CPU/DRAM via credit-based

flow control (§4.1). Specifically, all network flows need to apply

for credits from the CEIO flow controller before uploading, where

the total credits correspond to the LLC capacity. This ensures that

LLC will not be overflowed. On the other hand, CEIO elastically

buffers exceeded I/O data in the on-NIC memory to prevent packet

loss (§4.2), featuring order-preserving and asynchronous access

mechanisms that enhance end-to-end I/O efficiency.

We have fully implemented CEIO on NVIDIA BlueField plat-

form [62] and incorporated it with two popular I/O frameworks,

DPDK [22] and RDMA [23] (§5). In §6, we evaluate CEIO with well-

optimized NIC-CPU data path implementations across realistic

workloads—a key-value store built on eRPC [37] and an in-memory

DFS named LineFS [36]—to understand benefits of CEIO’s core idea.
In a 200Gbps network configuration, CEIO achieves 1.2× to 2.5×
improvements in terms of throughput and 1.4× to 1.9× improve-

ments in terms of P99 and P99.9 latency compared to previous

I/O optimizations such as HostCC and ShRing. Additionally, CEIO
maintains effective and stable performance under various network

conditions, such as dynamic flow distribution and network burst.

CEIO is open-sourced at https://github.com/axio-project/ceio.

This work does not raise any ethical issues.

2 Background and Motivation
2.1 Network I/O Datapath
The network Input/Output (I/O) subsystem facilitates data trans-

fer between hosts (e.g., CPU processors and DRAM) and network

devices (e.g., NICs). Its primary goal is to deliver line-rate through-

put and µs-scale latency, providing efficient network services for

modern distributed systems [16, 25, 56, 57, 63, 67]. A legacy I/O

system comprises four key hardware components that collabora-

tively complete the data movement: NIC firmware, PCIe Direct

Memory Access (DMA) engine, host memory controller, and CPU

processor. As illustrated in Figure 2, when a packet arrives at the

NIC, it undergoes the following stages [21, 60]:

1 The firmware retrieves the address of an available buffer in

the host memory (encapsulated in a descriptor) and issues a

DMA request to the PCIe DMA engine.

2 The DMA engine encapsulates the packet into Transaction

Layer Packets (TLPs), transfers it across the PCIe interconnect,

and writes it to the Integrated I/O (IIO) buffer.

3 The host memory controller retrieves the packet from IIO,

writes the packet to DRAM, and completes this DMA request.

4 The firmware notifies the CPU of the arrival of a new packet

using either an interrupt or a polling mechanism.

5 Finally, the CPU handles the remaining I/O operations (e.g.,
network stack processing) through standard memory access.

Modern I/O systems primarily utilize two techniques to acceler-

ate the above data movement: Direct Data I/O (DDIO) [15, 29, 68]

and Remote Direct Memory Access (RDMA) [26]. Different data-

center applications benefit from these two techniques in distinct

ways, as shown in Figure 3.

1 NIC→ LLC→ CPU: DDIO accelerates 3 by allowing the

memory controller to directly write received data to the Last-Level

Cache (LLC) [41, 76]. This significantly reduces memory access

latency of CPUs, providing a substantial performance boost for

applications that rely on real-time CPU processing, such as Remote

Procedure Call (RPC) requests, network function processing, and

database operations.

https://github.com/axio-project/ceio
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Figure 2: Illustration of the I/O data path between NIC and
CPU/DRAM, without DDIO or RDMA acceleration (details
are described in §2.1).

2 NIC→ LLC→ DRAM: RDMA bypasses CPU-involved I/O

operations (i.e., 4 and 5 ) by offloading network stack pro-

cessing to the NIC hardware. This allows the data movement to be

completed without CPU involvement, which is typically considered

capable of achieving line-rate transmission [38, 40, 45, 79, 80]. This

technique is particularly suitable for applications that require mini-

mal CPU involvement, such as large file transfers in distributed file

systems (DFS) and data exchanges in AI-related scenarios
1
.

Finally, the accelerated data flows in I/O systems (I/O flows) can

be categorized into two types. In the following sections, we refer

to 1 as CPU-involved flows and 2 as CPU-bypass flows.

2.2 Managing LLC is Necessary
To fully leverage both CPU-involved and CPU-bypass flows for

accelerating data movement, effective management of the LLC is

crucial [19, 84]. Once DDIO is enabled, all I/O data will first be trans-

mitted to the LLC, whether from CPU-involved or CPU-bypass
flows. However, it is important to note that the LLC is limited (i.e.,
typically only dozens of megabytes in total) and shared (i.e., among

all CPU cores and NICs within a NUMA node). As a result, LLC

misses easily occurs, we take two common scenarios as examples:

• Excessive in-flight data volume:When the volume of in-flight I/O

data significantly exceeds the limited LLC capacity
2
, LLC misses

can easily occur. This situation commonly arises under heavy

network load, such as during sustained line-rate transmission

or sudden bursts. For example, when running an RPC system

(consists of CPU-involved flows), frequent cache misses are

observed when incoming packets arrive faster than the CPU

can process them. In such cases, subsequent packets overwrite

earlier ones in the LLC, prematurely evicting them to DRAM

before the CPU accesses them.

1
For GPUs lacking NVIDIA GPUDirect [50] and PCIe Peer-to-Peer (P2P) capabilities,

such as the NVIDIA Geforce Series [48, 49], all I/O operations must involve DRAM,

resulting in a data flow pattern similar to 2 .

2
The capacity depends on the DDIO configuration [20], typically two cache ways of

LLC.

• Coexistence of CPU-involved/CPU-bypass flows: When hetero-

geneous I/O flows coexist, LLC misses are frequent due to the

shared nature. For instance, deploying an RPC system (consists of

CPU-involved flows) alongside a distributed file system (consists

of CPU-bypass flows) in the same server, which is one common

setup in public clouds such as Amazon EC2 multitenant servers.

In this case, the CPU-bypass flow would continuously flush the

LLC, evicting the CPU-involved flows’ packets to DRAM before

the CPU processes them and thus causing LLC misses.

Both CPU-involved and CPU-bypass flows suffer from subopti-

mal when LLC utilization is inefficiency, resulting up to 1.5× per-
formance degradation according to recent works [1, 20, 61, 73, 74].

We show two concrete examples to explain the performance degra-

dation, as illustrated in Figure 3:

• Impact on CPU-involved flows 1 : Once the data is evicted from

the LLC to DRAM before the CPU processes it, the CPU must spend

additional cycles to retrieve the data from DRAM. Then, the I/O

data paths are extented to 3 NIC→ LLC→ DRAM→ LLC→
CPU, which directly increases the latency of each I/O operation.

Furthermore, the extended I/O flows have two negative impacts on

the throughput metric [20]: (1) CPU cycles getting burden due to

the additional memory access overhead, failing to achieve expected

packet processing rates; and (2) the extended latency prevents com-

modity hardware from processing packets at line rate, where the

access latency of DRAM is typically greater than the interarrival

time between two packets (e.g., 41.8 nanoseconds for 1024B packets

in 200Gbps network settings). Thus, both latency and throughput

metrics degrade, leading to suboptimal I/O performance.

• Impact on CPU-bypass flows 2 : The process of the CPU retriev-

ing missed packets from DRAM would block CPU-bypass flows,

significantly degrading their throughput [73]. The underlying rea-

sons are twofold: (1) 1 (issue DMA request) requires available

PCIe credits, which can be exhausted due to the long processing

latency of CPU-involved flows; and (2) the throughput of 3 (mem-

ory controller fetches the packet from IIO to DRAM) degrades due

to the additional memory access overhead, occupying the mem-

ory bandwidth that required by CPU-bypass flows. Consequently,
CPU-bypass flows degrade to 4 NIC→ (block) LLC→ (slow)
DRAM, which is less efficient than the original 2 one.

Summary: When LLC utilization is inefficient, achieving line-rate

and µs-scale latency I/O becomes nearly impossible due to increased

consumption on CPU cycles and memory bandwidth. Management

is necessary to mitigate the LLC contention, unleash the potential

of both CPU-involved and CPU-bypass flows, and prevent perfor-

mance degradation.

2.3 Existing Works and Limitations
As the representative of controlling the I/O rate, HostCC reduces

the NIC’s DMA rate
3
upon detecting I/O congestion signals (i.e., IIO

buffer occupancy) that indicates the I/O flow cannot be consumed

by the CPU or memory controller in its input rate. For limiting

the I/O capacity, ShRing [61], constrains the I/O-accessible buffers

3
HostCC achieves this by triggering network congestion control algorithms such as

DCTCP.
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Figure 4: The fundamental limitations of existingmethods such as ShRing andHostCC lead to poor I/O performance, particularly
due to the slow response and packet loss. Expected performance is calculated using the number of CPU-involved flows and the
single core throughput of ShRing with sufficient LLC.

smaller than the LLC capacity, ensuring all in-flight data remains

within the LLC and eliminating LLC misses.

While promising, we find they face two fundamental limitations:

(1) reactive control suffers from slow response, and (2) fixed buffer

risks packet loss, both of which result in suboptimal performance in

practice. To demonstrate the impact of these limitations, we conduct

experiments under two common datacenter scenarios: dynamic flow

distribution and network burst.

Experiment Setup: We conduct experiments on two servers con-

figured for 200Gbps network. Each server is equipped with two

Intel Xeon Silver 4309Y CPU (16 cores per CPU, 2.8GHz for base

frequency and 3.6GHz for turbo frequency), one NVIDIA BlueField

3 SmartNIC with PCIe 5.0×16 interconnection, and 512GB DDR4

3200MT/s DIMMs connected to 8 memory channels. The servers

are configured to handle 200Gbps network traffic, constrained by

their link capacities.

We deploy two I/O data paths for CPU-involved and CPU-bypass
flows: a key-value store based on eRPC [37], built upon DPDK, and

an in-memory DFS named LineFS [36], built upon RDMA (details

see §6.1). DCTCP [2] is adopted for basic network rate control. To

ensure sufficient computational capacity and prevent performance

degradation caused by context switches, we dedicate one CPU core

to each I/O flow. Million packets per second (Mpps) is used as the

throughput metric for the I/O systems.

Degradation on Dynamic Flow Distribution: We first evaluate

the performance of the two kinds of I/O flows in a dynamic flow

distribution scenario. Initially, eRPC is deployed to handle eight

CPU-involved flows, and every 10 seconds, two of these flows are

replaced with CPU-bypass flows handled by LineFS.

The throughput of CPU-involved flows, shown in Figure 4a,

reveals the following observations: (a) HostCC and ShRing improve

the throughput by up to 1.3× and 1.7×, respectively, demonstrat-

ing the effectiveness of LLC optimizations. (b) However, when the

flow distribution changes, the throughput improvement falls sig-

nificantly lower than expectations. For HostCC, its slow response

leads to unavoidable cache misses (about 70%) when generating

congestion signals for DCTCP. These cache misses prevent HostCC

from adjusting the DMA rate at the optimal timing, resulting in

performance degradation of up to 1.9× compared to the expected

performance (calculated with infinite LLC). For ShRing, its fixed

I/O buffer configuration frequently triggers DCTCP to limit the

network transmission rate. This occurs because the newly arrived

CPU-bypass flows consume a portion of the I/O buffers allocated to

CPU-involved flows. As a result, CPU-involved flows are forced
to reduce their sending rates by up to 1.6× to avoid packet drops (re-
alized by DCTCP).

Degradation on Network Burst: Next, we evaluate the perfor-
mance of CPU-involved flows in a network burst scenario. We

barely deploy eRPC to handle eight CPU-involved flows, with two

additional burst CPU-involved flows (handled by two extra cores)

arriving every 10 seconds. The results in Figure 4b indicate that the

performance degradation is even more pronounced compared to

the dynamic flow distribution scenario. This is because the increase

in the total number of flows intensifies LLC contention, further

amplifying the limitations of slow response and fixed I/O buffer.
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Limitations I/O Performance
Reactive Rate Control
(represented as HostCC)

The slow response limitation incurs unavoidable LLC misses Slow I/O path processing rate

Fixed Buffer
(represented as ShRing)

Unexpectedly trigger CCA to avoid packet loss Slow network transmission rate

CEIO Introduce proactive rate control and elastic buffer to address previous limitations Near line-rate performance

Table 1: Comparison of different I/O optimization approaches

Our Insight:The slow response in reactive rate control (e.g., HostCC)
leads to unavoidable LLC misses, resulting in slow I/O path pro-

cessing. Meanwhile, the packet loss in fixed buffering (e.g., ShRing)
leads to frequent triggers of CCAs, resulting in slow network trans-

mission rate. Both factors contribute to suboptimal performance.

These findings motivate us to incorporate proactive rate control to

intervene I/O rates, along with elastic buffering to store exceeded

I/O data, at the entrance of the I/O system—the NIC—before

packets are DMAed to the LLC.

3 CEIO Overview
In this paper, we propose a cache efficient I/O architecture, named

CEIO, aiming to optimize LLC efficiency by addressing the funda-

mental limitations of existing solutions (Table 1). The high-level

workflow of CEIO is illustrated in Figure 5.

NIC-driven, credit-based flow control.When a packet arrives at

the NIC, it consumes a credit before initiating a DMA request. The

total number of credits corresponds to the LLC capacity, with cred-

its being consumed by newly arrived packets and replenished upon

they have been processed. If a credit is successfully obtained, the

packet proceeds through the legacy I/O process (Figure 2). Other-

wise, the packet will be buffered in the on-NIC memory (e.g., 16GB
in commercial platform BlueField 3). Intuitively, the flow control

proactively limit I/O rate before the LLC misses occur, so that pre-

vent 1 degrades to 3 and 2 degrades to 4 . A credit-based

flow controller (§4.1), implemented on the NIC, is responsible for

managing this process.

Elastic on-NIC & host I/O buffer management. The elastic

on-NIC buffer stores excessive packets rather than drops them,

effectively avoiding unexpected CCA triggers that could degrade

network performance. CPUs access the on-NIC buffer to fetch pack-

ets via ring buffers and DMA, similar to the legacy I/O process.

Specifically, when a CPU thread calls the recv() API (§5), CEIO
driver will poll the legacy I/O ring and the on-NIC buffer ring regis-

ters to check if there are packets arrived. If the on-NIC buffer ring

is not empty, the driver will initiate a DMA read request to fetch

the packets to the host memory. Then, the recv() API returns the

number of packets that have been stored in the host memory to the

application for further processing. To support this functionality, an

elastic buffer manager (§4.2) is required.

The proposed I/O architecture can be divided into a fast path and

a slow path. The fast path, defined as NIC→ LLC→ CPU/DRAM,

achieves line-rate throughput and µs-scale latency easily due to di-

rect access to the LLC without incurring misses. However, the slow

path, defined as NIC→ on-NIC Memory→ CPU/DRAM, introduces

additional overheads, leading to two key technical challenges:

Network Flows

if credits are available
C1: Minimize latency impact

on CPU-involved flows

C2: Minimize out-of-order and synchronization overheads

if credits are exhausted

LLC

On-NIC
MemoryFast path

Slow path

fetch on-NIC
I/O buffers

CPU Cores
CEIO
Driver

On-NIC CEIO ModulesCredit-based Flow
Controller
(mitigate C1)

Fast Path Ring

Slow Path Ring Elastic Buffer
Manager

(mitigate C2)

Figure 5: The overview architecture of CEIO.

• How to address high latency caused by slow path: The slow
path incurs higher latency, as the CPU must fetch data from the

on-NIC buffer rather than directly from the LLC. This overhead,

introduced by data traversal over the PCIe interconnect between

the NIC and CPU, can reach up to 1000ns [12, 28, 47]. While this

latency is inherent to the architecture, it poses a particular chal-

lenge for CPU-involved flows, where the CPU stalls while waiting

for incoming packets. To address this, CEIO prioritizes keeping

CPU-involved flows on the fast path. A common strategy is to

assign higher priority to these flows. Though straightforward, al-

lowing users to tag flow priorities introduces additional complexity

for application developers and raises potential fairness and security

concerns [11]. In this paper, we address this challenge by designing

a credit allocation and release approach within the credit-based

flow controller (§4.1). This flow control ensures that CPU-involved
flows are more likely to utilize the fast path, achieving higher pri-

ority based solely on network information, such as message size,

network throughput, flow completion time, etc.

• How to minimize the interaction overheads in slow path:
Slow path introduces two extra interaction overheads: (1) Some

packets may be buffered on the CPU side while others remain on

the NIC side, resulting in a need of reordering mechanism, which

typically consumes a substantial amount of CPU cycles. (2) Syn-

chronous packet access across the PCIe interconnection (from CPU

to on-NIC buffer) incurs long CPU pipeline stalls and degrades the

throughput of the slow path [47]. These overheads make it chal-

lenging to achieve line-rate performance for both CPU-involved
and CPU-bypass flows. In this paper, we tackle this challenge by

designing the elastic buffer manager (§4.2) that avoids out-of-order

packets and reduces synchronous access overhead.

4 CEIO Design
This section presents the detailed design of CEIO. We begin by in-

troducing the credit-based flow controller for improving the fast

path utilization (§4.1) and subsequently describe the elastic buffer

manager for optimizing the slow path efficiency (§4.2). To enhance

clarity, we outline our design choices for the flow controller and
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buffer manager, focusing on how they address the challenges high-

lighted in §3, alongside a detailed explanation of the workflows for

both the fast and slow paths.

4.1 Proactive, Credit-based Flow Control
Multiple PriorityQueues V.S. LazyCredit Release. The primary

design goal of the credit-based flow controller is to ensure that

CPU-involved flows are more likely to access the fast path. One

potential approach is to adopt flow priority scheduling, such as

Multiple Priority Queues (MPQs) [6, 42], and we attempt to tag

CPU-involved flows with higher priority. However, we find that

the fundamental principle of network flow scheduling—granting

higher priority to shorter flows—is not well-suited for our system.

Consider PIAS [6] as an example, where the priority of a flow

is determined by its active time. Specifically, all flows experience

priority decay over time, transitioning from high to low priority.

Based on the assumption that datacenter network flows tend to fol-

low a long-tail distribution [3, 6]—i.e., most flows are short, while a

small percentage are very large—this mechanism ensures that short

flows are completed in high-priority queues, while long flows are

degraded to low-priority queues due to the priority decay. However,

directly applying MPQs to an I/O system does not guarantee that

CPU-involved flows will access the fast path as expected, since

CPU-involved flows are not always short (e.g., continuous RPC re-

quests, video streaming, or flows in overlay networks). This raises

a question: can we design a solution similar to MPQs that lets

CPU-bypass flows are more likely to degrade to lower priority (i.e.,
the slow path) than CPU-involved flows?

In this paper, we achieve a similar effect to MPQs by design-

ing a lazy credit release mechanism, where credits are released

only after a batch of messages is processed. This design choice is

guided by the following observations: (a) In high-speed networks,

CPU-involved flows are efficiently consumed by CPU cores using

a polling method [22], meaning packets do not accumulate in I/O

buffers as long as the CPU’s processing rate exceeds the network

rate; (b) The message size of CPU-bypass flows is typically very

large [5, 34, 43, 64, 75, 83], and applying the lazy release results in

slow credit replenishment. This, in turn, quickly uses up credits

assigned to this flow. A concrete example is the NCCL RDMA li-

brary [56], where an RDMAWrite-with-immediate is issued after

a batch of RDMA write operations to signal the receiver that the

network transmission is complete. In such cases, CEIO driver is

called after receiving the RDMA Write-with-immediate message

(via interrupt or polling) and the credits are replenished. This means

most of RDMA write operations are processed in the slow path

since the credits for this flow are exhausted very soon. As a result,

we have the opportunity to reallocate credits from flows in the

slow path (more likely to be CPU-bypass flows) to flows in the fast

path (more likely to be CPU-involved flows).

Based on the above design choice, we propose the basic workflow

of the credit-based flow controller, as illustrated in Figure 6. Upon

establishing a connection, the flow controller allocates credits and

offloads a steering rule to the low-level flow engine [14, 53, 81]—

a reconfigurable match-action engine (RMT engine) to redirect

received packets to either the fast or slow path. This steering rule

initially directs all flows’ packets to the fast path via DMA. The
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Figure 6: The basic workflow of credit-based flow controller.

flow controller manages credits for all flows and continuously polls

counters in the steering flow table to track credit consumption.

When a flow exhausts its credits, the flow controller updates the

steering rule to DMA packets into on-NIC memory, transferring

packet ownership to the elastic buffer manager (§4.2). Credits are

replenished by the CEIO driver, only after the CPU or memory

controller has processed a batch of message.

In the rest of this section, we present the detailed design of the

credit-based flow controller and address the following questions:

Q1 How should credits be allocated when new flows arrive?

Q2 How to handle the flows in slow path, preventing them from

flushing the cache and giving chance to upgrade to fast path?

Q3 How to reallocate credits and scale to large number of flows?

Detailed Design of Credit-based Flow Control. Let the set of
network flows be denoted as F = {𝑓1, 𝑓2, . . . , 𝑓𝑛}, the set of each
flow’s credits as C = {𝑐1, 𝑐2, . . . , 𝑐𝑛}, and the set of steering rules as
R = {𝑟1, 𝑟2, . . . , 𝑟𝑛}. Each flow is mapped to a specific NIC queue.

To ensure LLC efficiency, the total number of credits, 𝐶𝑡𝑜𝑡𝑎𝑙 , is

determined by the available LLC space:

𝐶𝑡𝑜𝑡𝑎𝑙 =
𝑆𝑖𝑧𝑒𝐿𝐿𝐶

𝑆𝑖𝑧𝑒𝑏𝑢𝑓
(1)

𝑆𝑖𝑧𝑒𝑏𝑢𝑓 represents the management granularity of LLC (includ-

ing allocation, consumption, and replenishment), which is 64B in

practice for an x86-based CPU architecture to maximize the LLC

utilization. For simplicity, we suppose the 𝑆𝑖𝑧𝑒𝑏𝑢𝑓 is I/O buffer

size, which stores a network packet. Then, in our testbed envi-

ronment (Intel Xeon Silver 4309Y [32]), the available LLC size is

configured to 6MB (using 6 out of 12 cache ways for DDIO), and

the I/O buffer size is set to 2KB (considering the MTU is configured

to 1500B). This results in a 𝐶𝑡𝑜𝑡𝑎𝑙 value of 3000. According to our

design, the initial credit allocation for one of 𝑛 flows is given by:

𝐶𝑓 𝑙𝑜𝑤 =
𝐶𝑡𝑜𝑡𝑎𝑙

𝑛
(2)

As previously mentioned,R is stored in the RMT engine, while cred-

its are recorded and managed by the flow controller, implemented

on on-NIC cores such as the ARM cores in NVIDIA BlueField DPUs.

Credit allocation begins upon connection establishment. For in-

stance, when a flow 𝑓1 is established, the flow controller allocates

𝑐1 = 3000 credits to 𝑓1 and creates 𝑟1 to enable legacy I/O for the

flow. Subsequently, each packet of 𝑓1 is directly DMAed to host

memory and notifies the CPU through either an interrupt or a
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Algorithm 1 CEIO Credit Management Strategy.

Input:
𝑛: Current flow number.

𝑚: New arrived flow number.

𝐶𝑡𝑜𝑡𝑎𝑙 : The total credit number of Rx host

1: // Credit assignment process.
2: 𝐶𝑓 𝑙𝑜𝑤 =

𝐶𝑡𝑜𝑡𝑎𝑙
𝑛+𝑚

3: for 𝑖 = 1 to 𝑛 do
4: if 𝑐𝑖 ≥ 𝑚

𝑛
𝐶𝑓 𝑙𝑜𝑤 then

5: for 𝑗 = 𝑛 to 𝑛 +𝑚 do
6: 𝑐 𝑗 ← 𝑐 𝑗 + 1

𝑛
𝐶𝑓 𝑙𝑜𝑤 ; 𝑐𝑖 ← 𝑐𝑖 -

1

𝑛
𝐶𝑓 𝑙𝑜𝑤

7: else
8: insert 𝑐𝑖 into 𝐼

9: // 𝐼 is the set of flows lacking sufficient credits to allocate.
10: for 𝑗 = 𝑛 to 𝑛 +𝑚 do
11: // Allocate credits of 𝑐𝑖 uniformly to remaining flows.
12: 𝑐 𝑗 ← 𝑐 𝑗 + 1

𝑚
𝑐𝑖

13: 𝑜𝑖
𝑗
← 1

𝑛
𝐶𝑓 𝑙𝑜𝑤 -

1

𝑚
𝑐𝑖 // 𝑜

𝑖
𝑗
is the credits 𝑐𝑖 owes to 𝑐 𝑗

14: 𝑐𝑖 ← 𝑐𝑖 -
1

𝑚
𝑐𝑖

15:

16: // Credit release process, 𝛾𝑖 is the released credits of 𝑓𝑖 .
17: for 𝑓𝑖 ∉ 𝐼 do
18: 𝑐𝑖 = 𝑐𝑖 + 𝛾𝑖
19: for 𝑓𝑖 ∈ 𝐼 do
20: for 𝑓𝑗 ∈ { 𝑓𝑗 |𝑜𝑖𝑗 > 0} do
21: 𝑜𝑖

𝑗
= 𝑜𝑖

𝑗
−𝑚𝑎𝑥 (𝑜𝑖

𝑗
,
𝛾𝑖
𝑚
)

22: 𝛾𝑖 = 𝛾𝑖 −𝑚𝑎𝑥 (𝑜𝑖
𝑗
,
𝛾𝑖
𝑚
)

23: 𝑐𝑖 = 𝑐𝑖 + 𝛾𝑖
24: if 𝑜𝑖 = 0 then
25: Remove 𝑓𝑖 from 𝐼 .

26: return

polling mechanism (Figure 2). An on-NIC core is assigned to moni-

tor this flow, tracking the hit count of 𝑟1 and the head pointer of

𝑓1’s legacy ring buffer to adjust the corresponding credits 𝑐1 as

necessary. When 𝑐1 is exhausted, the flow controller updates the

action field of 𝑟1 to DMA packets into on-NIC memory. A detailed

discussion of lazy credit release is deferred to §4.2, as it is closely

tied to ring buffer design, including operations like pointer updates.

Next, we address the previously raised questions to elaborate on

additional details of the credit-based flow controller.

•Q1: Handling new flows. The flow controller employs the credit

management strategy outlined in Algorithm 1 to reallocate C for

new flows. Suppose there are 𝑛 existing flows and𝑚 new flows;

the flow controller first calculates the updated 𝐶𝑓 𝑙𝑜𝑤 (line 2). It

then redistributes credits from the current flows to the new flows

until each new flow receives its allocated 𝐶𝑓 𝑙𝑜𝑤 . Two scenarios

arise during this process: (a) If 𝑐𝑖 ≥ 𝑚
𝑛 𝐶𝑓 𝑙𝑜𝑤 , the flow controller

can immediately transfer 𝑐𝑖 − 𝑚
𝑛 𝐶𝑓 𝑙𝑜𝑤 credits to the new flows

(lines 3-6); (b) If 𝑐𝑖 < 𝑚
𝑛 𝐶𝑓 𝑙𝑜𝑤 , the flow controller records the

under-allocated flows in 𝐼 (line 8), transfers their credits to prevent

starvation of newly arrived flows (lines 10-14), and replenishes

owed credits when credits are released (lines 19-25).

•Q2: Handling slow path flows.We provide two strategies for in-

voking the handler to process slow path I/O flowswith transparency

guarantee: a CEIO driver API for proactive invocation by CPUs and

event-driven invocation by NIC cores (e.g., triggered upon receiv-

ing an RDMA Write-with-immediate message). The former, being

more efficient, is used by default for CPU-involved flows, while the
latter, offering greater flexibility, is default for CPU-bypass flows.
Since the flow controller does not allocate credits for packets in

the slow path, DMAing these packets to host memory will flush

the LLC. To mitigate this, the flow controller temporarily pauses

the fast path during slow path DMAing, drains the I/O flow, and

then re-enables the fast path. Additionally, CCA is triggered when

NIC cores detect that the network’s production rate exceeds the

consumption rate of the CPU or memory controller in the slow

path. This approach not only ensures that packets in the slow path

are drained efficiently but also allows flows degraded to the slow

path to upgrade back to the fast path, thereby maintaining fairness.

•Q3: Reallocation and scaling.We adopt an "active flow" strategy

combined with a round-robin scheduling policy to reallocate credits,

making CPU-involved flows more likely to access the fast path,

and scaling to large number of flows. Identifying inactive flows

is straightforward: (a) for some long time inactive flows, a simple

timer can be used to coarsely identify them (e.g., 1 second); (b) for
others, we consider that if a flow’s packets in the fast path remain

unprocessed until the slow path draining is proactively invoked,

it is likely to be inactive. The flow controller then recycles the

credits from inactive flows and reallocates them using Algorithm 1.

Additionally, as a backup strategy, we use a timer to periodically

re-activate inactive flows in round-robin, ensuring fairness and the

opportunity for all flows to access fast path resources.

4.2 Elastic Buffering
The primary design goal of elastic buffering is to minimize inter-

action overheads, introduced by packet ordering and synchronous

access to on-NIC memory. We now describe how these challenges

are addressed respectively.

Eliminating Out-of-Order via Software Ring. Under our flow
control design, we observe that, although packets may reside in

both fast path and slow path buffers, packets in the fast path al-

ways reach the LLC before those in the slow path. Specifically,

the fast path is continuously utilized until the flow exhausts its

credits. Once the flow is degraded to the slow path, the fast path

is blocked until the packets in the slow path are drained. This al-

ternation between the fast and slow paths gives an opportunity

to facilitate the order processing in CPUs. We implement a CEIO
software ring (SW ring) to abstract the hardware rings (i.e., fast
path ring and slow path ring) for upper-layer applications, provid-

ing an ordering reception interface (recv()) shown in Figure 7.

The SW ring unifies fast-path and slow-path packets into a single

application-facing abstraction. This ring is implemented as a two-

producer, one-consumer buffer where its tail pointer is updated

alternately based on the tail pointers of the HW rings (hardware

rings). Similar to the legacy ring buffers, the SW head pointer is

incremented immediately after transferring packets’ ownership

to the application, while HW head pointers are incremented after

previous packets have been processed by the application (similar

to RDMA’s posted work requests). To ensure ordering correctness

across path transitions, CEIO enforces phase exclusivity. When a

flow transitions from fast to slow path, the fast-path DMA is paused
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Figure 7: An example of elastic buffering.

immediately, and all buffered slow-path packets are drained before

the fast path resumes. This guarantees that all fast-path packets

are delivered before any slow-path packets for the same flow. Since

the packet order is naturally preserved within each hardware ring,

all packets in the SW ring are inherently ordered. As a result, CEIO
avoids per-packet metadata tracking or sorting commonly seen in

software reordering schemes. Additionally, we observe that the lazy

credit release mentioned in §4.1 is naturally achieved—fast path’s

head pointer is updated after processing messages, which triggers

NIC cores to replenish the credits of the flow.

Mitigating synchronous access via asynchronous DMA. Note
that packets in the slow path are still located in on-NIC memory,

meaning the application must wait for DMA operations to complete

when accessing these packets. To overlap the synchronous access

overhead, we design a non-blocking (async_recv()) API (§5) that
enables asynchronous fetching of packets from the slow path. Lever-

aging the alternation between fast and slow paths, CEIO driver can

issue DMA read requests for slow path packets while the applica-

tion processes fast path packets asynchronously. Specifically, the

CEIO driver maintains a flag for each ring entry, indicating whether

the I/O buffer locates in the fast path or the slow path. While appli-

cation polls the SW ring, the driver asynchronously issues DMA

read requests for slow path packets by checking the flag field. This

ensures the application is not blocked because the driver will not

wait for DMA completion (similar to DPDK polling mechanism).

Then, in the next iteration, the application can directly fetch packets

from host memory instead of on-NIC memory
4
.

Taking Figure 7 as an example to illustrate elastic buffering. Sup-

pose 2 messages arrive, and 4 credits remain. According to CEIO, the
first 4 packets will be filled into the fast path ring (I/O buffers #1-#4),

and the subsequent packets will be DMAed to on-NIC memory and

filled into the slow path ring. Consider the NIC just receives #20,

and the application requires the first message (I/O buffers #1-#4 and

#17, #18). The driver first fetches the packets in the fast path and

issues DMA read requests for #17 and #18. For the synchronous

API (recv()), the driver returns to the application after completing

the DMA. For the asynchronous API (async_recv()), the driver
immediately returns with buffers #1-#4. Meanwhile, since buffers

4
A minor detail is that the slow path head pointer is updated immediately after the

DMA operation completes, providing two key benefits: (a) reducing pointer update

overhead for Memory-mapped I/O (MMIO) interaction; (b) enabling the driver to track

which DMA operations have completed.
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Figure 8: The implementation details and placement of CEIO
within the I/O stack.

#17 and #18 are located in the slow path, the buffer manager contin-

uous to DMA subsequent #19 and #20 to the host memory, draining

the slow path. Once finishing, the flow controller re-enables the

fast path, allowing the remaining packets to be filled into buffers

#5-#8 of the fast path ring. When calling the second message, CEIO
driver repeats the above process and maintains the order of packets

in the SW ring (fill #19-#20 first, then #5-#8).

5 Implementation
We have fully implemented CEIO on commercially available Smart-

NICs, the NVIDIA BlueField-3 DPU with DOCA SDK v2.9.2 [51].

In this section, we demonstrate CEIO’s compatibility to existing

I/O frameworks that ensures the transparency of the credit-based

flow control and the elastic buffering. Figure 8 illustrates CEIO’s
placement in the I/O stack, where a CEIO library is exposed to

applications and a CEIO runtime is deployed in the NIC.

Softeware Compatibility.We have developed CEIO over DPDK
v22.10 and MLNX_OFED v23.10 to support both DPDK and RDMA

based I/O frameworks. This is achieved by CEIO library, built on

top of librte_ethdev and libibverbs, and exposing socket-like

blocking (recv()) and non-blocking (async_recv()) APIs to ap-

plications. The transport layer operates either above CEIO (for

user-space stacks) or beneath it (for hardware-based transports).

As a result, CEIO serves as an enhancement for the conventional

firmware/driver layer, while maintaining fully compatible with ex-

isting transport protocols since CEIO does not modify transport

layer behavior. This feature enables CEIO to natively support most

existing user-space networking libraries, such as mTCP [35] and

Open vSwitch [59]. We also believe that integrating CEIO into

kernel-space libraries, such as XDP [27] is feasible and will be

explored in future work. Note that CEIO is deployed only on the

receiver side, while the sender side continues to running with the

original networking libraries.

Next, we use eRPC [37], a popular RPC framework that supports

both DPDK and RDMA network interfaces, to demonstrate CEIO’s
software compatibility more concretely. To utilize CEIO, users only
need to replace the low-level I/O receiving operations [30] with

CEIO’s recv() and async_recv()APIs. CEIO library will handle all
remaining operations described in §4.1 and §4.2, including the man-

agement for CEIO fast and slow path rings, credit replenishment,

and ownership transfer of I/O buffers to the eRPC. Additionally, we

provide zero-copy I/O support by implementing post_recv() API,

which allows the application to allocate and transfer the ownership
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of a memory buffer to CEIO driver, and CEIO will utilize the buffer

as an I/O buffer for subsequent DMA operations.

Hardware Compatibility. CEIO leverages the RMT engine and

ARMv8 on-NIC cores in the BlueField-3 DPU to implement the

flow controller and elastic buffer manager. We believe that this

hardware dependency does not pose a significant constraint, as

the core functionality of CEIO can be easily implemented on other

brand of SmartNICs, whether they use off-path core, on-path core,

or ASIC/FPGA-based architectures [44]. Specifically: (a) the RMT

engine is a standard feature in most SmartNICs [4, 33] and legacy

NICs [21, 52], supporting basic RSS [71] and ARFS [72] offloading;

and (b) CEIO logic in ARMv8 core mainly consists of match-action,

DMA, and queue management, of which the atomic operations

are lightweight table lookup and register access. Even a wimpy

processor in on-path NIC architecture [7, 46] is sufficient to im-

plement CEIO’s logic, as the memory access overhead is negligible.

Additionally, we have observed that the required atomic operations

are common in some ASIC/FPGA-based NICs [7, 21].

In CEIO, elastic buffering is implemented using the on-board

DRAMof SmartNICs or DPUs, as thismemory is software-accessible.

If SRAM on legacy NICs such as ConnectX-7 or ConnectX-8 were

exposed for general-purpose use, this limited capacity would still

be adequate for CEIO’s functionality. Accordingly, CEIO does not

aim to inflate NIC resources, but rather prefers a minimal and

already-available memory footprint to improve I/O efficiency.

6 Evaluation
We evaluate CEIOwith real-world workloads under various network
conditions. In general, CEIO delivers near line-rate throughput and

µs tail latency in most cases, outperforming SOTA methods by up

to 2.5× in throughput and 1.9× in P99.9 tail latency. Our goals in

this section are:

• Understand benefits of CEIO’s core idea—an I/O manager in the

NIC with proactive rate control and elastic buffering. By testing

end-to-end performance improvements, we evaluate whether

CEIO addresses the fundamental limitations of previous LLC opti-

mizations, such as HostCC and ShRing, through experiments con-

ducted under dynamic flow distribution and network burst (§6.2).

• Deep dive into CEIO’s micro-behaviors—including performance

in the fast path, slow path, thousands of flows, and mixed I/O

flows—to show the effectiveness of CEIO’s design (§6.3).

• Derive lessons from CEIO’s evaluation. These lessons provide
guidelines for the optimal usage of CEIO and inform future de-

signs for I/O software and hardware (§6.4).

6.1 Methodology
The experiments are conducted on two 200Gbps servers, as de-

scribed in §2.3. One server hosts an eRPC-based key-value server [37]

and a LineFS DFS server [36], while the other is configured as

the client. We use the throughput and P99.9 latency of eRPC and

LineFS as baselines. Since eRPC is built on both DPDK and RDMA,

and LineFS is built on RDMA, we evaluate CEIO in both DPDK

and RDMA configurations. We then evaluate two cache optimiza-

tions for I/O discussed in §2.3: the reactive I/O rate control method

HostCC [1] and the fixed I/O buffer method ShRing [61], using them

as competitive baselines. Each method is configured as follows:
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Figure 9: Throughput and LLC miss rate of CEIO and other
benchmarks with various packet sizes (128B-1024B). CEIO
significantly reduces the LLC miss rate and achieves higher
throughput under static network conditions.

• HostCC is deployed as a kernel module, configured to monitor

IIO buffer occupancy and PCIe bandwidth utilization. It dynami-

cally adjusts host resource allocation (e.g., CPU processing time,

PCIe credits) for each I/O flow and triggers existing network

CCAs (e.g., DCTCP) when host congestion is detected.

• The hardware requirement for ShRing (i.e., shared receive queue)

is available in our BlueField-3 NICs [55]. To leverage ShRing, we

re-implement the dispatching logic of eRPC and LineFS to use

the shared receive queue and limit the number of Rx entries to

4096, which is lower than the LLC capacity (12MB).

Additionally, we compare the data path performance of CEIOwith a
popular RDMA benchmark, perftest[54] developed by Mellanox,

to demonstrate that our optimizations for mitigating slow path

overhead are effective and efficient.

Benchmarking Applications. We evaluate CEIO using the fol-

lowing real-world workloads:

• Key-value operations on eRPC: The server handles 1:1 get/put re-

quests with an 1:4 key-value ratio (e.g., 16B key, 64B value, resulting

in a 144B packet). We populate 1,000 key-value entries and generate

requests randomly from 8 client threads, aiming to saturate the

server node and network fabrics.
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(a) I/O performance in dynamic flow distribution.
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(b) I/O performance in network burst.
Figure 10: I/O performance of CEIO and other benchmarks
in various network conditions. CEIO avoids the fundamental
limitations of the SOTA optimizations.

• File transfer on LineFS: The client writes a 16GB file to the server

in different chunk sizes, while the server performs replication and

logging. 8 client threads perform the write operations in parallel to

ensure that the client does not become a bottleneck.

• Echo: One client continuously sends messages to the server, which

echoes each message back with a 64B acknowledgement. This work-

load is used to demonstrate the highest performance of CEIO’s I/O
data path. We use dperf [31] to generate the echo requests.

6.2 End-to-End Performance
We report the end-to-end performance improvements of CEIO com-

pared to the baselines in terms of throughput and latency, and

benchmark CEIO against SOTA optimizations. Results are presented

in Figure 9, Table 1, and Figure 10, with following observations:

CEIO vs. Baselines. CEIO achieves a throughput speedup of 1.3-

2.1× and a latency reduction of 2.0-4.7× over the baseline. These

speedups are attributed to optimized LLC utilization, where CEIO
reduces the LLC miss rate from 88% to 1%. This observation aligns

with the analysis in §3, where CEIO’s credit-based flow control effec-

tively minimizes frequent LLC misses. Additionally, the speedups

are more pronounced for eRPC, as eRPC employs a zero-copy opti-

mization for packet processing, significantly reducing CPU cycles

and allowing it to achieve higher theoretical throughput compared

to LineFS. We also observe that CEIO delivers similar performance

gains in both DPDK and RDMA configurations, demonstrating its

compatibility across different setups.

CEIO vs.HostCCand ShRing.Wefirst compare CEIOwithHostCC

and ShRing under static network conditions, as shown in Figure 9.
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Figure 11: Throughput comparison between CEIO fast path,
slow path, and ib_write_bw in perftest. The overhead of
CEIO’s flow control is negligible.
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Figure 12: Aggregate throughput of CEIO with 512B-echo
workload in RDMA UD mode, varying the number of flows.
The results indicate CEIO’s active flow strategy helps sustain
throughput under high flow count.

We observe that (a) the proactive rate control in CEIO is more effec-

tive than the reactive rate control in HostCC, resulting in up to 1.5×
throughput speedup and a 55× improvement in cache hit rate; (b)

although the cache miss rates of CEIO and ShRing are similar, CEIO
achieves higher throughput due to elastic buffering, which prevents

unnecessary CCAs triggered by packet loss. We then repeat the

experiments under dynamic network conditions, as described in

§2.3. When we intensify the limitations of HostCC and ShRing,

CEIO performs better, achieving up to 2.0× throughput speedup in

dynamic flow distribution (Figure 10a) and up to 2.9× throughput

speedup in network burst conditions (Figure 10b).

6.3 CEIO Effectiveness
In this section, we take a deep dive into CEIO to: (1) evaluate the

performance of CEIO in both the fast path and slow path, assessing

its I/O data path efficiency; (2) analyze the scalability of CEIO with

respect to the number of flows; and (3) demonstrate the effectiveness

of credit-based flow control and elastic buffering in mitigating slow

path overheads.

Performance in Fast Path and Slow Path. First, we report the
single-flow performance of CEIO in both the fast path and slow

path using the echo workload, where we force the flow into the

slow path by setting its credit to zero. To demonstrate CEIO’s high
efficiency, we also conduct experiments using the ib_write_bw tool

in perftest, a standard RDMA benchmark. The results, demon-

strated in Figure 11, reveal the following observations: (1) CEIO
achieves a similar performance curve in the fast path, indicating

that the overhead of credit-based flow control is negligible; (2) the

slow path performance approaches the fast path once the message

size exceeds 4KB, with the performance gap remaining under 22%.
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Datapaths eRPC(DPDK) eRPC(RDMA) LineFS
P99 P99.9 P99 P99.9 P99 P99.9

Baseline 116.87 126.94 137.31 184.03 276.29 432.81

HostCC 102.14 (↓ 1.14×) 107.39 (↓ 1.18×) 121.58 (↓ 1.13×) 169.45 (↓ 1.09×) 154.28 (↓ 1.79×) 283.36 (↓ 1.53×)
ShRing 64.05 (↓ 1.82×) 85.42 (↓ 1.49×) 94.82 (↓ 1.45×) 137.36 (↓ 1.34×) 121.48 (↓ 2.27×) 162.50 (↓ 2.66×)
CEIO 46.19 (↓ 2.53×) 53.08 (↓ 2.39×) 69.50 (↓ 1.98×) 73.70 (↓ 2.50×) 66.28 (↓ 4.17×) 91.43 (↓ 4.73×)

Table 2: P99 and P99.9 latency (µs) of CEIO and baseline approaches under the 512B echo workload. The symbol ↓ denotes the
latency reduction factor

RDMAWrite Fast Path Slow Path

64B 1.46 1.72 1.80

1024B 2.10 2.31 2.43

4096B 2.54 3.32 3.76

Table 3: Latency metrics (µs) of CEIO in the fast and slow
paths, tested with ib_write_lat tool in perftest. The baseline
is the latency of RDMA write.

We then report the latency metrics of CEIO at Table 3. The results
show that CEIO does introduce modest latency overhead (1.10× -
1.48×) due to the additional controlling logic (§4). This suggests that
users may need to adjust time-sensitive thresholds in their transport

protocols, such as retransmission timeouts and RTT estimates in

CCAs. However, since the absolute latency overhead is less than

10µs, which is several orders of magnitude smaller than typical

transport protocol constants, we believe the impact on transport

performance is negligible. Additionally, we observe that the slow

path exhibits significantly higher latency than the fast path under

large packet conditions, primarily due to data traversing the lower-

performance onboard memory. We believe this latency overhead

can be further reduced by implementing CEIO within the NIC

hardware pipeline (e.g., using NVIDIA DPA and onboard SRAM),

which we leave as future work.

Performance in Thousands of Flows. Next, we analyze how the

active flow optimization in §4.1 scales CEIO to support thousands

of flows. To eliminate the negative impact of native scaling over-

heads discussed in DPDK [24] and RDMA [77], we utilize RDMA

Unreliable Datagram (UD) mode to generate flows. Specifically, the

client concurrently sends 16 flows with different queue pair IDs,

maintains a short time slot, and randomly changes the destination

queue pairs for each subsequent time slot. We report the aggregated

throughput of CEIO as the number of flows varies in Figure 12 and

observe the following: (1) CEIO maintains stable, high throughput

when the flow changing rate is slow (e.g., when the time slot is

set above 1ms); (2) When the flow changing rate is fast (e.g., when

the time slot is set to 500 and 100 µs), CEIO experiences a slight

throughput decrease from 128 to 1K flows, and drops to the slow

path performance beyond 1K flows. This is because the simple

round-robin re-activation strategy cannot keep up with the flow

changing rate, causing all flows to shift to the slow path. We leave

this challenge for future work.

Performance in Mixed I/O Flows. Finally, we evaluate the per-
formance of CEIO in mixed I/O flows to demonstrate the effec-

tiveness of our designs. To this end, we deploy eRPC and LineFS

Ratio Baseline CEIO w/o optimization CEIO

3:1 31.678 (-) 45.299 (1.53×) 61.570 (1.94×)

1:1 20.521 (-) 28.319 (1.38×) 37.373 (1.82×)

1:3 12.429 (-) 14.418 (1.16×) 21.305 (1.71×)

Table 4: Throughput (Mpps) of CPU-involved flows and
speedup of CEIO with and without fast/slow path optimiza-
tions on mixed I/O flows. The ratio refers to the ratio of
CPU-involved to CPU-bypass flows. There are 8 flows in total.

together and generate CPU-involved and CPU-bypass flows with

varying ratios. The flow characteristics remain consistent with

those in Figure 10. The results, presented in Table 4, reveal the

following observations: (1) When CPU-involved flows dominate,

CEIO with optimizations can further improve throughput from 1.53

to 1.94×. This improvement stems from credit reallocation (§4.1),

which effectively detects CPU-bypass flows, reallocates credits to
CPU-involved flows, and enhances fast path utilization; (2) When

CPU-bypass flows dominate, CEIO with optimizations improves

throughput from 1.16 to 1.71×. This gain results from the SW&HW

ring design and asynchronous access mechanism (§4.2), which ef-

fectively mitigate out-of-order and synchronization overheads in

the slow path.

Scenarios where CEIO’s Benifits are Limited. While CEIO

demonstrates improvements across a range of workloads with lim-

ited overhead, we also identify scenarios where LLC efficiency is

not the dominant factor limiting I/O performance. In such cases,

CEIO and other methods provide limited benefit:

• Scenarios with lowmemory pressure:When thememory footprint

is small, almost all I/O data can be cached in the LLC, resulting in

negligible cache miss rates. In this case, baseline, CEIO, and other

optimizations exhibit similar performance. To demonstrate this,

we evaluate a synthetic workload consisting of 64B packets with

VxLAN decapsulation, and observe that both baselines and CEIO

achieve 89Mpps throughput with <5% cache miss rate.

• Scenarios with large packet size: Figure 9 suggests that when

packet sizes are large, CEIO offers limited throughput gains. This

is because large packets amortize the per-packet overhead (such

as ring and memory pool management, descriptor transfer, header

overhead, etc.), reducing CPU utilization and thus allowing the

system to tolerate the additional memory access overhead from

cache misses. To validate this, we evaluate the baseline with 9000B

jumbo frames in an echo workload, and observe that it can achieve

line-rate throughput when packet size is larger than 4096B, even

with a 48% cache miss rate.
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6.4 Lessons Learned
The above evaluation demonstrates that CEIO has the ability to

achieve near line-rate throughput and µs latency for the I/O data

path. However, it is not a universal solution for all scenarios. We

highlight two cases where CEIO’s performance is suboptimal and

provide insights for the future I/O software and hardware designs.

Understanding ImprovementGaps between eRPCand LineFS.
In Figure 9, we observe that eRPC with CEIO delivers near line-rate
throughput, while LineFS with CEIO achieves only 45% of eRPC’s

throughput at the worst point. This suggests that zero-copy opti-

mizations, like those employed by eRPC, are essential for achieving

high throughput for two main reasons: (1) zero-copy saves more

CPU cycles for packet processing, as discussed in §6.2; (2) memory

copy operations in LineFS typically result in additional cachemisses,

with a observedmiss rate of around 10%, even with an optimized I/O

data path. Specifically, when copying I/O data from the I/O buffer

to the application buffer, the latter is usually not in the LLC cache,

leading to further cache misses. This observation underscores the

necessity of zero-copy for unlocking the full potential of CEIO, and
suggests that future network libraries should consider cache opti-

mization techniques, such as recycling and pre-fetching application

buffers from a memory pool, to further enhance performance.

Understanding Performance Penalties of Slow Path. By com-

paring Figure 11 with Figure 12, we observe that the slow path

performance drops by around 15Gbps when the number of flows

is large and the message size is small (e.g., 512B). We suspect this

degradation is due to two factors: (1) increased latency in process-

ing DMA requests from on-NIC memory to DRAM, caused by the

internal PCIe switch of the BlueField-3 [78]; and (2) degraded on-

NIC memory throughput due to chaotic access patterns for the

on-NIC memory [65]. To address these issues, we suggest that fu-

ture NIC architectures allocate CPU-attached SRAM (such as those

in the CXL architecture [66]), bypassing the internal PCIe switch,

to further reduce synchronization overhead in CEIO’s slow path.

Understanding the Relationship between Transport Proto-
cols and CEIO. CEIO operates independently of specific transport-

layer protocols such as DCTCP [2] and RoCE [26]. While trans-

port protocols focus on end-to-end congestion control and loss

recovery—typically reacting to network conditions over tens or

hundreds of microseconds—CEIO provides fast, local response to

host-side memory congestion, which can be considered as a "flow

control" mechanism, from NICs to CPUs. We believe these two

approaches are complementary and should coexist to ensure both

host and network-level efficiency.

7 Related Work
This section reviews related LLC optimization works beyond the

I/O system, as well as related I/O acceleration techniques that are

orthogonal to CEIO.

Software-level Optimization. PacketMill [18] reserves a por-

tion of the cache specifically for DDIO. Shenango [58] adopts a

prefetching strategy to warm up the LLC before processing packets.

ScaleRPC [13] limits concurrent flows to mitigate cache contention.

CEIO can be integrated with these works to further improve the LLC

efficiency as CEIO operates transparently to upper-layer software.

Hardware-level Optimization. Since LLC plays a crucial role in

I/O performance, some hardware-level works focus on expanding

LLC capacity [19] or re-designing the cache allocation strategy

for DDIO [84]. We believe that CEIO’s design remains effective in

conjunction with these efforts, as the basic assumption, i.e., the
cache is shared by multiple I/O flows and can easily be exhausted

by I/O traffic, is still valid.

Novel I/O Accelerators. We have observed that some works pro-

pose new I/O acceleration techniques beyond DDIO and RDMA,

such as optimizing address translation [77] and ring buffer man-

agement [65]. These techniques can be integrated into CEIO by

replacing other components within the I/O data path, such as the

RDMA engine and SRAM controller, thereby constructing a more

complete, next-generation NIC architecture.

8 Conclusion
This paper presents CEIO, a cache-efficient I/O architecture for NIC-

CPU data paths. CEIO introduces proactive, credit-based I/O rate

control and elastic buffering to eliminate LLC misses in the I/O

data path, optimizing the effectiveness of DDIO and RDMA under

varying network conditions. We implement CEIO using commodity

SmartNICs and expose libraries compatible with DPDK and RDMA.

Extensive evaluations demonstrate CEIO’s ability to achieve near

line-rate throughput and µs-scale latency across various scenar-

ios, outperforming state-of-the-art solutions such as HostCC and

ShRing by up to 2.9× in throughput and 1.9× in latency.
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